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Abstract

Strangely enough, it is possible to use machine learning mod-
els to predict the satisfiability status of hard SAT problems
with accuracy considerably higher than random guessing. Ex-
isting methods have relied on extensive, manual feature engi-
neering and computationally complex features (e.g., based on
linear programming relaxations). We show for the first time
that even better performance can be achieved by end-to-end
learning methods — i.e., models that map directly from raw
problem inputs to predictions and take only linear time to eval-
uate. Our work leverages deep network models which capture a
key invariance exhibited by SAT problems: satisfiability status
is unaffected by reordering variables and clauses. We showed
that end-to-end learning with deep networks can outperform
previous work on random 3-SAT problems at the solubility
phase transition, where: (1) exactly 50% of problems are satis-
fiable; and (2) empirical runtimes of known solution methods
scale exponentially with problem size (e.g., we achieved 84%
prediction accuracy on 600-variable problems, which take
hours to solve with state-of-the-art methods). We also showed
that deep networks can generalize across problem sizes (e.g.,
a network trained only on 100-variable problems, which typ-
ically take about 10 ms to solve, achieved 81% accuracy on
600-variable problems).

1 Introduction

NP-complete combinatorial problems are pervasive in many
domains, such as planning, scheduling, and networking. The
propositional satisfiability (SAT) problem is among the most
widely studied of these; indeed, it was the first to be proven
NP-complete. It is also used in many applications (e.g., model
checking (Clarke et al. 2001) and radio spectrum reallocation
(Fréchette, Newman, and Leyton-Brown 2016)) due both to
its encoding flexibility and the availability of many high-
performance solvers. The SAT problem asks whether a given
Boolean expression evaluates to true. SAT is typically repre-
sented in conjunctive normal form (CNF), as a conjunction
(AND) over clauses, each of which is an disjunction (OR)
over Boolean variables, which may optionally be negated.
The conjunction and disjunction operators are commutative,
so permuting their arguments does not change a problem
instance. The two-layer logical structure of CNF is simple to
reason about and is used by most SAT solvers.
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Over the past two decades, machine learning has been
shown to be very useful for making instance-specific pre-
dictions about properties of SAT problems (e.g., algorithm
runtime prediction (Hutter et al. 2014), algorithm selection
(Xu et al. 2008), and satisfiability prediction (Xu, Hoos,
and Leyton-Brown 2012)). Perhaps the key drawback of
this work is its reliance on hand-engineered features. The
computation of most of these features requires between
linear and cubic time in the size of the input. It is diffi-
cult to assess whether less computationally expensive fea-
tures would yield similar results, to determine whether
important features are missing, and to translate a model-
ing approach to a new domain. Learning representations
from raw problem descriptions via neural networks is a
promising approach for addressing these obstacles. There
has been recent work in this direction (Evans et al. 2018;
Selsam et al. 2019); this work is very interesting from a ma-
chine learning perspective, but has tended to focus on prob-
lems that are trivial from a combinatorial optimization per-
spective (e.g., < 1 second to solve by modern SAT solvers).

One of the most widely studied distributions of SAT in-
stances is uniform random 3-SAT at the solubility phase
transition (Cheeseman, Kanefsky, and Taylor 1991; Mitchell,
Selman, and Levesque 1992). These problems are easy to
generate, but are very challenging to solve in practice. Indeed,
empirical runtimes for high-performance complete solvers
have been shown to scale exponentially with problem size
on these instances (Mu and Hoos 2015). Holding the number
of variables fixed, the probability that a randomly-generated
formula will be satisfiable approaches 100% as the num-
ber of clauses shrinks (most problems are underconstrained)
and approaches 0% as the number of clauses grows (most
problems are overconstrained). For intermediate numbers of
variables, this probability does not vary gradually, but in-
stead undergoes a sharp phase transition at a critical point
(a clauses-to-variables ratio of about 4.26) where the prob-
ability that a formula will be satisfiable is exactly 50%. Us-
ing hand-engineered features, past work (Sandholm 1996;
Xu, Hoos, and Leyton-Brown 2012) showed that an instance’s
satisfiability status can be predicted with accuracy higher
than that of random guessing. In particular, Xu, Hoos, and
Leyton-Brown built the models which we believe represent
the current state of the art, and they also investigated whether
models could generalize across problem sizes so as to claim



to identify “asymptotic” behavior. They thus limited their
models to features that preserve their meanings across prob-
lem scales (e.g., graph-theoretic properties of the constraint
structure and the proximity to integrality of the solution to the
linear programming relaxation of SAT, rather than e.g., the so-
lution quality attained by a simple local search procedure in a
fixed amount of time). They demonstrated that random forest
models achieve classification accuracies of at least 70%, even
when trained on tiny (100 variable) problems and tested on
the largest problems they could solve (600 variables).

In our work, we investigate the use of end-to-end deep net-
works for this problem. Combinatorial problems are highly
structured; changing a single variable can easily flip a for-
mula from satisfiable to unsatisfiable. We thus believe (and
will later show experimentally) that success in this domain re-
quires identifying model architectures that capture the correct
invariances. Specifically, we encode raw CNF SAT problems
as permutation-invariant sparse matrices, where rows repre-
sent clauses, columns represent variables, and matrix entries
represent whether or not a variable is negated. The deep net-
work architectures we explore are invariant to column-wise
and row-wise permutations of the input matrix, which pro-
duce logically equivalent problems. The architectures support
arbitrary-sized problems, and both memory demands and for-
ward pass time complexity scale linearly with the number of
non-zeroes in the input matrix.

Specifically, we evaluate two different architectural ap-
proaches. The first is to compose a constant number of net-
work layers based on trainable parameters; we use the ex-
changeable architecture of Hartford et al. (2018), since it
was shown to be maximally expressive and thus generalizes
all other such approaches. The second alternative is to use
message passing networks, which repeatedly apply the same
layer for any desired number of steps; we use the neural mes-
sage passing implementation of Selsam et al. (2019), as it
captures the correct invariances. Selsam et al.’s approach was
already applied to SAT, but the focus of their work was on
the much harder task of decoding satisfiable solutions. For
that reason, their work only applied the architecture to small
problems, which are trivial for modern SAT solvers.

We evaluated both of these neural network approaches on
uniform-random 3-SAT instances at the phase transition, pri-
marily to facilitate comparison with past work. Despite the
fact that our models did not have access to hand-engineered
features and that they were only able to learn linear-time
computable features, we achieved substantially better per-
formance than that of Xu, Hoos, and Leyton-Brown (2012).
Specifically, we respectively achieved 78.9% and 79.1% ac-
curacy on average across problems ranging from 100-600
variables for the exchangeable and message passing archi-
tectures, compared to 73% accuracy on average for random
forests with features. On 600-variable problems (which typ-
ically take hours to solve), we achieved > 80% accuracy
with both deep learning architectures. Like Xu, Hoos, and
Leyton-Brown (2012), we were able to build models that gen-
eralized to much larger problems than those upon which they
were trained, even though we were unable to explicitly force
learned features to preserve their meanings across problem
scales. (However, in this case, the exchangeable architecture

showed a clear advantage over the message passing architec-
ture.) For example, we achieved 81% prediction accuracy on
600-variable problems using the exchangeable architecture
trained only on (very easy) 100-variable problems.

Overall, our work introduces the first example of state-
of-the-art performance for the end-to-end modelling of the
relationship between the solution to a combinatorial decision
problem and its raw problem representation on a distribution
that is challenging for modern solvers. We expect our work
to be useful for the solving and modelling of SAT and other
constraint satisfaction problems.

The rest of the paper begins with a survey of important
related work (Section 2); then, we describe the permutation-
invariant neural network architectures that we use to represent
SAT instances (Section 3). We apply these architectures to
predicting satisfiability (Section 4), and validate them by
comparing our results to past work and evaluating their gen-
eralization across different instance sizes (Section 5). Finally,
we summarize our contributions (Section 6).

2 Related work

Using learning to reason about NP-complete problems
Over the past two decades, the combinatorial optimization
community has become increasingly interested in using ma-
chine learning to make instance-specific predictions about
properties of problems. Much work has focused on the
problem of predicting how long a solver will take to run
(Finkler and Mehlhorn 1997; Smith-Miles and Lopes 2012;
Hutter et al. 2014). These methods have shown surprisingly
good performance across a wide range of problems, solvers,
and instance distributions. Indeed, many still find it counter-
intuitive that it is even possible to predict the behavior of
algorithms that run in exponential time in the worst case.

Most work for learning to reason about SAT problems
builds on the set of features first proposed by Nudelman et
al. (2004). They generated 84 features that they considered
predictive of solver performance, which they derived from
known heuristics (e.g., ratio of positive to negative occur-
rences of clauses and per variables), tractable subclasses (e.g.,
proximity to Horn formulae), and other proxies for problem
complexity (e.g., statistics of the solution to LP relaxations
of the SAT problem, and statistics about the progress of SAT
solvers over time-bounded runs). The features vary in compu-
tational complexity from trivial (e.g., the size of the problem)
to expensive (e.g., the LP relaxation, which is roughly cubic).

These features have subsequently been combined with a
variety of machine learning models (Xu, Hoos, and Leyton-
Brown 2007), and they form the basis of the random forest
models studied by Xu, Hoos, and Leyton-Brown (2012). Hut-
ter et al. (2014) used hand-engineered features to predict
per-instance runtimes; features have also been used to build
algorithm portfolios, where performance can be improved by
selecting different solvers on a per-instance basis (Xu et al.
2008; Lindauer et al. 2015).

Neural network representations for combinatorial prob-
lems (Selsam et al. 2019)’s work is the closest in spirit to
our own. They learned a neural SAT solver that performs



“search” via neural message passing. They focus on the prob-
lem of solving SAT formulas, but they do so by supervising
a message passing architecture with only the satisifiability
status of an instance. They therefore cast the problem of de-
termining which variables to instantiate as one of predicting
the formula’s satisfiability status, and refine this prediction
with every recurrent iteration.

Allamanis et al. (2016) and Sekiyama and Suenaga (2018)
used TreeNNs to learn end-to-end models for instance-
specific predictions of propositional formulae. They consid-
ered arbitrary propositional formulae, which lack the same
logical invariances of formulae in CNF, and they considered
problems with at most 50 variables.

Loreggia et al. (2016) created fixed-size representations
for SAT instances by converting CNF representations to
128 x 128 images and applying a convolutional neural net-
work. Although this representation is not invariant to variable
or clause permutations, the resulting algorithm selector out-
performed the best individual solver (but still fell far short of
methods based on hand-engineered features).

Both Li, Chen, and Koltun (2018) and Selsam and
Bjgrner (2019) used graphical neural networks to learn heuris-
tics for guiding SAT solvers.

Deep networks have also been used to attack a variety of
combinatorial problems beyond SAT; see Bengio, Lodi, and
Prouvost (2018) for a recent survey. Most notably, Evans et
al. (2018) use a recurrent network for predicting logical en-
tailment; this RNN architecture is not permutation-invariant,
and it does not scale to the size of instances we considered
in our own work. Prates et al. (2019) also studied predicting
optimal tours in Euclidean traveling salesman problems.

Deep networks for exchangeable data A large body of
recent work has studied deep network architectures for ex-
changeable arrays, such as sets (Zaheer et al. 2017), ma-
trices and tensors (Hartford et al. 2018; Bloem-Reddy and
Teh 2019), and graph structured data (Battaglia et al. 2018;
Hamilton, Ying, and Leskovec 2017, and references therein).
All of these approaches build deep network layers respect-
ing the in- or equivariances' implied by the exchangeable
array (e.g., sets are permutation-invariant, while matrices
are equivariant under permutations of rows or columns), but
they differ in design decisions about which representations
to aggregate over, how multiple layers are composed, and
which permutation-invariant functions are used to perform
the aggregation.

In this paper, we explore the first two of these design
dimensions. First, we use the exchangeable matrix architec-
ture presented in Hartford et al. (2018) because it supports
a natural CNF-style matrix encoding of SAT problems with-
out requiring an intermediate graph representation. It was

' A function is equivariant if permutations of its input only result
in a corresponding permutation of its output, and is invariant if
permutations of its input leave the output unchanged. For instance,
given a permutation matrix IT and an input matrix X € R™*™, a
function g : R™*™ — R™ ™ is equivariant iff g(I1X) = IIg(X)
forall IT and X, and g : R™*™ — R is invariant iff g(TIX) =
g(X) for all IT and X .

Figure 1: Illustration of the exchangeable architecture.

also shown to be maximally expressive among parameter
sharing-based architectures for exchangeable matrices, and
thus generalizes all approaches based on parameter sharing.
Second, in terms of deciding how multiple layers are com-
posed, exchangeable layers can either be treated like standard
feedforward layers and stacked (with each layer having its
own trainable parameters), or the same layer can be repeat-
edly applied for some number of steps as with a recurrent
network. The latter approach is often referred to as neural
message passing” (Gilmer et al. 2017), and was used by Sel-
sam et al. (2019) for learning to solve SAT problems; in
this paper, we evaluate their NeuroSAT model on the SAT
prediction problem. More expressive attention-based aggrega-
tion functions (Vaswani et al. 2017) offer the hope of further
performance improvements, but their quadratic complexity
makes them infeasible for problems of the size that we study.

3 Model architecture

Data representation A SAT instance with n clauses and
m variables in CNF can be represented as an n x m x 2 clause-
variable tensor, where entry (4, j) is the one-hot vector [1, 0]
if the true literal for variable ¢ appears in clause j, [0, 1]
if the false literal for variable ¢ appears in clause j, and
[0, 0] otherwise. This tensor is a sparse exchangeable tensor:
each clause will typically only reference a few variables
(exactly three in the case of random 3-SAT), so most entries
in the tensor will be the zero vector, and permuting the first
two dimensions (rows or columns) will not change the SAT
problem’s satisfiability status.

We denote this input tensor X and let I = {(i, )
clause ¢ references variable j} denote an index set of the non-
zero entries of X. The number of non-zero entries of X is
given by |I| = mn, where m is the average number of vari-
ables that appear in each clause. For the random 3-SAT prob-
lems that we consider in the experiments m = 3, so |I| = 3n.

Exchangeable architecture In order to predict the satisfi-
ability of a problem, we need to map from the raw represen-
tation of the problem, X, to a scalar output, y € [0, 1], that
indicates the probability of satisfiability. We achieve this in
two steps that are trained jointly. First, we map each element
of the raw input X to a D-dimensional embedding, using

The term “message passing” refers to an aggregation step in a
graph-based model, so it is sometimes also used for deep networks
with separate feedforward-style layers. In this paper we limit it to
the case where the same layer is applied repeatedly, analogous to
the repeated application of local updates in message passing for
graphical models.



a permutation-equivariant function ¢ : RII*2 — RII*D,
We then pool the output of ¢(X) to produce a single D-
dimensional representation of the SAT problem. This is fed
into a second function, p : RP — R, which is used to predict
the probability that the problem is satisfiable.

We represent ¢ using a sequence of exchangeable matrix
layers (Hartford et al. 2018). These layers apply to tensors
€ R™*™>k; a tensor consists of k channels of exchangeable
matrices, each of which is equivariant with respect to permu-
tations of their n rows and m columns. For any given layer,
the oth output channel’s (i, j)th entry can be computed as
follows (with bias terms omitted for clarity):

K ) e(k,o)
Yoij=0 Z (95 ’O)Xi,j,k + (57 Z Xir ik
<o, 2,
eék,o) eik,o)
S 2 Xt T A X’“) ’
§7€V(i) i'j'el

where o (+) is a nonlinear activation function applied element-

wise, X denotes an n x m x K input tensor, Hgk’o) are trainable
weights, C(j) denotes the indices of all variables referenced
in clause j, and V() denotes the indices of all clauses which
contain variable 1.

While the notation is complex, an exchangeable layer has
a simple interpretation as a feed-forward network applied to
each layer’s literal representation (the terms associated with
1), as well as the respective mean-pooled representations
of the associated variables (65 terms), clauses (63 terms),
and the entire problem (6, terms). The latter three terms
provide the mechanism through which the network is able to
share information about the assignment of literals between
associated clauses and variables. By stacking multiple layers,
longer chains of information propagation become possible.

The second function, p, acts on the pooled the output of
¢(X). We use a standard multi-layer perceptron as follows:

§= ”(&l 36X, B>,

i,j€l

where ¢(X; ;) is a D-dimensional vector associated with
clause ¢ and variable 7, and p is a multi-layer perceptron with
weights 3.

Given a dataset D = {(X;,¥:) }ic1,...,n) of SAT problems,
X;, and targets y; € {0, 1} indicating whether or not a given
problem is satisfiable, we train both networks jointly by opti-
mizing $ and 6 to minimize the binary cross-entropy loss

L= S —yiloa(oli)) — (1 - yo)log(1 — o).
(Xi,yi ) €D

where o () = =

Assignments In addition to a formula’s overall satisfiabil-
ity, this architecture can easily be extended to predict satisfy-
ing variable assignments. Given the representation ¢(X ), we
can pool across clauses to produce variable-specific represen-
tations. Then, we can apply a third function, y : R™*P —

R™, which yields the probability of each variable taking
the value true. Again, we use a multi-layer perceptron to

represent fi, 0; = u(m > iecy) qS(X,v’j,:)).

As before, p is trained in conjunction with the rest of the
architecture by optimizing binary cross-entropy loss for each
variable. The resulting combined loss is

N 1 .
L= > (ﬁs(yi,yi) R TN ZﬂA(ULﬁvi,j))
i V@l &
i:Yi,Vi) €D J
where L4(+, -) is the binary cross-entropy loss function, v; is
the true vector of assignments for problem ¢, and ||v(2)||o is
the length of v;, i.e. the number of variables in the problem.

Message passing In the exchangeable model described
above, each layer has its own set of parameters. Another ap-
proach is to have all layers share the same set of parameters
in a manner similar to an unrolled recurrent neural network
(RNN), where each “layer” corresponds to a single recurrent
step. This approach is taken by the NeuroSAT architecture.

NeuroSAT represents SAT problems as a bipartite graph
with one set of vertices containing true and false literals, and
the other clauses; edges denote a literal appearing in a clause.
The model has two separate RNNs — one for clauses and one
for literals. Each iteration involves first updating the clauses
by aggregating over the neighbouring literals and applying
the clause RNN, and then updating the literals by aggregating
over the updated neighbouring clauses and applying the literal
RNN. Each iteration can be expressed formally as

(D) g0, 32 1)

ieN(C)
(LD, L) g2, ST e
ieN(L)

where g.(-) and g;(+) denote the clause and literal RNNs, C*
and C} are the clause representation and recurrent hidden
state (similarly for the literals), f.(-) and f;(-) are multilayer
perceptrons (MLP), and AV (+) returns the indices of the neigh-
bours of a clause or literal.

By applying the clause and literal RNNs sequentially and
using MLPs in the aggregation operation, the NeuroSAT
layer introduces multiple intermediate non-linearities that
make exact comparisons with the exchangeable layer impos-
sible. Loosely, the recurrent hidden state plays the same role
as the 6; terms, and aggregation across clauses and literals
corresponds to a nonlinear version of the 65 and 3 terms.

4 Experimental setup

Data generation To evaluate our approach, we generated
uniform-random 3-SAT instances at the solubility phase
transition. Following Crawford and Auton (1996), we used
a clause (n) to variable (m) ratio of n = 4.258m +
58.26m~2/3 to approximate the location of the phase tran-
sition. We created 11 datasets, each with a fixed number of
variables ranging from 100 to 600 variables at intervals of 50;
each dataset contained 10, 000 instances, including exactly



5000 satisfiable instances and 5000 unsatisfiable instances.?
100-variable instances can trivially be solved by modern SAT
solvers in milliseconds; 300-variable instances require sev-
eral seconds; and 600-variable instances take several hours
to solve.

We believe that this dataset constitutes a useful benchmark
for deep models on exchangeable data. Our data generation
process creates hard-to-predict problems, but with a noise-
free target that offers the asymptotic potential for 100% accu-
racy. Indeed, training sets of arbitrary size can be generated
(albeit at significant computational cost), and testing whether
models generalize to unseen instance sets is easily possible
because of the natural relationship between sizes.*

For our experiments, we randomly split both satisfiable
and unsatisfiable problems of each instance size into training,
validation, and test sets according to an 80:10:10 ratio. We
report the test performance of the models which performed
best on the validation set.

Network training procedure We evaluated four variants
of deep network architectures: the standard exchangeable
architecture and message passing NeuroSAT architecture
predicting only satisfiability, and an extension to both ar-
chitectures where we jointly predicted satisfying variable
assignments. These variants are described in Section 3.

For the exchangeable architecture, we adapted the public
implementation of exchangeable matrix layers from Hartford
et al. (2018). We instantiated the permutation-equivariant por-
tion of the exchangeable architecture as eight exchangeable
matrix layers with 128 output channels, with leaky RELU
as the activation function. We mapped the final layer to an
output width of D = 64, which was pooled to a vector be-
fore being mapped to the output. We also experimented with
inserting a hidden layer between the pooled vector and the
output, but observed no significant impact on performance.

For training the exchangeable architecture, we used the
Adam optimizer with a learning rate of 0.0001, and mini-
batches of 32 examples. Since instances can vary in size,
with some being very large, we accumulated gradients for
the mini-batches sequentially, back-propagating losses in-
dividually for each instance. This slowed training, but was
necessary because entire mini-batches could not always be
accommodated in memory.

For the the message passing network, we used Selsam et
al. (2019)’s implementation in the Tensorflow framework.
We used the hyperparameters of Selsam et al. (2019): a di-
mension of 128 for clause and variable embeddings, 3 hidden
layers and a linear output layer for each of the MLPs, a
scaling factor of 10719 for the /5 norm to regularize the pa-
rameters, 32 iterations of message passing for each problem,
a learning rate of 0.00002 for Adam, and a clipping ratio of
0.65 for clipping gradients by global norm. To jointly predict

3To confirm that we sampled instances at the phase transition,
we examined the fraction of satisfiable instances that we generated;
we found no evidence that it diverged significantly from 50%.

“For the raw data and the full details of our data genera-
tion process, please see http://www.cs.ubc.ca/labs/beta/Projects/
End2EndSAT/.

assignments and satisfiability, we added an additional MLP
to the aggregation operation that maps literal representations
to assignments for each variable, and optimize the same com-
bined loss function described in Section 3. Like Selsam et
al., we created batches of problems containing up to 12,000
clause and literal nodes that we fed through the network at
once. We selected the best-performing model with a valida-
tion set, and report test set accuracy obtained by running the
model with 32 message passing iterations per problem.

Baselines To compare our results with the state of the art,
we evaluated the performance of decision forests trained on
the hand-engineered features used by Xu, Hoos, and Leyton-
Brown (2012). We also implemented a feed-forward neural
network that took as input the same hand-engineered features,
to ensure that any performance differences were not driven
by Xu, Hoos, and Leyton-Brown’s choice of model family.

We also compared our results to two simple baselines
that could be trained end-to-end. First, we considered con-
volutional neural networks (CNNs) to evaluate the impact
of capturing permutation invariance. The input to the CNN
is a dense representation of the sparse tensor described in
3. Additionally, to determine whether a simple version of
permutation invariance was sufficient to achieve good perfor-
mance, we also investigated a permutation-invariant nearest-
neighbour approach. We used the graph edit distance between
variable-clause graphs to determine nearest neighbours, and
predicted the satisfiability status of a new point as the satisfi-
ability status of its nearest neighbour.

5 Experimental results

Prediction accuracy We evaluated prediction accuracy for
the four variants of deep neural network architectures and
the four baselines. For the nearest-neighbour baseline, we
only considered the 100- and 200-variable datasets because
of the high computational cost of computing graph edit dis-
tances; for all other approaches, we considered all 11 fixed-
size datasets, as described in Section 4.

Both nearest neighbour and CNNs performed poorly. Near-
est neighbour never achieved prediction accuracies above
53%, even when we used the expensive Hausdorff graph
edit distance. The performance of CNNs consistently ap-
proached that of random guessing, achieving no more than
50.5% on any of the 11 datasets after 48 hours of training.
We concluded that permutation-invariant architectures made
a significant impact on predictive performance.

Table 1 presents the performance results for the
permutation-invariant methods. Like Xu, Hoos, and Leyton-
Brown (2012), we observed that prediction accuracy in-
creased with instance size for the exchangeable variants of
the permutation-invariant architecture. With the exchange-
able model variant predicting only satisfiability, we achieved
prediction accuracies between 71% and 82% — 1-7%
higher than random forests and 1-8% higher than the fully-
connected neural network using hand-engineered features.

Using the exchangeable model variant where satisfiability
and assignments were jointly predicted, we achieved predic-
tion accuracies between 72% and 84%, with an improvement



Hand-Engineered Exchangeable MP
#Vars RF NN SAT +Assign  SAT +Assign

100 0.702 0.704  0.712 0.726 0.675 0.751
150 0.712 0.714  0.731 0.745 0.778 0.771
200 0.734 0.718  0.760 0.772 0.767  0.781
250 0.703 0.723  0.776  0.800 0.758 0.788
300 0.744  0.725 0.789  0.800 0.758  0.788
350 0.734 0.730  0.787 0.809 0.834 0.812
400 0.711 0.710  0.765 0.790 0.777  0.781
450 0.700 0.710  0.788 0.789 0.774  0.803
500 0.773 0.778  0.800 0.809 0.791  0.795
550 0.756 0.761 0.804 0.810 0.789  0.813
600 0.813 0.810 0.811 0.837 0.816  0.818

Table 1: Comparison of prediction accuracy for satisfiability
in the epoch with the lowest validation error. RF denotes
random forests; NN, the standard feed-forward network; Ex-
changeable, the standard exchangeable network; and MP, the
message passing model of Selsam et al. (2019). SAT denotes
the permutation-invariant model variants trained to predict
satisfiability; +Assigns, the permutation-invariant model vari-
ants trained to predict satisfiability and satisfying assign-
ments. Boldface indicates the best-performance.

in the model by an additional 1-2% across all datasets. We
achieved similar levels of performance with message pass-
ing architectures, achieving prediction accuracies usually
between 75% and 83%, however accuracies were roughly
uncorrelated with instance size. Using the message passing
variant where satisfiability and assignments were jointly pre-
dicted, we achieved an additional 1.6% accuracy on average.
Averaged across all datasets, the exchangeable and message
passing architectures with assignments respectively achieved
78.9% and 79.1% prediction accuracy. Neither architecture
was better than the other on more than 6/11 of the instance
sets. In terms of prediction accuracy when testing on the
same instance sizes used for training, we believe there is no
reason to hold a preference between the exchangeable and
message passing architectures.

Running time Permutation-invariant neural networks are
far more expensive to train than the random forest baseline,
requiring at least 40 hours of training time and 500 MB of
GPU memory (for exchangeable networks; message pass-
ing is more expensive, requiring 0.6 to 3.3 GB per instance).
However, evaluating this class of models requires only time
linear in the size of the input, whereas the hand-engineered
features upon which the random forest models depend have
roughly cubic time complexity. This asymptotic difference is
not overwhelmed by constants: at the input sizes we investi-
gated, exchangeable models are faster to evaluate by several
orders of magnitude, as shown in Figure 2.We note that this
difference might make such models particularly attractive
for constructing algorithm portfolios, where time saved on
feature computation can be reallocated to solving problems.

Generalizing across sizes To verify that permutation-
invariant models are able to capture general structural proper-
ties of the given SAT instances rather than simply memoriz-
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Figure 2: Average running times per instance as size varies for
the exchangeable architecture and hand-engineered features.
Note the log scale on the y-axis.

#Vars RF-100  Exch-100 MP-100

150 0.695 0.758 0.734
200 0.695 0.759 0.704
250 0.654 0.776 0.722
300 0.711 0.780 0.729
350 0.705 0.791 0.725
400 0.681 0.756 0.711
450 0.692 0.778 0.699
500 0.716 0.777 0.686
550 0.722 0.768 0.669
600 0.739 0.809 0.683

Table 2: Comparison of satisfiability prediction accuracy
achieved by testing a model trained on 100-variable instances
on other datasets. RF-100 denotes the random forests trained
on 100 variables and tested on other sizes; Exchangeable-100,
the exchangeable network trained to predict satisfiability and
assignments on 100 variables, and tested on other sizes; and
MP-100, the message passing model of Selsam et al. (2019)
trained on 100 variables and tested on other sizes. Boldface
indicates the best-performing approach for each dataset.

ing instances at particular sizes, we evaluated the prediction
accuracy of networks trained on 100-variable instances using
all of the other datasets. Our results, along with analogous
results for random forests, are shown in Table 2.

With the exchangeable architecture trained on 100-variable
instances, we achieved nearly undiminished performance and
definitively outperformed random forests on all instance sizes.
Notably, the model trained on trivial 100-variable instances
achieved 81% accuracy on hard 600-variable instances. We
again observed the increase in prediction accuracy with in-
stance size reported by Xu, Hoos, and Leyton-Brown.

Prediction accuracy for message passing was usually be-
tween 68-74%. We note that this range is similar to the
prediction accuracy achieved when testing message passing
on 100-variable instances. By comparison, considering mod-
els trained on 100-variable instances, the performance of the
message passing model did not generalize as well as the ex-
changeable architecture, which achieved better performance
on all instance sizes. In fact, we observed that the accuracy
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Figure 3: In the space of problem embeddings in the ex-
changeable architecture, orange lines show paths through
towards the SAT portion of the space as clauses are removed
from an UNSAT instance, with the thicker line showing the
average path. The original 64-dimensional space is projected
down to the first two principal components of a model trained
on the 300-variable dataset.

of message passing decreased with instance size, and that the
exchangeable architecture achieved 12% better accuracy for
the biggest instance sizes (550 and 600 variables).

Overall, the exchangeable architecture and message pass-
ing achieved comparable performance when trained on the
same distribution. However, based on their superior gener-
alization performance and lower memory requirements, we
recommend exchangeable models over message passing for
predicting satisfiability.

SAT invariances Visualizing the embedding space pro-
vides a way to verify that the exchangeable architecture
performed as desired. We used the following observation
to examine its behaviour as instances were modified: the
more clauses are removed from any unsatisfiable instance,
the greater the chance that it will become satisfiable, since re-
moving a clause can never reduce the solution space. Taking a
random instance predicted to be unsatisfiable by the network,
we iteratively removed randomly-selected clauses. At every
step, we recorded the network’s pooled representation of the
instance. A projection of the paths from 20 independently
sampled trajectories is shown in Figure 3. As clauses were
removed, the representation of the instance shifted from the
portion of the space associated with unsatisfiable instances
to the portion associated with satisfiable instances. The pre-
dicted probability of satisfiability also increased, as expected.

Variance in latent space We explored the variance in the
exchangeable architecture’s latent space as problem size
changed. Figure 4 shows the distributions from the final ex-
changeable layer for the exchangeable architecture projected
down to the first principal component for both satisfiable
and unsatisfiable instances in four different-sized datasets.
We observe a clear trend of variance decreasing with prob-
lem size. Certain functions on random graphs converge as
n — 0o (e.g., the size of the maximum clique in Erdos-Renyi
graphs). We conjecture that the neural networks are learning
a function that concentrates with increasing problem size.

250 variables 400 variables 600 variables

100 variables

1 .
10 —-10 0
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Figure 4: Comparison of variance in problem embeddings
of the exchangeable architecture as instance size increases.
The original 64-dimensional space is projected down to the
first principal component based on models trained with 300
variables. For each size, a kernel density function is fit for
UNSAT and SAT problems.

6 Conclusions and future work

This paper is the first to study end-to-end learning of the
satisfiability status of empirically challenging SAT problems
based on their CNF representations, with direct applicability
to other combinatorial problems with permutation-invariant
structures. We showed that both deep exchangeable and neu-
ral message passing models achieved state-of-the-art predic-
tion performance on random 3-SAT problems at the phase
transition, consistently outperforming models based on so-
phisticated hand-engineered features that have been central
to machine learning in SAT for over a decade. These mod-
els also have a clear computational advantage over hand-
engineered feature-based models: for 600-variable problems,
a forward pass of the exchangeable architecture was more
than two orders of magnitude faster than computing hand-
engineered features. We also showed out-of-sample general-
ization to much larger instance sizes at nearly undiminished
levels of accuracy. Indeed, the exchangeable network architec-
ture trained on 100-variable instances (milliseconds to solve)
achieved performance on 600-variable instances (hours to
solve) which was on par with that of hand-engineered feature-
based models trained on 600-variable instances! We observed
no clear difference between exchangeable networks and mes-
sage passing in terms of generalization to new SAT instances
of the same size used for training, but observed that exchange-
able networks were considerably better at generalizing to new
SAT instances of larger size.

We are currently investigating the extent to which the pre-
dictability of SAT from raw instances depends on the choice
of SAT distribution. Early results indicate significant variance
in prediction performance across distributions. Further study
is needed to understand which properties of empirically hard
SAT distributions relate to predictability.
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