
Efficiency Through Procrastination:
Approximately Optimal Algorithm Configuration with Runtime Guarantees

Robert Kleinberg
Dept. of Computer Science

Cornell University
rdk@cs.cornell.edu

Kevin Leyton-Brown
Dept. of Computer Science

University of British Columbia
kevinlb@cs.ubc.ca

Brendan Lucier
Microsoft Research

brlucier@microsoft.com

Abstract
Algorithm configuration methods have achieved
much practical success, but to date have not been
backed by meaningful performance guarantees. We
address this gap with a new algorithm configura-
tion framework, Structured Procrastination. With
high probability and nearly as quickly as possible
in the worst case, our framework finds an algorithm
configuration that provably achieves near optimal
performance. Further, its running time requirements
asymptotically dominate those of existing methods.

1 Introduction
Algorithm configuration techniques have received consid-
erable study in artificial intelligence over the past decade.
General-purpose procedures include ParamILS [Hutter et al.,
2007; 2009], GGA [Ansótegui et al., 2009; 2015], irace [Birat-
tari et al., 2002; López-Ibáñez et al., 2011] and SMAC [Hutter
et al., 2011b; 2011a]. All of these methods have demonstrated
significant successes in practice. However, they are also all
heuristic: they cannot assess how close they have come to
finding an optimal algorithm configuration, and offer no theo-
retical guarantees about the running time they would require
to find such a configuration.

We focus on such guarantees, and thus consider the worst-
case expected performance of algorithm configuration meth-
ods. Specifically, we assume that an adversary causes every
deterministic choice to prolong runtime as much as possible,
while observations of random variables are unbiased sam-
ples from the underlying distribution. Under this analytic
framework, gradient-following methods like ParamILS and
GGA can perform very poorly: in the worst case, gradients
will lead the search astray and optimal configurations will
not be surrounded by large basins of attraction. (Of course,
such methods can nevertheless perform well in practice, as
extensive experimental evidence shows that they often do; our
concern in this paper is exclusively with worst-case analysis
rather than such empirical investigations.) Similarly, Bayesian
optimization methods like SMAC can learn misleading models
that will drive the search to investigate unpromising regions
of the configuration space. However, as a hedge against a
misleading model, SMAC guarantees that it spends half of
its time examining randomly sampled configurations. Such

samples are immune to the manipulations of an adversary. In-
deed, SMAC is defined as an extended version of a model-free
method, ROAR, that works entirely by such random sampling.

This paper proposes an algorithm configuration method,
Structured Procrastination, that is similarly based on ran-
dom sampling, but that is accompanied by a nontrivial run-
time guarantee. All random-sampling-based methods like
SMAC and ROAR eventually encounter the optimal config-
uration; the crucial question, therefore, is how long it takes
for a method to do so. We call a method incumbent driven
if it only ever sets timeouts for algorithm runs either at a
fixed maximum timeout or at a predetermined fraction of
the best runtime that some “incumbent” configuration has
achieved on any problem instance. (This argument is made
more formally in Section 3.) We demonstrate that our ap-
proach takes arbitrarily less time to find a configuration close
to optimal than any incumbent-driven algorithm configurator,
where this arbitrarily large gap depends on the ratio between
the running time of any candidate incumbent on its best-case
instance and the running time of the optimal configuration aver-
aged across instances. All algorithm configuration methods of
which we are aware are incumbent diven (notably, ParamILS,
GGA, irace, SMAC, and ROAR);1 thus, to our knowledge our
method provides the best worst-case runtime guarantees.

The literature on multi-armed bandits provides another im-
portant source of related work. Indeed, our method is struc-
turally similar to various methods from that literature, lever-
aging the influential “optimism in the face of uncertainty”
paradigm [Auer et al., 2002; Bubeck et al., 2012], and we
employ similar analytic tools. Furthermore, there has already

1However, the public software releases of both SMAC and
ParamILS support experimental command-line options, never de-
scribed in any publication, that produce non-incumbent-driven behav-
ior. In both cases, preliminary experiments did not provide strong ev-
idence that these options yielded substantially improved performance.
Nevertheless, we describe them here for completeness. SMAC (and
hence ROAR) has an option --init-mode that affects the initial-
ization phase that precedes the subsequent, incumbent-driven search.
This option can be used to direct SMAC to iteratively increase capti-
mes until a sufficient fraction of preselected initialization configura-
tions complete. ParamILS has an option -id that causes it to execute
in stages of increasing time budgets and doubling captimes, where the
incumbent from stage k is used as the initial configuration for stage
k + 1. Our subsequent discussion of SMAC, ROAR, and ParamILS
focuses only on the algorithms as described in publications.



been considerable contact between the algorithm configuration
and bandits communities, largely in the sphere of hyperparam-
eter optimization [Bergstra et al., 2011; Thornton et al., 2013;
Li et al., 2016] and in the literature on bandits with corre-
lated arms that are able to scale to large experimental de-
sign settings [Kleinberg, 2006; Kleinberg et al., 2008; Chaud-
huri et al., 2009; Bubeck et al., 2011; Srinivas et al., 2012;
Cesa-Bianchi and Lugosi, 2012; Munos, 2014]; see also the
survey by Shahriari et al. [2016]. Nevertheless, the runtime
minimization objective of algorithm configuration is crucially
different from the more general objective functions targeted in
most of the bandits literature. First, our cost of pulling an arm
is measured in the same units as the objective function to be
minimized; we aim to find the arm with the lowest expected
cost (ranging over both instances and random seeds). Second,
we have the freedom to set a maximum amount x we are will-
ing to pay in pulling an arm; if the true cost exceeds x, we pay
only x but learn only that the true cost was higher. In contrast,
in a general bandits setting, pulling arms is an all-or-nothing
operation. In most of the literature, all arms simply involve
the same, fixed cost. An alternative body of work has variable
costs and a fixed overall budget [Guha and Munagala, 2007;
Tran-Thanh et al., 2012; Badanidiyuru et al., 2013]; here, how-
ever, one always pays the full cost associated with that arm
(whether fixed or variable) and observes a sample from the un-
derlying distribution. Because all methods with this property
fail to avail themselves of the option to cap long runs before
they terminate, these methods are again incumbent driven, and
hence our separation theorem applies.

A few methods depart from this paradigm. In some cases,
the algorithm can specify a maximum cost to be paid when
pulling an arm, but never pays less than that specified budget
[Kandasamy et al., 2016]. Our setting is different (a run
that does not time out costs less than its runtime budget to
evaluate), and in the most natural way of translating such
algorithms to our setting, they are again incumbent driven.
Work by Ganchev et al. [2010] is similar because it considers
bandits where observations are censored if they exceed a given
budget. Nevertheless, this setting is different enough that
there is no natural way to map its algorithm onto the algorithm
configuration domain: Ganchev et al. consider a maximization
(rather than minimization) objective; they also choose a vector
of “allocations” across many arms at each time step that sum
to an exogenously specified amount, rather than choosing only
one arm to run for an endogenously specified amount of time.

Finally, the Hyperband algorithm of Li et al. [2016] is per-
haps the closest to our work. They reason about a setting in
which the quality of a hyperparameter configuration can be ap-
proximated with increasing fidelity as more time is devoted to
assessing it. They propose an approach in which a large num-
ber n of configurations are assessed, each with a time budget
B/n; the worst half of configurations are discarded; the re-
maining configurations are given doubled captimes (B/0.5n);
and the process continues until only one configuration remains.
This whole process runs inside an outer loop that performs
a grid search trading off the number of initial configurations
n against the initial captime B/n (i.e., holding B constant).
Replacing the term “hyperparameter configuration” with “al-
gorithm configuration”, this approach would seem applicable

to our setting. Indeed, both Hyperband and our own approach
take inspiration from the bandits literature, so this similarity is
more than superficial. However, it turns out to be highly non-
trivial to fill in the details. First, given the decision to evaluate
a configuration for time B/n, how should this time budget
be allocated across the infinite stream of available (instance,
seed) pairs? Second, after the allocated runs have completed
for configuration i, how should the measured runtimes—some
of which may represent capped runs—be aggregated to form
an estimate of i’s expected runtime across (instance, seed)
pairs? (Li et al. require simply that these estimates converge
to the correct answer as the time allocated to configuration i
goes to infinity.) Third, when i is reconsidered with a longer
time budget, how should the choices of which runs to preform
and which performance estimates to return depend on previous
runs? (Li et al. do not explicitly propose such dependence,
since they consider arbitrary performance functions that do
not decompose across (instance, seed) pairs; however, doing
better than restarting from scratch at each iteration is critical
in our domain, and indeed our core idea of “procrastination”
addresses this issue.) We are not aware of any way to answer
these questions within the Hyperband framework without ob-
taining a worst-case bound that is asymptotically worse than
ours, and we suspect that it is not possible to do so. Never-
theless, we see our paper’s main technical contribution as the
adaptation of existing bandits approaches such as Hyperband
to the algorithm configuration setting.

In what follows, we define the problem we address more
formally (Section 2) and provide a lower bound on the run-
time of incumbent-driven algorithm configuration approaches
(Section 3). We then present our own approach, Structured
Procrastination. We begin by considering the case of a small
set of configurations among which we would like to identify
the best (Section 4). We then consider large or continuous
spaces of configurations, and aim to identify a configuration
with performance in the top 1/γ-quantile across the set of con-
figurations, where γ shrinks as the algorithm runs (Section 5).
In both cases, we show that our procedure approximately opti-
mizes the desired objective with high probability. Its runtime
is asymptotically better than the lower bound for incumbent-
driven procedures developed earlier; in Section 6 we also show
that it is optimal up to a logarithmic factor. Section 7 shows
how Structured Procrastination can be extended to work with
Bayesian optimization approaches such as SMAC and how it
can achieve linear speedups when parallelized.

2 Problem Statement
We define an algorithm configuration problem by the 4-tuple
(N,Γ, R, κ0), where these elements are defined as follows.
N is a family of (potentially randomized) algorithms, which
we call configurations to suggest that a single piece of code
instantiates each algorithm under a different parameter setting.
We do not assume that different configurations exhibit any sort
of performance correlations, and can so capture the case of n
distinct algorithms by imagining a “master algorithm” with
a single, n-valued categorical parameter. Parameters are al-
lowed to take continuous values: |N | can be uncountable. We
typically use i to index configurations. Γ is a probability distri-



bution over input instances. When the instance distribution is
given implicitly by a finite benchmark set, let Γ be the uniform
distribution over this set. We typically use j to index (input
instance, random seed) pairs, to which we will hereafter refer
simply as instances. R(i, j) is the execution time when con-
figuration i ∈ N is run on input instance j. Given some value
of θ > 0, we define R(i, j, θ) = min{R(i, j), θ}, the runtime
capped at θ. κ0 > 0 is a constant such that R(i, j) ≥ κ0 for
all configurations i and inputs j.

Informally, our goal is to find a configuration from N with
the minimum average running time over the input space Γ
and over its own random seeds. We are allowed to execute
any configuration on any input and adaptively terminate any
such execution at any time. More precisely, for any timeout
threshold θ, let Rθ(i) = Ej∼Γ[R(i, j, θ)] denote the average
running time of configuration i, over distribution Γ of input
instances. Fixing some running time κ̄ = 2βκ0 that we will
never be willing to exceed, the quantity Rκ̄(i) corresponds
to the expected running time of configuration i and will be
denoted simply by R(i) . Given ε > 0, a basic problem is to
find i∗ ∈ N such that R(i∗) ≤ (1 + ε) mini{R(i)}. It will
turn out, from the standpoint of worst-case guarantees, that
this goal is too ambitious because it is too hard to estimate
R(i) when the running-time distribution of i is very heavy-
tailed. If the average running time is driven by a small set of
bad inputs that occur very rarely, but induce configuration i
to run for an astronomical number of steps when they occur,
then the only way to accurately estimate the average running
time of configuration i is to run it on enough inputs that we
see enough of these “black swans.” This pathological scenario
leads to worst-case bounds that scale linearly with κ̄ even
when mini{R(i)} � κ̄; see Section 6. To avoid an analysis
aimed at such pathologies, we relax our objective by allowing
the running time of i∗ to be capped at some threshold value θ
for some small fraction of (instance, seed) pairs δ.

Definition 2.1 A configuration i∗ is (ε, δ)-optimal if there ex-
ists some threshold θ such that Rθ(i∗) ≤ (1 + ε) mini{R(i)},
and Prj∼Γ

(
R(i∗, j) > θ

)
≤ δ. Otherwise, we say i∗ is

(ε, δ)-suboptimal.

Example 2.2 Consider 3 deterministic configurations, N =
{C1, C2, C3}, with Γ as the uniform distribution over 1000
input instances. Runtime is measured in ms, with κ0 = 1 and
timeout κ̄ = 220. Configuration C1 has runtime 10 for all
instances and hence R(C1) = 10. Configuration C2 has run-
time 1000 for 10 out of the 1000 instances and runtime 11 for
the remaining instances; i.e., R(C2) = 20.89. Configuration
C3 has runtime 1000 for 100 input instances, runtime 100 for
100 input instances, and runtime 5 for the remaining instances;
i.e., R(C3) = 114. C1 is optimal. Since R11(C2) = 11
and Pr[R(C2, j) > 11] = 0.01, C2 is (0.1, 0.01)-optimal.
Since R5(C3) = 5 ≤ 10 and Pr[R(C3, j) > 5] = 0.2,
C3 is (0, 0.2)-optimal. Additionally, R100(C3) = 24 and
Pr[R(C3, j) > 100] = 0.1, so C3 is also (1.4, 0.1)-optimal.

3 Runtime of Incumbent-Driven Procedures
In this section we develop a lower bound on the runtime of
what we call incumbent-driven approaches, which as discussed

above include most widely used algorithm configuration proce-
dures. We describe algorithm configurators’ queries of target
algorithm runtimes via the subroutine RUN(i, j, θ), which ex-
ecutes configuration i on instance j and caps the run if it
does not complete after θ seconds. This subroutine takes time
R(i, j, θ), and returns the value R(i, j, θ).

We say that a search procedure is incumbent-driven if, when-
ever a query RUN(i, j, θ) is made, it must be that either θ = κ̄
or θ ≥ RUN(i′, j′, θ′) for some query RUN(i′, j′, θ′) that was
executed previously. Such procedures can be thought of as ei-
ther performing unconditional algorithm runs (capping only at
the maximum runtime κ̄) or maintaining an ‘incumbent’ best
algorithm and using previously observed runtimes to bound
the amount of time needed to run an alternative ‘challenger’
algorithm before determining which is preferable (as is done,
e.g., by the “adaptive capping” mechanisms in ParamILS,
ROAR, and SMAC).

Example 3.1 Consider a discrete set N of n configurations,
indexed so that R(1) < R(2) < . . . < R(n). Each configura-
tion’s runtime is tightly concentrated around its expectation,
so that i has runtime nearly R(i) on every input instance.
Moreover, R2/R1 is large, meaning that configuration 1 is sig-
nificantly faster than the others. Any incumbent-driven search
procedure must begin by choosing a configuration and execut-
ing it until completion. Since the configurations are initially
indistinguishable, the choice of which to execute is essentially
random, so this takes time at leastR2, with probability at least
1− 1/n (the probability that algorithm 1 is not chosen).

In comparison to the example above, our search procedure
takes time rougly proportional to nR1. If n is smaller than the
ratio R2/R1, this can be a significant improvement. The same
idea can be formalized to show that any incumbent-driven
search procedure can experience arbitrarily poor runtime per-
formance with arbitrarily high probability. Here we handle the
more realistic setting of a continuum of candidate configura-
tions, by speaking about the fraction of configurations with
favorable runtimes; see Section 5 for details.

Theorem 3.2 For any incumbent-driven search procedure,
any γ > 0, and any runtimes R1 < R2, there is an algorithm
configuration problem in which a γ fraction of all possible
configurations have average runtime no greater than R1, but
with probability at least (1 − γ) the search procedure will
require time at least R2.

4 The Case of Few Configurations
We now describe our proposed algorithm configuration
method. We begin by considering a case where the family
N of configurations is finite and relatively small; we con-
sider the alternative in Section 5. Let |N | = n and write
OPT = miniR(i). Algorithm configuration in this case boils
down to selecting the configuration with smallest expected run-
time from a fixed set of alternatives. This problem may seem
straightforward: we could simply run every configuration on
every instance (capping at κ̄). The catch is that we care about
how long our procedure takes to run. To speed things up, we
could sample instances at random from Γ, run every config-
uration on the sampled instances, and use Chernoff bounds



Algorithm 1: Structured Procrastination (few configs)
require :Set N of n algorithm configurations
require :Precision parameter ε ∈ (0, 1

3 )
require :Failure probability parameter ζ ∈ (0, 1)
require :Lower and upper runtime bounds, κ0 and κ̄
require :Sequence j1, j2, . . . of (instance, seed) pairs

// Initializations
1 β = log2(κ̄/κ0)
2 for i ∈ N do
3 ki := 0
4 `i := d12ε−2 ln(3βn/ζ)e
5 Qi := empty double-ended queue
6 for ` = 1, . . . , `i do
7 Ri` := 0
8 Insert (`, κ0) at tail of Qi

// Main loop. Run until interrupted.
9 repeat

10 i := arg mini∈N

{
1
ki

∑ki
`=1Ri`

}
11 Remove (`, θ) from head of Qi
12 if Ri` = 0 then // j` is a fresh instance
13 ki := ki + 1
14 qi := d12ε−2 ln(3βn(ki)

2/ζ)e
15 if RUN(i, j`, θ) terminates in time t ≤ θ then
16 Ri` := t
17 else
18 Ri` = θ
19 Insert (`, 2θ) at tail of Qi
20 while |Qi| < qi do // Replenish queue
21 `i := `i + 1
22 Ri,`i := 0
23 Insert (`i, θ) at head of Qi
24 until anytime search is interrupted

25 return i∗ = arg maxi∈N

{∑ki
`=1Ri`

}
, δ =

√
1+ε qi∗
ki∗

to bound the probability that we select an configuration with
performance within some given constant factor of optimal. Or
we could adopt a racing procedure such as F-Race [Birattari
et al., 2002], evaluating configurations round robin and dis-
carding those that statistically sufficient evidence shows are
suboptimal (F-Race uses the nonparametric Friedman test).
Observe that such racing procedures are incumbent driven.

This work shows that we can do even better, introducing the
first algorithm configuration method with worst-case running
time guarantees that are superior to all of these procedures.
We call our method Structured Procrastination, in homage to
the eponymous time management technique due to Stanford
philosopher John Perry [1996] (for which he received the 2011
Ig Nobel Prize in Literature [Improbable Research, 2011]). In
essence, Perry proposes maintaining a set of daunting and
apparently important tasks that one procrastinates to avoid,
thereby accomplishing other tasks. Eventually, each daunting
task is superseded by a new task that is even more daunting,
and is completed in its turn.

Similarly, our approach maintains lists of tasks (for each
configuration i, a bounded-length queue Qi of (instance, cap-
time) pairs describing runs that i should perform, initialized
with instances constructed by randomly sampling from Γ and
randomly sampling a seed, and with aggressive captimes of
κ0), and procrastinates when these tasks prove daunting (need
to be retried with doubled captimes). We maintain lower
bounds on the expected runtime achieved by every configura-
tion i, assigning expected runtime of zero to configurations on
which no runs have yet been performed and otherwise aver-
aging observed runtimes, treating capped runs as though they
completed at their captimes. We then choose the task that we
forecast will be easiest: the (instance, captime) pair at the head
of the queue corresponding to the configuration i for which
the lower bound on expected runtime is smallest. If the run
does not complete within the specified captime, we will double
the captime and try again. But doing so is a harder problem,
so we procrastinate, adding this task to the tail of queue Qi,
and instead choosing the easiest available task. The key way
this approach differs from past work—and the reason it is not
incumbent based—is its reliance on the idea of procrastination:
we only ever spend a long time running a given configuration
on a given instance after having failed to find any different
instance that could be evaluated more quickly.

To run our method, the user must specify a precision pa-
rameter ε (how far solutions can be from optimal), a failure
probability ζ (the maximum probability with which our guar-
antees can fail to hold), a maximum amount of time κ̄ that
any configuration could ever be run, and a minimum amount
of time κ0 below which configuration running times can be
considered identical. The failures captured by ζ are due to
the unlikely events that sampled instances are atypical; in our
proofs below we bound this failure probability with specially-
tailored statistical tests based on Chernoff and union bounds.
As discussed above, we will identify (ε, δ)-optimal configu-
rations; hence, we must specify δ, the fraction of “outlying”
instances on which the returned configuration’s running time
may be capped. Unlike the other parameters, we do not believe
that this is one that a user will know how to set in advance.
Structured Procrastination thus runs in an anytime manner,
gradually reducing δ; when it is stopped, it returns the δ for
which its guarantee holds. We note that our algorithm does not
return the configuration with the best empirical estimate, as
might seem most intuitive. Observe that our algorithm could
spend most of its time testing one configuration, but right be-
fore anytime search is interrupted, a few outliers could inflate
its estimate beyond that of a second configuration that received
little scrutiny. We could not return the latter configuration and
maintain strong statistical guarantees. Instead, our approach
amounts to choosing the configuration that was most often the
empirically best.

In more detail, for each configuration i there is a FIFO
queue Qi, containing pairs (`, θ) where ` is the index of an el-
ement j` in an infinite sequence of i.i.d. samples from the input
distribution Γ and θ represents twice the timeout threshold that
was applied the last time we attempted to run configuration i
on instance j`. (The same sequence is used for every configu-
ration, producing a blocking design [Dean and Voss, 1999].)
When j` reaches the head of the queue we will attempt to run



it for θ steps. In this way, the timeout threshold of any input
instance j progressively doubles until we have successfully
completed j. When an input instance j completes, we select
the next “fresh” instance from the infinite sequence of random
instances and insert it into the back of the queue, matching its
timeout threshold with that of the element ahead of it. (Oc-
casionally more than one such element is inserted because
the desired queue length, qi, has increased.) In this way, we
ensure three invariants. First, at any point in time, when the
head of the queue is a pair (`, θ), then all of the elements in the
queue have a timeout threshold of either θ or 2θ. Second, each
input instance that configuration i has already finished solving
was completed in θ or fewer steps. Third, the queue’s contents
are arranged in non-decreasing order of timeout threshold.

Every instance j that has ever been inserted into Qi is either
fresh, completed, or deferred, depending on whether the algo-
rithm has never attempted to run configuration i on instance j,
has run i on j until termination, or has attempted run i on j
at least once but all such runs have timed out. The variable ki
stores the number of completed or deferred instances, whereas
`i stores the number of fresh, completed, or deferred instances.
The value Ri` stores the amount of time taken by the most
recent call to RUN(i, j, θ) for the instance j = j`: it equals the
capped running timeR(i, j, θ) if j is completed or deferred, or
0 if j is fresh. The quantity 1

ki

∑ki
`=1Ri` therefore represents

the average θ-capped running time of all the completed and
deferred instances of configuration i, a quantity which we
shall denote by Remp

θ (i) henceforth. In each iteration of the
main loop, the structured procrastination algorithm selects the
configuration with the minimum average capped running time
and processes the next element in that configuration’s queue.

Example 4.1 Consider our algorithm’s execution on Exam-
ple 2.2, say with ε = 0.2 and failure probability ζ = 0.1.
There are 3 queues, Q1, Q2, Q3, corresponding to configu-
rations C1, C2, and C3. Each queue is initialized with `i
input instances, which in this example is approximately 2248.
Note that this is more than the total number of distinct input
instances in our example; while we know that the number of
inputs is limited, the search procedure does not know this a
priori and its statistical tests suggest a minimum of this many
inputs to yield the desired guarantees.

As instances are drawn from the queues (in round-robin
fashion, since the configurations appear identical at first),
their runtime caps are doubled until we reach threshold 8. At
this point, assuming events follow expectations, roughly 80%
of instances inQ3 terminate with a runtime of 5 while all other
instances time out at 8. This causesC3 to have lower estimated
average runtime than C1 or C2, so Algorithm 1 begins testing
instances only from Q3. As instances are completed from
C3’s queue, they are replaced with fresh instances, some of
which will also complete with a runtime of 5. Any instance
that times out is sent to the back of the queue. If the search
procedure is terminated at this point, C3 will be returned, and
the corresponding δ will be greater than 0.2.

Eventually, Q3 becomes filled with instances that timed out
at θ = 8. These instances must then be executed with higher
thresholds, which slowly increases the runtime estimate forC3.
This estimate grows and eventually overtakes the estimates for

C1 and C2. Algorithm 1 then resumes testing instances from
Q1 and Q2. Eventually we evaluate instances from Q1 with
timeout θ = 16. At this point, all instances from Q1 terminate
with runtime 10, and eventually the runtime estimate for C1

drops below that of C2 and C3. The search procedure will
return C1 if terminated after this point. Note that Algorithm 1
continues to evaluate instances from Q1 until termination.
This can be interpreted as searching for outlier instances on
which C1 has very poor runtime (which, in this example, do
not exist). The longer the search continues, the more rare we
conclude such outliers (if any) must be, and correspondingly
the value of δ returned becomes smaller and smaller.

To justify this greedy rule of always choosing the configu-
ration with minimum average capped runtime, we will show
that, with high probability, we spend only a limited amount
of time testing any individual (ε, δ)-suboptimal configuration.
Consider any configuration i that satisfies R(i) > (1 + ε)OPT.
By Lebesgue’s Monotone Convergence Theorem, we know
that limθ→∞Rθ(i) = R(i), so let θ(i) be the smallest time-
out threshold such that Rθ(i) > (1 + ε)OPT and θ(i)/κ0 is
a power of 2. We will show that, with high probability, the
Structured Procrastination algorithm will never attempt to run
configuration i with timeout threshold θ(i). This will, in turn,
imply an upper bound on the total running time devoted to
experimenting with configuration i. In what follows, given a
configuration i we will tend to write θ for the largest value
such that each deferred instance in Qi has been executed with
a threshold of at least θ.

Definition 4.2 An execution of the Structured Procrastination
algorithm is called clean if it satisfies the following properties
for every configuration i ∈ N , at all times during its execution.

(1 + ε)
−1/2

Pr
j∼Γ

(
R(i, j) > θ)

)
≤ qi
ki

(1)

(1 + ε)
−1/2

Rθ(i) ≤ Remp
θ (i) ≤ (1 + ε)

1/2
Rθ(i) (2)

Lemma 4.3 An execution of the Structured Procrastination
algorithm is clean with probability at least 1− ζ.

Proof Sketch: We use Chernoff bounds to verify that empiri-
cal averages of i.i.d. random variables are unlikely to deviate
from their expected values by a factor greater than (1+ε)±1/2.
We adjust the constants in these bounds to account for the fact
that the multiplicative error factor is expressed as (1 + ε)±1/2

instead of 1 ± ε. For (1) we define the random variables by
X` = 1 if R(i, j`) > θ and X` = 0 otherwise. For (1) we
define the random variables by X` = 1

θR(i, j`, θ).

During a clean execution, if an iteration of the main loop
selects configuration i in Line 13, then Lemma 4.3 implies

Rθ(i) ≤ (1 + ε)1/2Remp
θ (i) ≤ (1 + ε)1/2Remp

θ (iopt)

≤ (1 + ε)Rθ(i
opt) ≤ (1 + ε)OPT.

This implies that θ ≤ θ(i). Consequently, if we let δ(i) de-
note the fraction of input instances j (under distribution Γ)
that satisfy R(i, j) ≥ θ(i), then Prj∼Γ(R(i, j) ≥ θ) ≥ δ(i).



Lemma 4.3 now implies that
qi
ki
≥ (1 + ε)−1/2 Pr

j∼Γ

(
R(i, j) ≥ θ

)
≥ δ(i)

(1 + ε)1/2

ki ≤
(1 + ε)1/2qi

δ(i)
≤ 12(1 + ε)1/2

δ(i)ε2
ln

(
3βnk2

i

ζ

)
. (3)

The equation implies an upper bound on ki, but it requires
a tedious calculation to extract the upper bound because the
right side depends on ki. Assuming the failure probability
parameter ζ is less than βn/600, this calculation implies

ki <
30(1 + ε)1/2

δ(i)ε2
ln

(
3βn

ζδ(i)ε2

)
. (4)

Our next theorem shows that for every δ, there exists a
bounded amount of time after which our algorithm outputs an
(ε, δ)-optimal configuration with high probability.
Theorem 4.4 For any δ > 0, if an execution of the Structured
Procrastination algorithm is halted at any time

T ≥ 104

ε2
ln

(
3βn

ζδε2

)∑
i∈N

min

{
1

δ
,

1

δ(i)

}
OPT

then it outputs an (ε, δ)-optimal configuration with probability
at least 1− ζ.
Proof: With probability 1− ζ the execution is clean. We will
show that a clean execution running for T or more steps can
never output an (ε, δ)-suboptimal configuration. If i is (ε, δ)-
suboptimal then δ(i) ≥ δ. Above we have argued that over
the entire course of a clean execution, ki satisfies the upper
bound in (4). The total running time invested in configuration
i up to time T is

∑ki
`=1Ri`, which is at most 3kiR

emp
θ , where

θ denotes the largest value such that each deferred instance in
Qi has been executed with a threshold of at least θ. Owing
to the greedy rule that was used to select configuration i at
that time, we know that the inequality Remp

θ (i) ≤ Remp
θ (iopt)

held at that time, and hence Remp
θ (i) < (1 + ε)1/2OPT by

Lemma 4.3. Multiplying this inequality by (4), and using
the fact that ε < 1

3 , we find that the total time spent running
configuration i is bounded by

ki ·Remp
θ (i) <

104

δ(i)ε2
ln

(
3βn

ζδε2

)
OPT, (5)

leveraging our assumption that ε < 1
3 .

Let N(ε, δ) = {all (ε, δ)-suboptimal configurations}. Sub-
tracting the right side of (5) for each i ∈ N(ε, δ) from T , the
remainder is at least |N \N(ε, δ)| · 104

δε2 ln
(

3βn
ζδε2

)
OPT. By the

pigeonhole principle, at least one of the |N \N(ε, δ)| configu-
rations that is (ε, δ)-optimal has run for at least 104

δε2 ln
(

3βn
ζδε2

)
time steps before time T . This is greater than the amount
of time that has been invested in running any of the (ε, δ)-
suboptimal configurations, by (5) and the fact that δ(i) > δ
for every (ε, δ)-suboptimal configuration i. Therefore, when
the Structured Procrastination algorithm is stopped at time
T and it outputs the i∗ which has run for the greatest total
amount of time thus far, if the execution is clean then it will
choose an (ε, δ)-optimal configuration.

5 The Case of Many Configurations
Our method of choosing among a relatively small set of con-
figurations, while interesting (and useful for what follows), is
far from a general algorithm configuration method. The catch
is that our runtime guarantee is linear in n, the number of con-
figurations. This is unavoidable when each configuration must
be considered explicitly, since if a configuration is not tried
there is no way of being sure that it is not dramatically faster
than all others. This is not too high a price to pay when n is
small. In a general algorithm configuration application, how-
ever, it is common for parameters to number in the dozens or
even hundreds, and furthermore for some parameters to have
continuous domains. Thus, an approach based on explicitly
testing each configuration cannot work.

We must therefore relax the requirement that we identify a
configuration with performance close to that of the very best
one—this best configuration could be arbitrarily better than
others, and hidden by an adversary in the last part of the search
space that we check, making it a ‘needle in a haystack’ that
is effectively impossible to find. Instead, our relaxed objec-
tive will be to find a configuration with performance in the
top b1/γc-quantile. (Alternately, we will seek a configura-
tion with performance close to the best one that remains after
we exclude the γ fraction of fastest configurations from N ,
treating rare but exceptionally good configurations as outliers.)
Our approach to achieving this relaxed goal is to use a variant
of Algorithm 1 to find the (approximately) best configuration
from among a set of configurations sampled from the popula-
tion. This random sample serves as a net with which we search
the configuration space. Our search procedure will incremen-
tally tighten this net by sampling additional configurations as
necessary. While the Structured Procrastination method from
Section 4 improves (i.e., reduces) the parameter δ over time,
our modified algorithm will gradually reduce both δ and the
fraction γ of configurations treated as outliers.

Our procedure, given as Algorithm 2, builds on Algorithm 1.
It runs in phases, with additional configurations sampled at
the end of each phase. Each phase runs approximately twice
as long as the last. Np is the set of configurations being tested
in phase p ≥ 1. When the search procedure is terminated, it
returns the configuration that had the longest total execution
time in the most recently completed phase. It is parameterized
by ω > 0, which controls the rate at which δ is improved
relative to the number of configurations searched: the algo-
rithm will return a configuration that is (ε, 1/nω)-optimal with
respect to the best configuration in a sample of size n, where
n grows over time.

We are now ready to state the performance guarantee of this
modified Structured Procrastination method. Given a set N ′
of configurations, write OPT(N ′) = mini∈N ′ R(i).

Theorem 5.1 For any n ≥ n0 there exists some n′ ≥ n such
that if Algorithm 2 is halted at any time

T ≥ 208n1+ω

ε2
ln

(
3n1+ω

ζ2ε2

)
OPT(N ′)

where N ′ = {i1, . . . , in′} (from Algorithm 2), then it outputs
a configuration that is (ε, n−ω)-optimal with respect to N ′
with probability at least 1− ζ.



Algorithm 2: Structured Procrastination (many configs)
require :Minimum number of configurations n0

require :Tradeoff parameter ω > 0
require :Precision parameter ε ∈ (0, 1

3 )
require :Failure probability parameter ζ ∈ (0, 1)
require :Lower and upper runtime bounds, κ0 and κ̄
require :Sequence i1, i2, . . . of configurations
require :Sequence j1, j2, . . . of (instance, seed) pairs

// Initializations
1 Define function T (n) := 40n1+ωε−2 ln(3n1+ω/ζ2ε2)
2 n := n0, N0 := ∅, T:=0, β := log2(κ̄/κ0)

// Main loop. Run until interrupted.
3 for p = 1, 2, 3, . . . do

// Ensure that we have n initialized queues
4 Np := {i1, . . . , in}, Tip := 0 for all i = 1, . . . , n
5 for i ∈ Np\Np−1 do
6 ki := 0
7 `i := d12ε−2 ln(3βn/ζ)e
8 Qi := empty double-ended queue
9 for ` = 1, . . . , `i do

10 Ri` := 0
11 Insert (`, κ0) at tail of Qi

12 repeat
13 i := arg mini∈N

{
1
ki

∑ki
`=1Ri`

}
14 Remove (`, θ) from head of Qi
15 if Ri` = 0 then // j` is a fresh instance
16 ki := ki + 1

17 qi := d12ε−2 ln(3βn(ki)
2/ζ)e

18 if RUN(i, j`, θ) terminates in time t ≤ θ then
19 Ri` := t
20 else
21 Ri` := θ
22 Insert (`, 2θ) at tail of Qi
23 T := T +Ri` // Total execution time
24 Ti,p := Ti,p +Ri` // T , restricted to i and p
25 while |Qi| < qi do // Replenish queue
26 `i := `i + 1
27 Ri,`i := 0
28 Insert (`i, θ) at head of Qi
29 until T > T (n)

30 n := 21/(1+ω)n // Increase n for next phase

31 p∗ := p− 1 // Return config that was run most last phase

32 return i∗ = arg maxi∈Np∗
{Ti,p∗} , δ =

√
1+ε qi∗
ki∗

Proof: With probability 1 − ζ the execution is clean, as de-
scribed in Definition 4.2. We claim that in a clean execution,
after the most recently-completed phase p prior to termination
at time T , we have |Np| ≥ n and the configuration returned
by the procedure is (ε, 1/nω)-optimal with respect to the set
Np. The argument closely follows the proof of Theorem 4.4.
The main difference is to consider only execution steps taken
in phase p, when at least n configurations were under consid-

eration. As in Theorem 4.4 one can bound the number of steps
taken by any (ε, 1/nω)-suboptimal configuration in phase p,
and thereby argue that the configuration that executes for the
most steps in phase p must be (ε, 1/nω)-optimal.

We can interpret the sample of configurations as a net that
searches for potentially rare configurations with good perfor-
mance. To that end, define Nγ to be all configurations except
the γ fraction of fastest ones, and write OPTγ = OPT(Nγ)
for the runtime of the best configuration in Nγ .

Corollary 5.2 For any n ≥ n0 and any γ ∈ (0, 1), if the
Structured Procrastination algorithm is run using a random
sequence of configurations, and it is halted at any time

T ≥ 208n1+ω

ε2
ln

(
3n1+ω

ζ2ε2

)
OPTγ

then with probability at least 1− ζ − e−γn it outputs a config-
uration that is (ε, n−ω)-optimal with respect to Nγ

Proof: We apply Theorem 5.1 and note that the probability
that none of the γ-fraction of fastest configurations appear in
a uniform sample of n configurations is at most e−nγ .

6 Near-Optimality of Runtime
In this section, we show that the worst-case guarantees for
Structured Procrastination, Theorem 4.4 and Corollary 5.2,
are optimal up to logarithmic factors.

Theorem 6.1 Suppose an algorithm configuration procedure
is guaranteed to select an (ε, δ)-optimal configuration with
probability at least 1

2 . In the setting with a finite number n =
|N | of configurations, the worst-case expected running time
of the procedure must be at least Ω

(
n
δε2 OPT

)
. In the setting

with many configurations, letting δ = n−ω and γ = ln 2
n (so

that 1− e−γn = 1
2 ), the worst-case expected running time of

the procedure must be at least Ω
(
n1+ω

ε2 OPTγ
)
.

Proof: Suppose every time an algorithm solves an input in-
stance, it is either a “safe run” that deterministically takes time
κ or a “risky run” that either takes κ or κ/δ, depending on the
configuration’s random seed. For all configurations, the proba-
bility of a risky run is 4δ. The probability that R(i, j) = κ/δ,
conditional on the run being risky, is 1

2 for most configura-
tions (the “standard” configurations), but for a 1

n fraction of
configurations (the “special” configurations), this conditional
probability is 1

2 − ε. The special configurations will then be
the only ones that are (ε, δ)-optimal. We will show that in
expectation, the search procedure executes at least Ω( n

δε2 ) op-
erations of the form RUN(i, j, θ) where θ > κ. Since each
such operation takes time at least κ, and OPT = O(κ), this
will imply the stated lower bound for n configurations. The
extension to many configurations follows by supposing we
have n1+ω configurations in total, and nω of them are special,
so that with constant probability there is exactly one special
configuration among the n sampled ones.

Before embarking on the proof that the expected number of
calls to RUN(i, j, θ) with θ > κ is Ω( n

δε2 ), let us justify this



bound in intuitive terms. Selecting an (ε, δ)-optimal configu-
ration requires (a) searching through enough configurations
to find a special one (which explains the factor of n in the
lower bound), (b) running each of the configurations enough
times to observe some slow runs (which explains the 1/δ), and
(c) observing enough slow runs to estimate their occurrence
probability to within a 1− 2ε factor (which explains the 1/ε2).

To formalize this reasoning, we define the history of an
execution of the procedure to consist of the sequence of
RUN(i, j, θ) operations the procedure invoked, along with
the running times of those operations. The length-t initial
history consists of the first t elements in this sequence. Fixing
a search procedure, let Q0 (resp., Qt0) denote the distribution
over histories (resp., length-t initial histories) in a “null model”
where all configurations are standard. Now for 1 ≤ i ≤ n con-
sider a model in which all configurations are standard except
for configuration i, which is special. Let Qi and Qti denote
the induced distributions over histories and length-t initial
histories, respectively.

For each configuration i let pi denote the probability under
distribution Q0 that the search procedure selects configuration
i. Since p1 + · · · + pn = 1, if n > 2 then there must be at
least one configuration i such that pi ≤ 1

3 . Under distribution
Qi, configuration i is the only one that is (ε, δ)-optimal, so
the search procedure must select it with probability at least 1

2 .
Hence the total variation distance between Q0 and Qi must
be at least 1

6 . By Pinsker’s Inequality, their KL-divergence
is at least 1

18 . Using the fact that the sequence DKL(Qt0‖Qti)
converges monotonically to DKL(Q0‖Qi) as t → ∞, we
obtain

∑∞
t=1DKL(Qt0‖Qti) − DKL(Qt−1

0 ‖Qt−1
i ) ≥ 1

18 .
By the chain rule for KL-divergence, DKL(Qt0‖Qti) −
DKL(Qt−1

0 ‖Qt−1
i ) is simply equal to the conditional KL-

divergence of the tth-step of the history, given the first t − 1
steps. If step t runs configuration i′ 6= i, or if it is a safe
run of configuration i, then the running time distribution in
step t is the same under distributions Qt0 and Qti. Thus, the
conditional KL-divergence equals the conditional probability
(under Q0) of a risky run of configuration i in step t, times the
conditional KL-divergence of the running times in case of a
risky run, which is 1

2 ln( 1
1−2ε ) + 1

2 ln( 1
1+2ε ) < 4ε2. Summing

over t ≥ 1, we find that the expected number of risky runs of
configuration i, under distribution Q0, must be at least 1

72ε
−2.

Summing over configurations, the expected total number of
risky runs is at least n

72ε
−2. Since a run is only risky if the

timeout threshold exceeds κ, and then it is only risky with
probability 2δ, the expected number of times any configura-
tion is run with timeout threshold greater than κ must be at
least n

144δε2 , which completes the proof.

7 Extensions for Practical Performance
To this point, we have limited ourselves to (uniform) random
sampling of the parameter space. While even incumbent-
driven random sampling has shown surprising success for
algorithm configuration—and, hence, our approach is likely
to work even better—considerable evidence in the literature
(e.g., contrasting SMAC and ROAR) indicates that it is a
good idea in practice to combine sampling with Bayesian

optimization (as in SMAC). There are straightforward ways
that our approach could be extended to do this. For example, in
the Structured Procrastination method described in Section 5,
whenever configurations are added to the pool of samples,
one could draw half uniformly and generate the other half
using an arbitrary model fit using all previous samples. This
does not help in the worst case, of course, but nor does it
degrade our worst-case bounds by very much. In effect, we
pay no statistical cost for the fact that our model is conditioned
on previous observations and obtain a bound as though the
random samples were the only configurations considered.
Theorem 7.1 Suppose that half of the algorithms sampled
in Structured Procrastination are generated according to an
arbitrary structural model, which in turn depends on previous
observations. Then Theorem 5.1 continues to hold with n
replaced by 2n in the upper bound on T .

A second practical extension is from sequential to parallel
processing. Structured Procrastination is inherently paralleliz-
able: the main loop repeatedly draws and executes a simulation
from a queue. Using the queues as a shared data structure,
each parallel processor could repeatedly draw an instance from
the queue for a configuration with minimal empirical runtime
estimate—locking that (configuration, instance) pair to prevent
other processors from considering it in the meantime—and
then update that estimate once the execution completes. This
can result in a suboptimal configuration being queried more
than necessary due to stale empirical runtime estimates. How-
ever, this can only result in each element of a configuration’s
queue being executed one more time than necessary, which at
most doubles the total time spent processing any given con-
figuration. This intuition can be leveraged to show that using
p processors results in a linear speedup, as long as the proce-
dure runs for long enough that there are more input instances
enqueued than there are processors.
Theorem 7.2 Suppose that Structured Procrastination is ex-
ecuted by p processors running in parallel. Then for n suffi-
ciently large and n/n0 a power of 2, there is a random sample
N0 of n configurations such that if the elapsed wall clock time
is at least T ≥ 160n1+ω

pε2 ln
(

3n1+ω

ζ2ε2

)
OPT(N0) then it outputs

a configuration that is (ε, n−ω)-optimal with respect to N0

with probability at least 1− ζ.

8 Conclusions
We have introduced Structured Procrastination, a new method
for automated algorithm configuration. Crucially, it depends
on the idea of procrastinating in the face of potentially hard
inputs, rather than solving them to completion when first en-
countered. Our method is guaranteed to find an approximately
optimal algorithm configuration in time that worst-case domi-
nates that of any existing algorithm configuration technique.

Our approach in this paper has been focused purely on the
worst case. This is justified by the fact that we obtain a positive
result. However, the strong performance of heuristic methods
suggests that realistic algorithm configuration settings are not
as adversarial as our analysis has assumed. A critical direction
for future work is empirically evaluating our techniques and
comparing them to existing algorithm configuration methods.
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