
Resource Graph Games:
A Compact Representation for Games with Structured Strategy Spaces

Albert Xin Jiang1 Hau Chan1 Kevin Leyton-Brown2

1Department of Computer Science, Trinity University, San Antonio, TX 78212, USA
{xjiang, hchan}@trinity.edu

2Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
kevinlb@cs.ubc.ca

Abstract

In many real-world systems, strategic agents’ decisions can
be understood as complex—i.e., consisting of multiple sub-
decisions—and hence can give rise to an exponential num-
ber of pure strategies. Examples include network congestion
games, simultaneous auctions, and security games. However,
agents’ sets of strategies are often structured, allowing them
to be represented compactly. There currently exists no general
modeling language that captures a wide range of commonly
seen strategy structure and utility structure.
We propose Resource Graph Games (RGGs), the first gen-
eral compact representation for games with structured strat-
egy spaces, which is able to represent a wide range of games
studied in literature. We leverage recent results about multi-
linearity, a key property of games that allows us to represent
the mixed strategies compactly, and, as a result, to compute
various equilibrium concepts efficiently. While not all RGGs
are multilinear, we provide a general method of converting
RGGs to those that are multilinear, and identify subclasses of
RGGs whose converted version allow efficient computation.

1 Introduction
There has been increasing interest in using game theory to
model real-world multiagent systems, and in the computa-
tion of game-theoretic solution concepts given such a model.
For games with large numbers of agents and actions, the
standard normal form game representation requires expo-
nential space and is thus not a practical option as a basis
for computation. Fortunately, most large games of practical
interest have highly structured utility functions, and thus it is
possible to represent them compactly. This helps to explain
why people are able to reason about these games in the first
place: we understand the payoffs in terms of simple relation-
ships rather than in terms of enormous lookup tables. A line
of research thus exists to look for compact game represen-
tations that are able to succinctly describe structured games,
including work on graphical games (Kearns, Littman, and
Singh 2001), multi-agent influence diagrams (Koller and
Milch 2001) and action-graph games (Jiang, Leyton-Brown,
and Bhat 2011); as well as work on efficient algorithms for
computing solution concepts such as Nash equilibrium (Or-
tiz and Kearns 2003; Daskalakis, Fabrikant, and Papadim-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

itriou 2006) and (coarse) correlated equilibrium (Kakade et
al. 2003; Papadimitriou and Roughgarden 2008) given com-
pactly represented games.

In many real-world domains, each player needs to make a
decision that consists of multiple sub-decisions (e.g., assign-
ing a set of resources, ranking a set of options, or finding a
path in a network), and hence can have an exponential num-
ber of pure strategies. However, this space of pure strategies
is often structured, meaning that it can be represented com-
pactly. To compactly represent games with structured strat-
egy spaces, we need compact ways to represent both the util-
ity functions and the strategy spaces themselves.

Several classes of multi-player game models studied in
the recent literature have structured strategy spaces, includ-
ing network congestion games (Daskalakis, Fabrikant, and
Papadimitriou 2006), simultaneous auctions and other multi-
item auctions (Vorobeychik 2008; Rabinovich et al. 2009),
dueling algorithms (Immorlica et al. 2011), integer program-
ming games (Köppe, Ryan, and Queyranne 2011), Blotto
games (Ahmadinejad et al. 2016), and security games (Ko-
rzhyk, Conitzer, and Parr 2010; Tambe 2011). These au-
thors proposed compact game representations that are suit-
able for their specific domains and computation needs. How-
ever, there exists no general modeling language that captures
a wide range of commonly seen strategy and utility struc-
ture. As a result, given a new domain with structured strat-
egy spaces that does not fall into the existing models, it is
not obvious how to represent the game and compute its equi-
libria. Existing general-purpose compact representations, in-
cluding graphical games and action graph games, represent
each player’s set of pure strategies explicitly, which implies
that games with structured strategy spaces require exponen-
tial space in these representations.

In this paper, we propose Resource Graph Games
(RGGs), a compact representation for games with structured
strategy spaces. RGGs generalize action graph games and
congestion games; at a high level, an RGG consists of a
graphical representation of utility functions together with
a general representation of strategy spaces as convex poly-
topes. We show that RGGs can compactly encode a wide
range of games studied in the literature, as well as new
classes of games for which existing methods do not apply.

We also provide efficient algorithms for computing so-
lution concepts given RGGs. To this end, we make use of

a recent result (Chan et al. 2016): if a game is multilin-
ear (the utility functions are linear in each player’s strat-
egy), and furthermore if there exist polynomial-time algo-
rithms for two subproblems UtilityGradient and Polytope-
Solve, then (i) mixed strategies can be represented com-
pactly, (ii) a coarse correlated equilibrium (CCE) can be
computed in polynomial time, and (iii) the problem of find-
ing a Nash equilibrium is in PPAD, which implies that the
problem can be polynomially reduced to the problem of find-
ing a Nash equilibrium in a polynomial-sized bimatrix game.

We show that all RGGs can be formulated as multilin-
ear games, after adding a polynomial number of auxiliary
resource nodes. Furthermore, UtilityGradient can be com-
puted in polynomial time. However, PolytopeSolve may re-
quire exponential time. We identify subclasses of RGGs for
which such polynomial-time subroutines can be constructed.
Thus, we are able to compute various solution concepts for
those games efficiently. Finally, we identify a natural sub-
class of RGGs that are multilinear (without any reformula-
tion): those in which a player’s sub-decisions do not directly
influence each other’s utilities.

A related line of work aims to compactly represent games’
decisions and utilities using either Boolean logic (Harren-
stein et al. 2001; Dunne and Wooldridge 2012) or con-
straint satisfaction problems (Nguyen, Lallouet, and Bor-
deaux 2013; Nguyen and Lallouet 2014). Each player in
these formulations can control multiple decision variables,
and as a result these formulations can model games with
structured strategy spaces. These works focus on comput-
ing pure-strategy Nash equilibrium (PSNE) and its variants,
using techniques from Boolean satisfiability and constraint
programming respectively. Our work focuses on computa-
tion of mixed-strategy based solution concepts including
Nash equilibrium and coarse correlated equilibrium, which
always exist in finite games, unlike PSNE.

2 Preliminaries
A game is specified by (N,S, u), where N = {1, . . . , n} is
the set of players. Each player i ∈ N chooses from a finite
set of pure strategies Si. Denote by si ∈ Si a pure strategy
of i. Then S =

∏
i Si is the set of pure-strategy profiles.

Moreover, u = (u1, . . . , un) are the utility functions of the
players, where the utility function of player i is ui : S → R.

The normal form explicitly represents the strategy set Si
and the utility function ui for each player i. Thus, the size of
the representation is on the order of n|S| = n

∏
i |Si|.

A mixed strategy σi of player i is a probability dis-
tribution over her pure strategies. Let Σi = ∆(Si) be
i’s set of mixed strategies, where ∆(·) denotes the set of
probability distributions over a finite set. Denote by σ =
(σ1, . . . , σn) a mixed strategy profile, and Σ =

∏
i Σi the

set of mixed strategy profiles. Denote by σ−i the mixed
strategy profile of players other than i. σ induces a prob-
ability distribution over pure strategy profiles. Denote by
ui(σ) the expected utility of player i under σ: ui(σ) =
Es∼σ[ui(s)] =

∑
s∈S ui(s)

∏
k∈N σk(sk), where σk(sk) is

player k’s probability of playing the pure strategy sk.
Player i’s strategy σi is a best response to σ−i if σi ∈

arg maxσ′i∈Σi ui(σ
′
i, σ−i). A mixed strategy profile σ is a

Nash equilibrium (NE) if for each player i ∈ N , σi is a best
response to σ−i.

Denote by Z+ the set of nonnegative integers. A rational
polytope is defined by a set of inequalities with integer co-
efficients; formally P = {x ∈ Rm|Dx ≤ f} is a rational
polytope if D and f consist of integers.

Polytopal Strategy Spaces We are interested in games in
which a pure strategy has multiple components. Without loss
of generality, if each pure strategy of player i has mi com-
ponents, we can associate each such pure strategy with an
mi-dimensional nonnegative integer vector. Then the set of
pure strategies for each player i is Si ⊂ Zmi+ . In general the
number of integer points in Si can grow exponentially inmi.
Thus, we need a compact representation of Si.

In most studies of games with structured strategy spaces,
each Si can be expressed as the set of integer points in a
rational polytope Pi, i.e., Si = Pi ∩ Zmi+ . Then, in order to
represent the strategy space, we only need to specify the set
of linear constraints defining Pi, with each linear constraint
requiring us to store O(mi) integers. We call a game with
this property a game with polytopal strategy spaces.

Multilinear Games When |Si| is exponential, represent-
ing a mixed strategy σi explicitly would take exponential
space. (Chan et al. 2016) showed that mixed strategies can
be compactly represented if the game is multilinear.

Definition 1. Consider a game Γ with polytopal strategy
sets Si = Pi ∩Zmi+ for each i. Γ is a multilinear game if

1. for each player i, ∃U i ∈ R
∏
k∈N mk such that ∀s ∈ S,

ui(s) =
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn

∏
k∈N

sk,jk ,

where [mk] = {1, . . . ,mk}; in particular, given a fixed
s−j , ui is a linear function of sj .

2. The extreme points (i.e. vertices) of Pi are integer vectors,
which implies that Pi = conv(Si), the convex hull of Si.

Given a mixed strategy σi, the marginal vector corre-
sponding to σi is the expectation over the pure strategy space
Si induced by the distribution σi : πi = Eσi [si] =

∑
si∈Si

σi(si)si. The set of marginal vectors is exactly conv(Si) =
Pi. (Chan et al. 2016) showed that given a multilinear game,
ui(σ) =

∑
(j1...jn)∈

∏
k[mk] U

i
j1...jn

∏
k∈N πk,jk . That is,

marginal vectors capture all payoff-relevant information
about mixed strategies, and thus we can use them to com-
pactly represent the space of mixed strategies.

Given the marginal strategy profile π = {πi}i∈N ,
we slightly abuse notation and denote by ui(π) player
i’s expected utility under π. Due to multilinearity, af-
ter fixing the strategies of players N \ {k}, ui(π) is
a linear function of πk. We define the utility gradi-
ent of player i with respect to player k’s marginal,
∇k(ui(π−k)) ∈ Rmk , to be the vector of coefficients of this
linear function. Formally, ∀jk ∈ [mk], (∇kui(π−i))jk ≡∑

(j1,.,jk−1,jk+1,.,jn)∈
∏N\{k}
`=1 [m`]

U ij1...jn
∏
`∈N\{k} π`,j` .

Equilibrium Computation in Multilinear Games (Chan
et al. 2016) identify two problems as the key subtasks
for equilibrium computation: First, (UtilGradient) given
a compactly represented game that satisfies multilinearity,
given players i, k ∈ N , and π−k, compute ∇k(ui(π−k)).
Second, (PolytopeSolve) given a compactly represented
game with polytopal strategy space, player i, and a vector
d ∈ Rmi , compute arg maxx∈Pi d

Tx.
They note that if PolytopeSolve can be solved in poly-

nomial time, then there is a polynomial time procedure
to generate mixed strategies that are consistent with the
given marginals. Moreover, they show that given a mul-
tilinear game, if there are polynomial-time procedures for
UtilGradient and PolytopeSolve, then best response against
marginals can be computed in polynomial time, an exact
CCE can be found in polynomial time, and computing a
Nash equilibrium is in PPAD.

3 Resource Graph Games
Informally, an RGG is played on a set A of resources, with
each player able to choose a subset of the resources. Thus,
each pure strategy is a |A|-dimensional 0–1 vector, and we
represent the set of pure strategies as a polytopal strategy
space. There is a resource graph, whose nodes are resources
and whose directed edges induce a neighborhood for each
resource. Each player i’s utility is the sum of contributions
from each of his chosen resources. The utility contribution
from choosing a resource α ∈ A is a function of the config-
uration (vector of counts of the number of players choosing
each resource) of α’s neighborhood.

Formally, a Resource Graph Game (RGG) is specified by
the tuple (N,A, {Si}, G, {uα}), where:

• N = {1, . . . , n} is the set of players.

• A is a set of resources.

• Each pure strategy si ∈ Si of player i corresponds to a
subset of resources, represented by a |A|-dimensional 0–
1 indicator vector.

• Si is represented as a polytopal strategy space: Si =
Pi ∩ {0, 1}|A| where Pi = {x ∈ [0, 1]|A||Dix ≤ fi},
Di ∈ Z`i×|A| and fi ∈ Z`i , i.e., Pi is a rational polytope
defined by `i linear constraints. Let siα be the component
corresponding to resource node α ∈ A.

• Given a pure strategy profile s = (s1 . . . sn), the config-
uration c ∈ Z|A|+ is a vector of integers representing the
total number of agents who have selected each resource:1
c =

∑
i∈N si.

• The resource graph G = (A, E) is a directed graph,
where self-edges are allowed. The neighborhood of α, de-
noted by ν(α), is the set of nodes with edges going into α.

1Results in this paper can be adapted to the more general
case where configuration on resource α is defined to be c(α) =
*i∈Ngi(siα) where ∗ is a binary operator and gi : {0, 1} → Z.
This is analogous to contribution-independent function nodes in
action-graph games (Jiang, Leyton-Brown, and Bhat 2011).

Denote by c(α) ∈ Zν(α)
+ the configuration over the neigh-

borhood of α. Let C(α) ⊂ Zν(α)
+ be the set of possible

configurations over the neighborhood of α.
• For each resource node α, define utility function uα :
C(α) → R. uα(c(α)) represents the utility contribution of
using resource α, when the pure strategy profile induces a
configuration c(α) over the neighborhood of α.

• The utility of player i is then aggregated2 over the re-
sources chosen by si:

ui(s) =
∑

α: siα=1

uα(c(α)) =
∑
α∈A

siαu
α(c(α)). (1)

3.1 Properties of RGGs
What is the size of the RGG representation? In general, the
representation size grows polynomially as long as the graph
has bounded in-degree.
Proposition 1. An RGG representation stores O(|A|(nI +∑n
i=1 `i)) numbers, where I is the maximum in-degree of

the resource graph.
Since each Si ⊂ {0, 1}|A|, RGGs can represent games

with as many as 2|A| pure strategies per player.
Another natural question is the generality of RGGs. One

observation is that the pure strategies in RGGs are limited to
vertices of the 0–1 hypercube {0, 1}|A|. What if we want to
represent pure strategies in Zmi that involve larger integers?
For example, in the context of resources, a player i could
decide to use different integer amounts j ∈ {0, 1, . . . , J}
of resource α. We could extend our definition of RGGs to
allow this, but, in this paper, we restrict to 0–1 vectors for
notational simplicity. Furthermore, it turns out that we can
reduce the general integer vector case to the case of 0–1 vec-
tors by introducing additional resource nodes. More specifi-
cally, we create resource nodes α0, . . . , αJ , and allow player
i to choose exactly one node αj from this set, indicating that
j units of resource are used. This can be enforced by the
linear constraint

∑J
j=0 siαj = 1. The usage amount by i on

the original resource can be expressed as
∑J
j=0 jsiαj , which

can be substituted into any constraints on this usage amount,
resulting in a set of linear constraints on the 0–1 vector si.

Another potential limitation is that each player only re-
ceives utility contributions from the resources that he choses.
What if we want to model cases where player i also receives
utility from not choosing a resource α? For example, in a se-
curity scenario, by not protecting a target the defender may
incur costs if that target is attacked. We can model this us-
ing RGGs by creating an additional resource node α0, and
adding constraints so that siα0 = 1 whenever siα = 0 and
vice versa. Then we can define a utility function on α0,
which will be triggered whenever α is not chosen. In Ex-
ample 3 below we illustrate this technique.

Indeed, the fact that we could encode this scenario was not
a coincidence: RGGs can represent arbitrary games. Since

2For certain games, it might make sense to use another aggre-
gation operator instead of summation, such as min and max. We
do not further discuss such games in this paper.

Figure 1: RGG representation of a T -target security game.

AGGs are a special case of RGGs and AGGs can repre-
sent arbitrary normal form games (Jiang, Leyton-Brown,
and Bhat 2011), we have the following.

Proposition 2 (Generality of RGGs). Any finite game can
be represented as an RGG.

The following examples show that RGGs can compactly
represent a wide range of games studied in the literature.

Example 1 (Congestion Games). Each resource in the con-
gestion game corresponds to a resource node in the RGG
representation. The resource graph contains only self-edges.
Each pure strategy is a subset of resources; in the RGG this
is represented as an indicator vector si for the subset. Pi
is then the convex hull of the set of pure strategies Si. uα
corresponds to the congestion cost function for resource α.

Example 2 (Network Congestion Games). In network con-
gestion games, each player i has a fixed source node and
sink node and needs to choose a path from source to sink.
Player i’s total cost is the sum of costs incurred at each
edge along the chosen path. In the RGG representation, re-
source nodes correspond to the edges of the routing network.
Si is the set of 0-1 vectors of resources corresponding to
paths from source node to sink node. The polytope Pi can
be represented compactly with a set of flow constraints, as
in (Daskalakis, Fabrikant, and Papadimitriou 2006). More-
over, the resource graph consists of only self-edges and {uα}
corresponds to the congestion cost functions.

Example 3 (Security Games). Consider a security game
(Tambe 2011) between a defender and an attacker. The de-
fender can only protect m targets and attacker can attack
one target in T . The defender and attacker’s utilities depend
on whether the attacked target is covered.

We can represent security games as RGGs. For each
target t ∈ T , we have a resource node at for the at-
tacker and two resource nodes b0t and b1t for the de-
fender. Let A =

⋃
t∈T {at, b0t, b1t} be the set of resource

nodes. Then, the strategy set of the attacker is Sa = {x ∈
{0, 1}3|T | |

∑
at
xat = 1, xb0t = xb1t = 0∀t ∈ T}. For the

defender, we construct a constraint matrixDb of size |T |+1
by 3|T |. In particular, the first row of Db is db = (dbα)α∈A
where dbα = 1 at α = b1t for every t ∈ T ; and then for
each t ∈ T , there is a row of dt = (dtα)α∈A such that
dtα = 1 only at b0t and b1t. Thus, the strategy set of a de-
fender is Sb = {x ∈ {0, 1}3|T | | Dbx = (m, 1, ..., 1)T }. In
other words, the constraint matrix ensures that the defender
can protect m targets and can either protect a target or not
protect a target (but never both). Figure 1 illustrates the re-
source graph. This graph is constructed so that for every

t ∈ T , there is an edge from b1t to at, an edge from at to
b1t, and an edge from at to b0t. The utilities of uat , ub1t , and
ub0t , can be defined appropriately for each target t ∈ T .

Not only can RGGs be used to represent existing compact
classes of games, they can also be used to compactly model
new instances of game-theoretic problems.

Example 4 (Local-Network Congestion Games). Using
RGGs, we can study local-network congestion games in
which the congestion of an (outgoing) edge affects the con-
gestion of the other adjacent (incoming) edges (i.e., the ad-
jacent edges that have the same destination as the source of
the outgoing edge). This game class is inspired by the real-
life situation of traffic congestion, where extreme congestion
in one road can cause delays on adjacent roads.

As in Example 2, resource nodes correspond to the edges
and each player i can play the actions in Si. The resource
graph is no longer just “self-edges”, it also consists of edges
that specify the affect of congestion. In particular, for each
pair of resource nodes αu and αv , there is an edge from αv
to αu if the destination of αu is the source of αv . Likewise,
the utility functions can be extended appropriately.

Example 5 (Simultaneous Auctions with Budgets). Previ-
ous work has used AGGs to model auctions, including posi-
tion auctions under generalized first-price and generalized
second-price rules (Thompson and Leyton-Brown 2009).
Using RGGs, we can use their representations for auctions
and extend them to model simultaneous auctions. Moreover,
we can include a constraint in the polytope of each player,
that ensures the sum of his bids of the simultaneous auctions
is no more than his budget. Thus, a player cannot submit
bids more than he is able to pay in total.

Compactness of RGGs RGGs are designed to compactly
model scenarios where each player has an exponential num-
ber of pure strategies. Other game representations would re-
quire exponential spaces. For instance, AGGs have one ac-
tion node for each pure strategy, using AGGs to model such
scenarios would require us to introduce exponentially many
action nodes. In (network and local network) congestion
games (Example 1, 2 and 4), using AGGs, we need to in-
troduce an action node for each possible subset of resources
a player can use. Using RGGs, we only need a node for each
resource. In security games (Example 3), using AGGs, we
need to introduce node that corresponds to each possible
subset of t target locations, while RGGs only need 3 nodes
for each target. For simultaneous auctions (Example 5), the
space of pure strategies corresponds to the Cartesian prod-
uct of bid levels for each auction. AGGs would have number
of nodes exponential in the number of auctions, while RGG
have one node for each bid level in each auction.

4 Equilibrium Computation
Given an RGG, we would like to compute solution concepts
such as Nash equilibrium and coarse correlated equilibrium,
by leveraging the results of (Chan et al. 2016) as summarized
in Section 2. To apply these results, we need to show that
the RGG is multilinear, and the subproblems UtilityGradient
and PolytopeSolve can be solved in polynomial time.

4.1 Formulating RGGs as Multilinear Games
It is straightforward to verify that congestion games and
security games are multilinear. Is every RGG a mulitilin-
ear game? Unfortunately the answer is no. To see this,
take an RGG in which the neighborhood of resource α in-
cludes itself and another resource β. Consider uα. To sat-
isfy mutlilinearity, we would like i’s utility to be linear
in si while keeping other players’ strategies fixed. How-
ever, recall from (1) that the utility contribution from α

is siαuα(c(α)). Let c(α)
−i be the configuration induced by

other players. This can be written as siα[(1− siβ)uα(c
(α)
−i +

(1, 0))+siβu
α(c

(α)
−i +(1, 1))], which is a polynomial (rather

than linear) function of si.

Extended Formulation If we use a |Si|-dimensional stan-
dard simplex to represent the strategy space, then it is
straightforward to verify that the game is multilinear. Indeed,
all game representations based on this explicit representa-
tion of pure strategies, including normal form and AGGs,
are multilinear. So we can achieve multilinearity by convert-
ing an RGG to this explicit strategy representation, at a cost
of an exponential blowup in the dimension of strategy space.

Is there a strategy representation that achieves the best
of both worlds: multilinear while having only a polynomial
blowup in dimension? The answer is yes for resource graphs
of constant in-degree.

The following theorem shows that it is possible to satisfy
multilinearity by only adding a polynomial number of nodes,
if the graph has constant in-degree.3 This result bridges the
generality and expressiveness of RGGs with the nice com-
putational properties from multilinearity.
Theorem 1. Given an RGG Γ with maximum in-degree I,
we can construct in polynomial time another RGG Γ′ with
poly(n,A, 2I) resources, such that (1) there is a bijection
between the two RGGs’ pure strategies, and the two RGGs
are payoff-equivalent; (2) Γ′ is multilinear.

Proof Sketch. We first introduce some notation. Let s(α)
i be

the projection of si to Zν(α)
+ , i.e., s(α)

i = (siα′)α′∈ν(α).
Then s(α)

i ∈ S(α)
i , the projection of Si to Zν(α)

+ .
Given Γ, for each i, k ∈ N , we will create new resource

nodes to make ui(sk, s−k) linear in sk (when fixing s−k).
First, we formulate ui(sk, s−k) as a polynomial function

of sk. Recall that ui(s) =
∑
α∈A siαu

α(c(α)), so we fo-
cus on each term siαu

α(c(α)). If k = i, then we have the
following polynomial of si:

siαu
α(c(α)) = siαu

α(c
(α)
−i + s

(α)
i) =

siα
∑

z∈S(α)
i

uα(c
(α)
−i + z)

∏
α′∈ν(α)

s
zα′
iα′ (1− siα′)

1−zα′ . (2)

After expanding the polynomial function into sum of mono-
mials, each monomial term is of the form

∏
α′∈B siα′ , for

3Since the size of the RGG representation grows exponentially
in the in-degree of the graph, RGGs without constant in-degree
tend to require exponential. The constant-indegree case captures
the interesting class of games from a computational point of view.

some B ⊂ ν(α) ∪ {α}. Since there are at most 2|ν(α)|+1

possible such subsets, the number of monomial terms is at
most 2|ν(α)|+1, and thus ui can be expressed as a sum of∑
α 2|ν(α)|+1 monomials of si. For k 6= i, analogously we

can write ui as a sum of
∑
α 2|ν(α)| monomials of sk.

We now create a new resource node for each of these
monomials. Specifically, the resources of Γ′ consists of the
resources of Γ, plus the following additional resource nodes:
for each player k ∈ N , each resource α ∈ A, and each
B ⊂ ν(α) ∪ {α}, create a resource node βkB . Then we de-
fine the bijection mapping φ from the strategy set Si of Γ to
the new strategy set S′i of Γ′, such that if s′i = φ(si), then
s′iα = siα for all original resources α, and s′

iβkB
= 0 if k 6= i,

and s′
iβiB

=
∏
α′∈B siα′ .

In Γ′, utility functions u′α = 0 for the original resources
and u′β

i
B is equal to the coefficient of monomial

∏
α′∈B siα′

in ui’s polynomial expression w.r.t. si. This u′β
i
B is a func-

tion of the monomial terms of other players, and we include
the corresponding monomial resource nodes in the neigh-
borhood of βiB .

By construction, Γ and Γ′ are payoff equivalent, and
the utilities of Γ′ are multilinear functions of players’ pure
strategies. To satisfy Condition 2 of multilinearity, we define
the new P ′i to be the convex hull of the new S′i.

We call Γ′ the multilinear extension of Γ. We note that Γ′

has a larger in-degree than Γ, so a direct representation of the
utility functions of Γ′ is problematic as their sizes scale ex-
ponentially in the in-degree. Nevertheless for our purposes
we will not need to explicitly construct the utility functions
of Γ′. Instead, as we will show, computational tasks on Γ′

can be done implicitly using the resource graph and utility
functions of Γ.

Computing UtilityGradient Now that we have mulitilin-
earity, the next question is whether utility gradients can be
computed efficiently. Recall that multilinearity by itself does
not imply efficient computation of utility gradients. Direct
computation using the RGG’s multilinear extension can be
inefficient due to its large in-degree. We propose an algo-
rithm that operates on the original RGG’s resource graph,
which allows us to better exploit the game’s utility structure.

Proposition 3. Given an RGG Γ and its multilinear exten-
sion Γ′, and a marginal strategy profile π of Γ′, the utility
gradient∇kui(π−k) can be computed in polynomial time in
the size of the utility functions of Γ.

Proof Sketch. Each πi of the multilinear extension Γ′ in-
cludes components for each monomial resource βiB , which
is the marginal probability that the resources in B are all
chosen by i. Using these marginal probabilities we can com-
pute Pr(s

(α)
i |πi) for each s(α)

i ∈ S(α)
i of Γ, where s(α)

i are
the projected strategies as defined in the proof of Theorem 1.
The cardinality of S(α)

i is at most 2|ν(α)| so this is still poly-
nomial in the size of utility functions of Γ, and in particular
we can efficiently enumerate these projected strategies. Then
ui(π) =

∑
α

∑
s(α)∈S(α) siαu

α(
∑
j s

(α)
j)

∏
j Pr(s

(α)
j |πj),

which is linear in Pr(s
(α)
k |πk). Since Pr(s

(α)
k |πk) is a linear

function of πk, to compute∇kui(π−k) we just need to com-
pute the coefficients of Pr(s

(α)
k |πk) in the above expression.

The problem reduces to an expected utility computation for
AGGs, which can be solved in polynomial time by the algo-
rithm in (Jiang, Leyton-Brown, and Bhat 2011).

PolytopeSolve for the Multilinear Extension Recall
from Section 2 that PolytopeSolve is the problem of opti-
mizing an arbitrary linear objective in Pi. When the linear
constraints defining Pi are given explicitly, this becomes a
linear programming problem and can thus be solved in poly-
nomial time. However, what we need now is PolytopeSolve
for the multilinear extension. Since the new S′i has more di-
mensions than Si, the extended polytope P ′i = conv(S′i) is
now more complex than the original Pi. In particular, the
original constraints of Pi are not sufficient to exactly de-
scribe P ′i . Indeed, the convex hull of S′i may have exponen-
tial number of faces, requiring exponential space to specify.

The results of (Chan et al. 2016) allow P ′i to be implic-
itly represented, as long as we have a polynomial-time algo-
rithm for PolytopeSove. It turns out these P ′i are instances
of correlation polytopes (Pitowsky 1991), and the linear op-
timization problem on correlation polytopes is known to
be NP-hard even when Si is all vertices of the hypercube
{0, 1}|A|, or in the case of the simple uniform matroid con-
straint

∑
α siα = K (Pitowsky 1991; Xu et al. 2015).

Nevertheless, we can identify subclasses of RGGs for
which PolytopeSolve can be solved efficiently. First we ob-
serve that PolytopeSolve, a linear optimization problem over
P ′i (or S′i), is equivalent to optimizing a polynomial function
over the original Si. This is by transforming each s′

iβiB
in the

linear objective to its corresponding monomial
∏
α′∈B siα′ .

Proposition 4. Given an RGG Γ with resource graph G,
let P ′i be i’s polytope in the multilinear extension. Then
PolytopeSolve (i.e., linear optimization on P ′i) is equiva-
lent to the following POLYOPT(Si, G) problem: compute
arg maxsi∈Si

∑
α

∑
B⊂ν(α) d

α
B

∏
α′∈B siα′ given a set of

coefficients {dαB}α,B .

POLYOPT(Si,G) is equivalent to the problem of comput-
ing player i’s best response against a pure strategy profile in
an RGG with the same players and resource graphs but dif-
ferent utilities from Γ.

Proposition 5. When the RGG Γ has a resource graph G
with bounded treewidth, and the strategy constraints for i
are uniform matroid constraints Pi = {x ∈ [0, 1]|A| :∑
α xα∈A = K}, then there is a polynomial time algorithm

for POLYOPT(Si, G).

Proof Sketch. The problem is closely related to the follow-
ing: given a symmetric K-player AGG with action graph G,
compute a pure strategy profile with maximum social wel-
fare. The latter problem can be solved in polynomial time
for AGGs on bounded treewidth graphs using a dynamic
programming approach, see e.g., (Jiang and Leyton-Brown
2007). The only difference is that in our POLYOPT(Si, G)
problem, we additionally require siα ≤ 1 ∀α. These are

unary constraints and can easily be incorporated into the dy-
namic programming algorithm.

We can extend the result to a more general class of RGGs
using a similar dynamic programming approach.

Proposition 6. Given an RGG with resource graph G, and
player i with polytope Pi = {x|Dix ≤ fi}, construct
the augmented graph GPi as follows: add one node j for
each constraint dTijx ≤ fi of Pi, where dij is the j-th row
of Di. Then add edge from node j to each resource node
α that constraint j refers to, i.e., each α where Dijα 6=
0. If GPi has bounded treewidth and bounded in-degree,
POLYOPT(Si, G) can be computed in polynomial time.

Taking everything together, we have the following.

Corollary 1. Given an RGG, if for each player i, the aug-
mented graph GPi has bounded treewidth and bounded in-
degree, then an exact CCE can be computed in polynomial
time, and computing a Nash equilibrium is in PPAD.

4.2 Multilinear RGGs
In Section 4.1, we show how to convert an arbitrary RGG
to an (payoff-equivalent) RGG that satisfies multilinearity,
incurring a polynomial increase in dimension. We also saw
there are subclasses of RGGs, such as congestion games and
security games, that are already multilinear without needing
to perform any conversion. A natural question is: can we
characterize the class of multinlinear RGGs? We provide a
sufficient condition for RGGs to be multilinear below. Be-
fore stating our proposition, recall that Condition 2 of Defi-
nition 1 states that the extreme points of Pi of each player i
are integer vectors.

Proposition 7. Given an RGG Γ = (N,A, {Si}, G, {uα})
that satisfies Condition 2 of Definition 1, it is multilinear if
for each player i, for each α ∈ A, and for each si ∈ Si,∑
α′∈ν(α)∪{α} siα′ ≤ 1.

The above proposition follows from Equation 2. The con-
dition in the proposition states that for each player i, it is
never the case that two (or more) of her chosen resources
are in the same neighborhood. Intuitively, the only obstacle
to multilinearity is when two of i’s chosen resources are in
the neighborhood of α, in which case they potentially influ-
ence the utility contribution of α nonlinearly.

Applying this proposition to the examples we saw ear-
lier, the RGG representations of congestion games, security
games and simultaneous budgeted auctions (in Examples 2,
3, and 5 respectively) all satisfy this condition and are there-
fore multilinear. We observe that in these games, a player’s
sub-decisions can still influence each other via the strategy
constraints, and there can be a wide variety of utility influ-
ence across different players; it is the lack of utility influence
within a player’s sub-decisions that ensures multilinearity.

One issue is whether it is easy to check if this condition
holds for a given Γ. Directly checking for each si would
involve enumerating the set of pure strategies. Instead, we
can verify whether the above condition holds for each player
using linear programming. In particular, for each i ∈ N
and α ∈ A, consider the program: max

∑
α′∈ν(α)∪{α} siα′

such that Disi ≤ fi and si ∈ {0, 1}|A|. Since Pi = {x ∈
Rm|Dix ≤ fi} = Conv(Si) , we can relax the constraint
on si and replace it with 0 ≤ siα ≤ 1 for all α ∈ A. As
a result, we have a linear program, and its solution can be
used to verify whether an RGG is multilinear.

5 Conclusion and Open Problems
In this paper, we introduce Resource Graph Games (RGGs),
a general compact representation for games with structured
strategy spaces. Not only can RGGs capture all of the games
studied in the literature, they can also be used to model new
game-theoretic problems that cannot be modeled by other
compact representations. We provide efficient computation
of solution concepts given RGGs by establishing a connec-
tion between RGGs and multilinear games. In particular we
show that for some classes of RGGs, expected utilities, best
responses, and coarse correlated equilibrium can be com-
puted efficiently, and computation of Nash equilibrium is in
PPAD. An open problem is practical algorithms for Nash
equilibrium. Given the computability of the best responses,
a natural direction is to adapt best-response-based heuristics
such as fictitious play dynamic for computing Nash equilib-
rium in RGGs.

References
Ahmadinejad, A.; Dehghani, S.; Hajiaghayi, M.; Lucier, B.;
Mahini, H.; and Seddighin, S. 2016. From Duels to Bat-
tlefields: Computing Equilibria of Blotto and Other Games.
In AAAI: Proceedings of the AAAI Conference on Artificial
Intelligence.
Chan, H.; Jiang, A. X.; Leyton-Brown, K.; and Mehta, R.
2016. Multilinear games. In WINE: Proceedings of The
12th Conference on Web and Internet Economics.
Daskalakis, C.; Fabrikant, A.; and Papadimitriou, C. 2006.
The game world is flat: The complexity of Nash equilibria
in succinct games. In ICALP: Proceedings of the Interna-
tional Colloquium on Automata, Languages and Program-
ming, 513–524.
Dunne, P. E., and Wooldridge, M. 2012. Towards tractable
boolean games. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-
Volume 2, 939–946. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Harrenstein, P.; van der Hoek, W.; Meyer, J.-J.; and Wit-
teveen, C. 2001. Boolean games. In Proceedings of the 8th
conference on Theoretical aspects of rationality and knowl-
edge, 287–298. Morgan Kaufmann Publishers Inc.
Immorlica, N.; Kalai, A. T.; Lucier, B.; Moitra, A.; Postle-
waite, A.; and Tennenholtz, M. 2011. Dueling algorithms.
In STOC: Proceedings of the Annual ACM Symposium on
Theory of Computing.
Jiang, A. X., and Leyton-Brown, K. 2007. Computing
pure Nash equilibria in symmetric Action-Graph Games. In
AAAI: Proceedings of the AAAI Conference on Artificial In-
telligence, 79–85.

Jiang, A. X.; Leyton-Brown, K.; and Bhat, N. 2011. Action-
graph games. Games and Economic Behavior 71(1):141–
173.
Kakade, S.; Kearns, M.; Langford, J.; and Ortiz, L. 2003.
Correlated equilibria in graphical games. In EC: Proceed-
ings of the ACM Conference on Electronic Commerce, 42–
47. New York, NY, USA: ACM.
Kearns, M.; Littman, M.; and Singh, S. 2001. Graphical
models for game theory. In UAI: Proceedings of the Confer-
ence on Uncertainty in Artificial Intelligence, 253–260.
Koller, D., and Milch, B. 2001. Multi-agent influence dia-
grams for representing and solving games. In IJCAI: Pro-
ceedings of the International Joint Conference on Artificial
Intelligence.
Köppe, M.; Ryan, C. T.; and Queyranne, M. 2011. Rational
generating functions and integer programming games. Oper.
Res. 59(6):1445–1460.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complex-
ity of computing optimal stackelberg strategies in security
resource allocation games. In AAAI.
Nguyen, T.-V.-A., and Lallouet, A. 2014. A complete solver
for constraint games. In O’Sullivan, B., ed., Principles and
Practice of Constraint Programming, volume 8656 of Lec-
ture Notes in Computer Science. Springer International Pub-
lishing. 58–74.
Nguyen, T.-V.-A.; Lallouet, A.; and Bordeaux, L. 2013.
Constraint games: Framework and local search solver. In
Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th
International Conference on, 963–970.
Ortiz, L., and Kearns, M. 2003. Nash propagation for loopy
graphical games. In NIPS: Proceedings of the Neural Infor-
mation Processing Systems Conference, 817–824.
Papadimitriou, C., and Roughgarden, T. 2008. Computing
correlated equilibria in multi-player games. Journal of the
ACM 55(3):14.
Pitowsky, I. 1991. Correlation polytopes: Their geometry
and complexity. Math. Program. 50(3):395–414.
Rabinovich, Z.; Gerding, E.; Polukarov, M.; and Jennings,
N. R. 2009. Generalised fictitious play for a continuum of
anonymous players. In IJCAI: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 245–250.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Thompson, D. R. M., and Leyton-Brown, K. 2009. Com-
putational analysis of perfect-information position auctions.
In Proceedings of the 10th ACM Conference on Electronic
Commerce, EC ’09, 51–60.
Vorobeychik, Y. 2008. Mechanism Design and Analysis
Using Simulation-Based Game Models. Ph.D. Dissertation,
University of Michigan.
Xu, H.; Jiang, A. X.; Sinha, A.; Rabinovich, Z.; Dughmi,
S.; and Tambe, M. 2015. Security games with information
leakage: Modeling and computation. In AAAI.

