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Abstract. In many games, players’ decisions consist of multiple sub-
decisions, and hence can give rise to an exponential number of pure
strategies. However, this set of pure strategies is often structured, al-
lowing it to be represented compactly, as in network congestion games,
security games, and extensive form games. Reduction to the standard
normal form generally introduces exponential blow-up in the strategy
space and therefore are inefficient for computation purposes. Although
individual classes of such games have been studied, there currently exists
no general purpose algorithms for computing solutions. equilibrium.

To address this, we define multilinear games generalizing all. Informally,
a game is multilinear if its utility functions are linear in each player’s
strategy, while fixing other players’ strategies. Thus, if pure strategies,
even if they are exponentially many, are vectors in polynomial dimension,
then we show that mixed-strategies have an equivalent representation in
terms of marginals forming a polytope in polynomial dimension.

The canonical representation for multilinear games can still be exponen-
tial in the number of players, a typical obstacle in multi-player games.
Therefore, it is necessary to assume additional structure that allows com-
putation of certain sub-problems in polynomial time. Towards this, we
identify two key subproblems: computation of utility gradients, and opti-
mizing linear functions over strategy polytope. Given a multilinear game,
with polynomial time subroutines for these two tasks, we show the fol-
lowing: (@) We can construct a polynomially computable and continuous
fixed-point formulation, and show that its approximate fixed-points are
approximate NE. This gives containment of approximate NE computa-
tion in PPAD, and settles its complexity to PPAD-complete. (b) Even
though a coarse correlated equilibrium can potentially have exponential
representation , through LP duality and a carefully designed separation
oracle, we provide a polynomial-time algorithm to compute one with
polynomial representation. (¢) We show existence of an approximate NE
with support-size logarithmic in the strategy polytope dimensions.

1 Introduction

The computation of game-theoretic solution concepts is a central problem at the
intersection of game theory and computer science. For games with large numbers
of players, the standard normal form game representation requires exponential
space even if the number of strategies per players is two, and is thus not a
practical option as a basis for computation. Most games of practical interest have



highly structured utility functions, and it is possible to represent them compactly.
A line of research thus exists to look for compact game representations that are
able to succinctly describe structured games, including work on graphical games
[16], multi-agent influence diagrams [17] and action-graph games [15].

In many real-world domains, each player needs to make a decision that con-
sists of multiple sub-decisions (e.g., assigning a set of resourcesor finding a path
in a network), and hence the number of pure strategies per player itself can be
exponential. The single-player versions of these decision problems have been well
studied in the field of combinatorial optimization, with mature general modeling
languages such as AMPL and solvers like CPLEX. For the multi-player case,
several classes of games studied in the recent literature have structured strat-
egy spaces, including network congestion games [4, 7], simultaneous auctions and
other multi-item auctions [25, 23], dueling algorithms [12], integer programming
games [18], Blotto games [1], and security games [19, 24]. These papers proposed
compact game representations suitable for their specific domains, and corre-
sponding algorithms for computing solution concepts, which take advantage of
the specific structure in the representations. However, it is not obvious whether
algorithmic techniques developed for one domain can be transferred to another.

A general successful approach in the study of efficient computation for com-
pact representations is the following: identify subtasks that are required for most
existing algorithms of these solution concepts, and then speed up these subtasks
by exploiting the structure of the compact representation. [7,21] identified ez-
pected utility computation given a mixed strategy as the subtask to compute
correlated equilibrium efficiently, and to show NE computation is in PPAD.
They also showed that games like graphical, polymatrix, and symmetric, this
subtask can be done in polynomial time. A crucial assumption behind these
results is polynomial type: roughly, it is feasible to enumerate pure strategies
of all the players. This is not the case for games with structured strategies, in
which such explicit strategy enumeration can take exponential time. [7] showed
PPAD membership of NE computation for two additional subclasses: network
congestion and extensive form games, but the general case remained open.

In this paper, we present a unified algorithmic framework for games with
structured polytopal strategy spaces, in which each player’s set of pure strategies
is defined to be integer points in a polytope. Our contributions are as follows.

1. We identify multilinearity as an important property of games that enables
us to represent the players’ mixed strategies compactly. Informally, a game
is multilinear if its utility functions are linear in each player’s strategy, while
fixing other players’ strategies. We show that many existing game forms, like
Bayesian, congestion, security, etc., are multilinear (see [5]).

2. The canonical representation of multilinear games still grows exponentially
in the number of players. Therefore, it is necessary to assume additional
structure that allows some computation in polynomial time, like done in [7,
21]. Towards this, we identify two key subproblems: computation of utility
gradients, and optimizing linear functions over strategy polytopes. Given a
multilinear game, with polynomial time subroutines for these two tasks, we



show the following: (a) computing an approximate Nash equilibrium is in
PPAD and (b) a coarse correlated equilibrium can be computed in polyno-
mial time. These results are generalizations of [7] and [21], respectively, from
games of polynomial type to multilinear games.

3. We prove that given a multilinear game, there exists an approximate NE with
support-size logarithmic in the strategy polytope dimensions. This general-
izes [2], which gave bounds logarithmic in the number of strategies.

1.1 Technical Overview

Our approach is based on a compact representation of mixed strategies as marginal
vectors, which is a point in the strategy polytope induced by the mixed strategy
distributions. When the game is multilinear, all mixed strategies with the same
marginal vector are payoff-equivalent (Lemmas 1 and 2). Thus, we can work in
the marginal vector space instead of the exponentially higher-dimensional space
of mixed strategies. We adapt existing algorithmic approaches such that when-
ever the algorithm calls for enumeration of pure strategies (e.g., for computing
a best response), we instead solve a linear optimization problem in the space of
marginal vectors, which can in turn be reduced to the two subproblems, namely
computation of utility gradient given a marginal strategy profile, and optimizing
a linear function over the polytope of marginal strategies. Given polynomial-time
procedures for these two, we show a number of computational results.

Next we analyze complexity of computing an equilibrium. Since normal-form
games are subcase of multilinear games, irrationality of NE [20], and PPAD-
hardness for NE computation [8,6] follows. Due to exponentially many pure
strategies per player, containment of approximate NE computation in PPAD
does not carry forward to multilinear games. Towards this, we design a fixed-
point formulation to capture NE in marginal profiles, and show that correspond-
ing approximate fixed-points exactly capture approximate NE. Furthermore, we
show polynomial-continuity and polynomial-computability (see [5] or [9] for def-
initions) of the function by finding its equivalent representation in terms of
projection operator, and obtaining a convex quadratic formulation for function
evaluation, respectively. Finally, due to a result of [9], all of these together implies
containment of finding an approximate NE in PPAD for multilinear games.

For computing CCE (Theorem 2), we adapt the Ellipsoid Against Hope ap-
proach of [21] and its refinement [14]. Applied directly to our setting, this ap-
proach would involve running the ellipsoid method in a space whose dimension
is roughly the total number of pure strategies of all the players, yielding an
exponential-time algorithm. We instead use a related but different convex pro-
gramming formulation, and then (through use of the multilinear property) trans-
form it into a linear program of polynomial number of variables, which is then
amenable to the ellipsoid method. Although the final output is not in terms of
mixed strategies or marginal vectors (instead it is a correlated distribution with
small support), a crucial intermediate step (the separation oracle of the ellipsoid
method) requires linear optimization over the space of marginal vectors.



Finally, we show existence of approximate NE with logarithmic support using
the probabilistic method, together with applying concentration inequalities on
marginals to avoid union bound on exponentially many terms (Theorem 4).

Due to space constraint next we give an overview of our results, while all the
proofs and some of the details can be found in the full paper [5].

2 Preliminaries

Notations. We use boldface letters, like @, to denote vectors, and z; to denote
its i'" coordinate. To denote the set of {1,...,m} we use [m]. We use Z, and
R, to denote the sets of non-negative integers and reals, respectively.

A game is specified by (N, S,u), where N = {1,...,n} is the set of players.
Each player ¢ € N chooses from a finite set of pure strategies S;. Denote by
s; € S; a pure strategy of player i. Then S =[], S; is the set of pure-strategy
profiles. Moreover, v = (uq, ..., u,) are the utility functions of the players, where
the utility function of player ¢ is u; : S — R.

In normal-form games, strategy sets S;s and utility functions u;s are specified
explicitly. Thus, the size of the representation is of the order of n|S| = n[], |Si|.

A mixed strategy o; of player ¢ is a probability distribution over her pure
strategies. Let X; = A(S;) be #’s set of mixed strategies, where A(-) denotes
the set of probability distributions over a finite set. Denote by o = (671,...,0,)
a mixed strategy profile, and ¥ = [], ; the set of mixed strategy profiles.
Denote by o_; the mixed strategy profile of players other than i. o induces a
probability distribution over pure strategy profiles. Denote by u; (o) the expected
utility of player i under o: u;(0) = Es~o[ui(s)] = Y gcgui(8) [[ren or(sk),
where o (s) is player k’s probability of playing the pure strategy sg.

Nash equilibrium (NE). Player i’s strategy o; is a best response to o_; if
o; € argmaxgcy, ui(0;,0—;). A mixed strategy profile o is a Nash equilibrium
if for each player i € N, o; is a best response to o _;.

Another important solution concept is Coarse Correlated Equilibrium (CCE).
Consider a distribution over the set of pure-strategy profiles. This can be rep-
resented by a vector x, satisfying & > 0, g gxs = 1. The expected utility
for player ¢ under @ is u;(x) = Y g.g Tsui(s). Given @, the expected utility for
player i if he deviates to strategy s; is: u;'(z) = >_g s ,ui(si,s—i), where
Ts_ , = ZsiESi T(s,,s_;) is the marginal probability of s_; in distribution x. Let

) — si 1
gi(x) = max u;* (@), (1)
i.e. player i’s expected utility if he deviates to a best response against x.

Definition 1. A distribution x satisfying € > 0, > g qxs = 1 is a Coarse
Correlated Equilibrium (CCE) if it satisfies the following incentive constraints:
ui(®@) > gi(w),¥i € N.

A rational polytope, P = {& € R™|Dx < f}, is defined by a set of inequalities
with integer coefficients (i.e., matrix D and vector f consist of integers).



3 Multilinear Games

3.1 Polytopal Strategy Space

We are interested in games in which a pure strategy has multiple components.
Without loss of generality, if each pure strategy of player ¢ has m; components,
we can associate each such pure strategy with an m;-dimensional nonnegative
integer vector. Then the set of pure strategies for each player i is S; C Z'". In
general the number of integer points in S; can grow exponentially in m;. Thus,
we need a compact representation of S;.

In most studies of games with structured strategy spaces, each S; can be
expressed as the set of integer points in a rational polytope P; C R'", i.e.,
Si = PN Z. We call such an S; a polytopal pure strategy set. We assume
P; is nonempty, bounded and contained in the nonnegative quadrant R7"". To
represent the strategy space, we only need to specify the set of linear constraints
defining P; = {p € R} | D;p < f;}, with each linear constraint requiring us to
store O(m;) integers. We call this game a game with polytopal strategy spaces.

For example, one common scenario is when there are k finite sets S}, ... Sk,
and player i needs to simultaneously select one action in each of these sets.
This happens in Bayesian games in which a player needs to choose an action
for each of his type, extensive form games in which a player needs to choose
an action in each information set, and simultaneous auctions, among others.
The player’s pure strategy set S; is a polytopal strategy space with P; being
the product of k£ simplices. Second common type of strategy set is a uniform
matroid: given a universe [m;], player ¢’s pure strategy is a subset of size k. This
can (e.g.) represent security scenarios in which a defender player ¢ in charge of
protecting m; target, but due to limited resources can only cover k of targets
[19]. Then player ¢’s strategy can be represented as the 0-1 vector encoding the
subset, and the strategy set can be represented as a polytopal strategy set with
P, = {p € R™] Zje[mi} pj = k}. Third common type of strategy is to select a
path in a network, from a given source to a given destination. This can model
routing of data traffic in an network congestion game, or patrol / attack routes
in security settings [13,26]. Here, s; can be modeled as a 0-1 vector specifying
the subset of edges forming the chosen path. S; can be represented as a polytopal
strategy space, where P; consists of a set of flow constraints, as in [7].

3.2 Mixed Strategies and Multilinearity

In this paper, we are focusing on computation of solution concepts in which play-
ers are playing mixed strategies, such as Nash equilibrium. The first challenge we
face is the representation of mixed strategies. Recall that a mixed strategy o; of
player i is a probability distribution over the set of pure strategies S;. When |.S;|
is exponential, representing o; explicitly would take exponential space. Thus we
would like a compact representation of mixed strategies, i.e., a way to represent a
mixed strategy using only polynomial number of bits. One approach would be to
only use mixed strategies of polynomial-sized support, where support is the set of
pure strategies played with non-zero probability. Such strategies can be stored as
sparse vectors requiring polynomial space; however, the space of small-support
mixed strategies is not convex, and this is problematic for computation.



We list a set of desirable features for a compact representation of mixed
strategies: (1) the expected utilities of the game can be expressed in terms of
this compact representation; (2) the space of the resulting compactly-represented
strategies is convex; (3) given this compact representation, we can efficiently re-
cover a mixed strategy (e.g., as a mixture over a small number of pure strategies,
or by providing a way to efficiently pure strategies from the mixed strategy). We
show that such a compact representation is possible if the game is multilinear.

Definition 2. Consider a game I' with polytopal strategy sets, with S; = P; N
Z'" for each playeri. I' is a multilinear game if

1. for each player i, there exists U' € Rllken ™ such that for all s € S,
’LL,L(S) = Z(]l]n)enkhnk] U;l...jn HkEN Sk, where [mk] = {1, e ,mk};

2. The extreme points (i.e. vertices) of P; are integer vectors, which implies
that P; = conv(S;), where conv(S;) is the convexr hull of S;.

In particular, given a fixed s_j, u; is a linear function of s;. In other words, a
multilinear game’s utility functions are multilinear in the players’ strategies.

Condition 2 of Definition 2 is satisfied if P;’s constraint matrix D; is to-
tally unimodular. Total unimodularity is a well-studied property satisfied by the
constraint matrices of many polytopal strategy spaces studied in the literature,
including the network flow constraint matrix of network congestion games, the
uniform matroid constraints of security games [19], and the doubly-stochastic
constraints representing rankings in the search engine ranking duel [12]. When
Condition 2 is not satisfied, we can redefine P; to be conv(S;), but the new P; may
have exponentially more constraints. Indeed, dropping Condition 2 would allow
us to express various NP-hard single-agent combinatorial optimization problems
(e.g. set cover, knapsack). See [5] for examples that demonstrates how security,
congestion, extensive-form, and Bayesian games are multilinear.

Given a mixed strategy o;, define the marginal vector m; corresponding to
o, as the expectation over the pure strategy space .S; induced by the distri-
bution o, i.e., w;, = Eg,[si] = 281651 0;(s;)s;. Denote by m;; the j — th
component of 7;. The set of marginal vectors is exactly conv(S;) = P;. Given a
mixed strategy profile o, we call the corresponding collection of marginal vectors
7 = (my1,...,7,) € P = X;P; the marginal strategy profile. By slight abuse of
notation let us denote by

wm = > U I (2)

(J1---3n) €T, [mi] kEN
player i’s expected utility under marginal strategy profile 7.

Lemma 1. Given a mized strategy profile o € X and a marginal vector ™ € P,
if Vi, m; = Esiesi oi(8;)8; then Vi, u;(0) = u; (7).

That is, marginal vectors capture all payoff-relevant information about mixed
strategies, and thus we can use them to compactly represent the space of mixed
strategies. We note that this property does not hold for arbitrary games.



Suppose a mixed strategy profile o with marginals © = (wy,...,7,) is a
Nash equilibrium of a multilinear game. By multilinearity any mixed strategy
profile having the same marginals are payoff-equivalent to o, and therefore also
a Nash equilibrium. Let us define Nash equilibrium in terms of marginals:

Marginal NE. w € P is a marginal NE iff Vi, u;(w) > w; (7}, 7_;), V7, € P,.

The next lemma follows easily using Lemma 1, and the fact that any vector
7; € P; can be represented as a convex combination of extreme points of P;, and
extreme points of P; are in S;.

Lemma 2. A mized-strategy profile o € X is a NE iff corresponding marginal
strategy profile m € P, where w; =) g g 0i(8:)8i, Vi € N, is a marginal NE.

4 Computation with Multilinear Games

We now show that many algorithmic results for computing various solutions
for normal form games and other game representations of polynomial type can
be adapted to multilinear games, with strategies represented as marginals. We
follow a “modular” approach, similar to [7,21]’s treatment of computation of
Nash equilibrium and correlated equilibrium in games of polynomial type: we
first identify certain key subproblems, then develop general algorithmic results
assuming these subproblems can be efficiently computed. We note that a wide
variety of games do has such specific structure (see [5]).

4.1 Utility Gradient

Recall that we can express the expected utilities of players using marginal vectors
by Equation (2) (Lemma 1). However, a direct computation of expected utility
using (2) would require summing over a number of terms exponential in n. Also,
computing expected utilities may not be enough: consider the task of determining
if a mixed strategy profile (as marginals) is a Nash equilibrium. One needs to
compute the expected utility for each pure strategy deviation of ¢ in order to
verify that ¢ is playing a best response, but that would require enumerating
all pure strategies. Instead, we identify a related but different computational
problem as the key subtask for equilibrium computation for multilinear games.

Due to multilinearity, after fixing the strategies of players N \ {k}, u;(w)
is a linear function of 71, ..., Tkm,. We define the utility gradient of player 4
with respect to player k’s marginal, Vi (u;(7w_x)) € R™*, to be the vector of
coefficients of this linear function. Formally, Vj; € [my],

(Viui(m_));, = > U, T mebe-

(jl7-7J'k-71,jk+17-7jn)€l_[fgv:\1{k}[mz] LeN\{k}

Problem 1 (UtilGradient). Given a compactly represented game that satisfies
multilinearity, given players i,k € N, and mw_j, compute Vi (u;(mw_g)).



Consider the problem of computing the utility gradients. As with expected
utility computation, direct summation would require time exponential in n. With
a compact game representation this problem could be solved in polynomial time.

4.2 PolytopeSolve and Decomposing Marginals

The other key subproblem we identify, PolytopeSolve, is the optimization of an
arbitrary linear objective in each player’s strategy polytope.

Problem 2 (PolytopeSolve). Given a compactly represented game with polytopal
strategy space, player ¢, and a vector d € R™¢, compute arg maxgep, d’z.

Let us consider the issue of constructing a mixed strategy given a marginal
vector. First of all, since we have assumed that the extreme points of the polytope
P; are integer points, and thus P; = conv(S;), this becomes the problem of
describing a point in a polytope by a convex combination of extreme points of
the polytope. By Caratheodory theorem, given 7r; € R there exists a mixed
strategy of support size at most (m; + 1) that matches the marginals. Existing
work, such as the Birkhoff-von Neumann theorem and its generalizations [3],
provides efficient constructions for different types of polytopes. The most general
result by Grostchel, Lovasz and Schrijver [11] reduces the problem to the task of
optimizing an arbitrary linear objective over the polytope, i.e., PolytopeSolve.

Theorem 1 (Grostchel, Lovasz and Schrijver [11]). Suppose the Polytope-

Solve can be solved in polynomial time. Then, the following problem DECOMPOS-

E(P;) can be solved in polynomial time: Given 7; € Py, find a polynomial num-
K

ber of extreme points of P; (i.e., pure strategies) si,...sK € S; and weights

A, ..., Ak > 0 such that Z,If:l M =1 and m; = Zszl PYNL

We note that the computational complexity of PolytopeSolve depends only
on the strategy polytopes P;s of the game, and not on the utility functions. Poly-
topeSolve can be definitely solved in polynomial time by linear programming if
P; is given by a polynomial number of linear constraints; this holds for all exam-
ples we discussed in this paper. Since the objective is linear, arg maxge p, dl'z =
arg maxges, d"z, i.e., we can alternatively solve the optimization problem over
Si, which may be more amenable to combinatorial methods.

For the case when P; has exponentially many constraints, Grostchel, Lovasz
and Schrijver [11] also showed that PolytopeSolve is equivalent to the SEPARA-
TION problem (also known as a separation oracle): Given a vector m; € R™i,
either answers that 7; € P;, or produces a hyperplane that separates 7; and P;.

4.3 Best Response

We observe that by construction, u;(w) = 71 V;u;(w_;). Then given , the
best response for player ¢ is the solution of the following optimization: maximize
ﬂiTViui(ﬂ'_i) subject to ; € P;. This is a linear program with feasible region
P;, which is an instance of the problem PolytopeSolve. The coefficients of the
linear objective are exactly the utility gradient V,;u;(mw_;).



Proposition 1. Suppose we have a compact game representation with polynomial-
time procedures for both UtilGradient and PolytopeSolve. Then the best response
problem can be computed in polynomial time.

As a corollary, under the same assumptions, we get that checking if a given
profile 7 is a Nash equilibrium can be done in polynomial time.

4.4 Computing Coarse Correlated Equilibrium

Approximate CCE. Given a multilinear game, an approximate CCE can be
computed by simulating no-regret dynamics (a.k.a. online convex programming)
for each player. For example, one such no-regret dynamic is Generalized Infinites-
imal Gradient Ascent (GIGA) [27], where in each iteration, for each player i we
move 7; along the direction of the utility gradient V,u;(w_;), and then project
the resulting point back to P;. The projection step is a convex optimization
problem on P;, and can be solved efficiently given an efficient separation ora-
cle, or equivalently a procedure for PolytopeSolve. Therefore, under the same
assumptions as Proposition 1, approximate CCE can be found efficiently.

Exact CCE. The above procedure does not guarantee exact CCE in polynomial-
time. Next we obtain such a procedure, using LP duality and carefully designed
separation oracle to get the following theorem.

Theorem 2. Consider a multilinear game, with polynomial time subroutines for
UtilGradient and PolytopeSolve. Then an exact Coarse Correlated Equilibrium
(CCE) can be computed in polynomial time.

Recall that a distribution over the set of pure-strategy profiles can be rep-
resented by a vector x, satisfying & > 0, Y g .g2s = 1. Given a multilin-
ear game, the expected utility for player i under x is u;(x) = > g wsu;(s) =
82 iin Uni s [y 8k, Given x, the expected utility for player i if
hg deviates to strategy s; is: us' (z) = D5, T i8S, 8—i) =D g Do
Ui jn®s i Lk Skjis where 25 . =3 g o (s, s_,) is the marginal probabil-
ity of s_; in distribution &. We observe that uf(m) is linear in s;. Specifically,

uls (x) = Ej Siji Zs,i Zjﬂ_ U}lywjnacsf,i Hk# Sk.j.- We can extend the defi-
nition of uf(a:) beyond s; € S; to any vector in the convex hull P;; specifically
for p, € P;, ufl (z) is defined to be 37, pij, >og Do, U;hm’jn s, [Lnsi k-
Recall from (1) that g;(x) = maxg,es, uf (x), i.e. player i’s expected utility if he
deviates to a best response against . Since ufb (x) is linear in s;, we can write
gi(x) = maxp cp, u{’ i(x). Recall that a distribution @ is a Coarse Correlated
Equilibrium (CCE) if it satisfies the incentive constraints: u;(x) > g;(x), Vi.
Consider the following optimization problem:
max Z zi (3)

ZCZO,ZJ?S:I, (4)
S

2 < 0,Vi (6)



The feasible region correspond to a relaxation of CCE, due to the introduction
of slack variables z. A feasible solution (z, z) with z = 0 is an optimal solution
of the above problem (since z < 0); furthermore such a solution corresponds to
a CCE x by construction.

This optimization problem is convex, but is difficult to handle directly be-
cause it has exponential number of variables xg for each s € S. Take the dual
optimization problem:

i 2+ Snlu(e) mal@) =) N

— min m mi E (. _ D
T 0ZYSITEAp,eP o, eP, - yilus(@) = v (=) ©)
. . Z P,
— . . — i ]_
02y<1 pleplr,??,%nepn LA - yilui(@) — i (@) (10)

where A = {x € RISl : & > 0,172 = 1}. Coing from (8) to (9), we used the fact
that if y; > 1, the maximizer can take z; towards —oo and get arbitrarily high
objective value. Therefore the outer minimizer should keep y; < 1, in which case
it is optimal for the maximizer to set z = 0 and the term (1 —y;)z; disappears. In
the last line we used the Minimax Theorem to switch the min and max operators.
Since Y, yi (ui(x) — uf) (x)) is linear in @, it attains its maximum at one of the
extreme points of A, i.e., one of the pure strategy profiles. Thus the dual problem
is equivalent to

min ¢ (11)
y7p1“'p71r7t

0<y<1l; p,ep Vi (12)

t> yiui(s)) —uilp;,s-,), Vs €S (13)

This is a nonlinear optimization problem due to the multiplication of y; and p; in
(13), but can be transformed to a linear optimization problem via the following
variable substitution: let w; = y;p,. We now try to express the dual problem
in terms of y; and w;. Recall that P; = {p € R™[D;p < f,} C R"". Then
w; satisfies D;w; < y,; f,;. For positive y;, given w; we can recover p, = w;/y;.
When y; = 0, we need to make sure that w; is also 0. This can be achieved using
the constraints w; > 0 and w;; < M;;y;, where the constant M;; = maxp ep, pij
for all j € [m;]. Note that this a valid bound on w;; when y; > 0. M;; can be
computed in polynomial time by calling PolytopeSolve, and hence is polynomial-
sized. The dual problem is then equivalent to
min t
YW W, ¢

w; > 0,w;; < Myjy; Vi, Vj € [my]
t> Zyiui(s’) — ui(wi, Sl_i)v VSI cs
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)
)
)
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where u; (w;, s’_;) is the linear extension of u;(s;, s’ ;); i.e. u;(w;, 8" ;) = ZJ Wy 4,

Zj_i Ufl...j" Hk# 827jk. This is a linear program, with polynomial number of
variables and exponential number of constraints. Since we know the primal ob-
jective is less or equal to 0, by LP duality, the optimal ¢ in the dual is less or
equal to 0. The following lemma establishes the existence of CCE in a way that
does not use the existence of NE.

Lemma 3. The dual LP (and therefore the primal LP) has optimal objective 0.

This lemma says that for every candidate solution with ¢ < 0, we can produce
a hyperplane that separates it from the feasible set of the dual LP. We can use
this lemma as a separation oracle in an algorithm similar to Papadimitriou &
Roughgarden’s [21] Ellipsoid Against Hope method to compute a CCE. However
it would encounter similar numerical precision issues as discussed in [14], essen-
tially due to the use of a convex combination of constraints which has a higher
bit complexity than the individual constraints.

On the other hand, if we use a pure separation oracle that given y, wy ... w,,
finds s’ such that >, yiu;(s’) — u;(w;,s";) > 0, we can use the approach as
described in [14] to compute a CCE.

Lemma 4. Consider a multilinear game, with polynomial-time subroutines for
UtilGradient and PolytopeSolve. Then there is a polynomial-time algorithm for
the following pure separation oracle problem: given y,w; ... wy,, find pure strat-
egy profile s' € S such that Y, yu;(s') — u;(w;, s”_;) > 0.

Using Lemmas 3 and 4, in [5] we extend the approach of approach of [21, 14]
and complete the proof of Theorem 2.

5 Complexity of Approximate NE: Membership in PPAD

In this section we analyze complexity of computing Nash equilibrium in multi-
linear games. Existence of a NE in multilinear game follows from [10] makes the
problem total. On the other hand, since multilinear games contain normal-form
multi-player games as a subcase, the Nash equilibria may be irrational [20]. In
such a case the standard approach is to try approximation.

e-approximate NE (e-NE) Given a rational € > 0 in binary, a mixed strategy
profile o is an e-approximate NE iff Vi € N,u;(0) > maxg/ey, ui(0;,0-;) — €.
In case of multilinear games, due to Lemma 1, this is iff corresponding marginal
strategy profile 7 satisfy u;(m) > maxq: cp, ui(mw], ;) — €.

It is well known that even in two player normal form games, computing
approximate NE is PPAD-complete [22, 8, 6]. Roughly speaking, PPAD captures
the class of total search problems that can be reduced to End-0f-Line [22],
which includes computing approximate fixed-points. Since normal form games
are contained in multilinear games, the next corollary follows:

Corollary 1. Given a rational € > 0 in binary, computing e-approzimate NE
in multilinear games is PPAD-hard.



Due to exponential size of the strategy spaces, it seems that computing an
e-NE in multilinear games could be a much harder problem given its generality.
However, as we will show, it is no harder than computing a NE in 2-player games.

We note that, there has been recent efforts on showing PPAD membership
for different classes of games [7]. However, the techniques are for games with
polynomial type property, i.e. polynomial time computation of expected utility
given mixed-strategy. Instead, we will use the characterization result (Proposi-
tion 2.2) of [9] to show that computing NE in multilinear games is in PPAD. See
[5,9] for relevant definitions, and the proposition statement.

Proposition 2.2 of [9] implies that to show membership of computing e-NE in
PPAD, it is enough to capture them as approximate fixed-points of a polynomi-
ally continuous and polynomially computable function. Next we will construct
such a function for multi-linear games.

Consider the following function ¢ : X' — X from [10] where ¢ = (¢1, ..., n)
and ©Y; - Y — X, such that, (pi(O'i,O'_i) = argmaXg, o [uz(Ez;U—z) — HEZ —
o;||?]. Tt was used to show existence of NE in concave games which includes
multilinear games. However, notice that for multilinear games, description of
mixed strategies is of exponential size, hence the function is not polynomially-
computable. Its’ polynomial-continuity is unclear. Instead, once again we will
use marginal strategies. Moreover, we can compute the expected utilities using
the marginal strategies efficiently as long as there is polynomial-time procedure
to compute the utility gradient. Let P = [[,c F;, we redefine ¢ : P — P where
©=(p1,....,0n) and ; : P — P, is

wi(ms, m_) = argmax(u; (7, m_) — | |7 — 74| %] (18)

T,ET;

Clearly, ¢ is a continuous function and therefore has a fixed-point. Next we
show that its approximate fixed-points give approximate NE of the corresponding
game. As the approximation goes to zero in the former we get exact NE in the
latter, in other words exact fixed-points of (18) captures exact NE.

Lemma 5. Given a rationale > 0, lete’ = ik D; |1

and Upaz = Max; (5, . j,) eI, [mx] \UZ ..j.|- Then if = € P is an € -approxzimate

fized-point of (18), i.e., ||p(7) — 7||oo < € then it is a 2e-approximate NE of the
corresponding multilinear game.

where H = max; p cp,

Lemma 5 implies that, for computation of approximate NE, it is enough to
compute approximate fixed-point of function ¢. Next we show that this function
is polynomially continuous and polynomially computable and therefore comput-
ing its approximate fixed-point is contained in PPAD using Proposition 2.2 of
[9], and therefore containment of approximate NE computation in PPAD fol-
lows. Next lemma shows polynomial-continuity and polynomial-computability
by establishing equivalence of ; and a projection operator and by establishing
connection to convex quadratic programming, respectively.

Lemma 6. The function ¢ is polynomially continuous and computable.



Due to the assumption that PolytopeSolve has polynomial-time sub-routine,
the size of maxp ep, pij, Vi, Vj € [m;] is polynomial in the description of the
game. Furthermore, |S| is 2P 2: i) Therefore, if L is the size of the game
description, then in Lemma 5 bit-length of H is polynomially bounded, and
hence size(€e') = O(log(1/€), poly(size(L))). Therefore, next theorem follows us-
ing Lemmas 5 and 6, together with Proposition 2.2 of [9], and Corollary 1.

Theorem 3. Given a multilinear game with polynomial-time subroutines for
PolytopeSolve and UtilGradient, and ¢ > 0 in binary, computing an e-approzimate
NE of the game is in PPAD. Furthermore, it is PPAD-complete.

Small Support Approximate NE. Using discussion of Section 4.2, given an
e-approximate NE 7 € P, each ; can be represented as distribution over m;+1
pure strategies from .S;. However, existence of smaller support approximate NE
is not clear. In [5], we study the same and obtain the following result.

Theorem 4. Given a multilinear game, and given an € > 0, there exists an
e-approvimate NE with support size O(M? log(”)Hogé(Qm)_log(e)) for each player,
where m = max; m; and M = (max; wep ||Viui(7)||oo) max; ;. ep, ||7:]]1-

Note that M upper bounds the magnitude of the game’s utilities u;(s), Vi, Vs €
S. Finally we provide discussion in [5].
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