Journal of Machine Learning Research 17 (2016) 1-5 Submitted 5/16; Revised 11/16; Published 11/16

Auto-WEKA 2.0: Automatic model selection
and hyperparameter optimization in WEKA

Lars Kotthoff LARSKO@CS.UBC.CA
Chris Thornton CWTHORNTQCS.UBC.CA
Holger H. Hoos HOOS@CS.UBC.CA
Frank Hutter FHQCS.UNI-FREIBURG.DE
Kevin Leyton-Brown KEVINLB@CS.UBC.CA

Department of Computer Science
University of British Columbia
28366 Main Mall, Vancouver, B.C. V6T 1Zj Canada

Editor: Geoff Holmes

Abstract

WEKA is a widely used, open-source machine learning platform. Due to its intuitive interface,
it is particularly popular with novice users. However, such users often find it hard to identify
the best approach for their particular dataset among the many available. We describe the
new version of Auto-WEKA, a system designed to help such users by automatically searching
through the joint space of WEKA’s learning algorithms and their respective hyperparameter
settings to maximize performance, using a state-of-the-art Bayesian optimization method.
Our new package is tightly integrated with WEKA, making it just as accessible to end users
as any other learning algorithm.

Keywords: Hyperparameter Optimization, Model Selection, Feature Selection

1. The Principles Behind Auto-WEKA

The WEKA machine learning software (Hall et al., 2009) puts state-of-the-art machine
learning techniques at the disposal of even novice users. However, such users do not typically
know how to choose among the dozens of machine learning procedures implemented in
WEKA and each procedure’s hyperparameter settings to achieve good performance.

Auto-WEKA! addresses this problem by treating all of WEKA as a single, highly para-
metric machine learning framework, and using Bayesian optimization to find a strong instan-
tiation for a given dataset. Specifically, it considers the combined space of WEKA'’s learning
algorithms A = {A(l), . ,A(k)} and their associated hyperparameter spaces A ... AK)
and aims to identify the combination of algorithm AY) € A and hyperparameters A € Al
that minimizes cross-validation loss,

k
Ay. € argmin — Zﬁ (A(A])7D8;m,73t(;)st>) (1)
ADeAreA) K5

1. Thornton et al. (2013) first introduced Auto-WEKA and empirically demonstrated state-of-the-art
performance. Here we describe an improved and more broadly accessible implementation of Auto-WEKA,
focussing on usability and software design.

(©2016 Lars Kotthoff, Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.

KoTTHOFF, THORNTON, HUTTER, HOOS, LEYTON-BROWN

where L(A, p® i)

train’ ~test

) denotes the loss achieved by algorithm A with hyperparameters A

when trained on Dt(iam and evaluated on Déé)st. We call this the combined algorithm selection
and hyperparameter optimization (CASH) problem. CASH can be seen as a blackbox
function optimization problem: determining argming.g f(0), where each configuration
6 € © comprises the choice of algorithm AU) € A and its hyperparameter settings A € AU,
In this formulation, the hyperparameters of algorithm AY) are conditional on AY) being
selected. For a given @ representing algorithm AU) € A and hyperparameter settings
A€ AW, f(8) is then defined as the cross-validation loss z Zle /J(A(Aj),Dt(gin, Dt(?st).2
Bayesian optimization (see, e.g., Brochu et al., 2010), also known as sequential model-
based optimization, is an iterative method for solving such blackbox optimization problems.
In its n-th iteration, it fits a probabilistic model based on the first n — 1 function evaluations
(6, £(6,))", uses this model to select the next 6, to evaluate (trading off exploration of
new parts of the space vs exploitation of regions known to be good) and evaluates f(6,,).
While Bayesian optimization based on Gaussian process models is known to perform well
for low-dimensional problems with numerical hyperparameters (see, e.g., Snoek et al., 2012),
tree-based models have been shown to be more effective for high-dimensional, structured,
and partly discrete problems (Eggensperger et al., 2013), such as the highly conditional
space of WEKA’s learning algorithms and their corresponding hyperparameters we face
here.> Thornton et al. (2013) showed that tree-based Bayesian optimization methods yielded
the best performance in Auto-WEKA, with the random-forest-based SMAC (Hutter et al.,
2011) performing better than the tree-structured Parzen estimator, TPE (Bergstra et al.,
2011). Auto-WEKA uses SMAC to determine the classifier with the best performance on

the given data.

2. Auto-WEKA 2.0

Since the initial release of a usable research prototype in 2013, we have made substantial
improvements to the Auto-WEKA package described by Thornton et al. (2013). At a prosaic
level, we have fixed bugs, improved tests and documentation, and updated the software to
work with the latest versions of WEKA and Java. We have also added four major features.

First, we now support regression algorithms, expanding Auto-WEKA beyond its previous
focus on classification (starred entries in Fig. 1). Second, we now support the optimization
of all performance metrics WEKA supports. Third, we now natively support parallel runs
(on a single machine) to find good configurations faster and save the N best configurations
of each run instead of just the single best. Fourth, Auto-WEKA 2.0 is now fully integrated
with WEKA. This is important, because the crux of Auto-WEKA lies in its simplicity:
providing a push-button interface that requires no knowledge about the available learning
algorithms or their hyperparameters, asking the user to provide, in addition to the dataset
to be processed, only a memory bound (1 GB by default) and the overall time budget

2. In fact, on top of machine learning algorithms and their respective hyperparameters, we also include
attribute selection methods and their respective hyperparameters in the configurations 0, thereby jointly
optimizing over their choice and the choice of algorithms.

3. Conditional dependencies can also be accommodated in the Gaussian process framework (Hutter and
Osborne, 2013; Swersky et al., 2013), but currently, tree-based methods achieve better performance.

AuTto-WEKA 2.0: AUTOMATIC MODEL AND HYPERPARAMETER SELECTION IN WEKA

Learners
BayesNet 2 Logistic 1 REPTree* 6
DecisionStump* 0 M5P 4 SGD* 5
DecisionTable* 4 Mb5Rules 4 SimpleLinearRegression* 0
GaussianProcesses™* 10 MultilayerPerceptron* 8 SimpleLogistic 5
IBk* 5 NaiveBayes 2 SMO 11
J48 9 NaiveBayesMultinomial 0 SMOreg* 13
JRip 4 OneR 1 VotedPerceptron 3
KStar* 3 PART 4 ZeroR* 0
LinearRegression* 3 RandomForest 7
LMT 9 RandomTree* 11

Ensemble Methods
Stacking 2 Vote 2

Meta-Methods
LWL 5 AttributeSelectedClassifier 2 RandomSubSpace 3
AdaBoostM1 6 Bagging 4
AdditiveRegression 4 RandomCommittee 2

Attribute Selection Methods
BestFirst 2 GreedyStepwise 4

Figure 1: Learners and methods supported by Auto-WEKA 2.0, along with number of
hyperparameters |A|. Every learner supports classification; starred learners also support
regression.

available for the entire learning process.* The overall budget is set to 15 minutes by default
to accommodate impatient users, but longer runs allow the Bayesian optimizer to search the
space more thoroughly; we recommend at least several hours for production runs.

The usability of the earlier research prototype was hampered by the fact that users
had to download Auto-WEKA manually and run it separately from WEKA. In contrast,
Auto-WEKA 2.0 is now available through WEKA’s package manager. Users do not need to
install software separately; everything is included in the package and installed automatically
upon request. After installation, Auto-WEKA 2.0 can be used in two different ways:

1. As a meta-classifier: Auto-WEKA can be run like any other machine learning algorithm
in WEKA: via the GUI, the command-line interface, or the public API. Figure 2 shows
how to run it from the command line.

2. Through the Auto-WEKA tab: This provides a customized interface that hides some
of the complexity of running a classifier. Figure 3 shows the output of an example run.

Source code for Auto-WEKA is hosted on GitHub (https://github.com/automl/autoweka)
and is available under the GPL license (version 3). Releases are published to the WEKA
package repository and available both through the WEKA package manager and from
the Auto-WEKA project website (http://automl.org/autoweka). A manual describes
how to use the WEKA package and gives a high-level overview for developers; we also
provide lower-level Javadoc documentation. An issue tracker on GitHub, JUnit tests and
the continuous integration system Travis facilitate bug tracking and correctness of the code.
Since its release on March 1, 2016, Auto-WEKA 2.0 has been downloaded more than 15000
times, with an average of about 400 downloads per week.

4. Internally, to avoid using all its budget for executing a single slow learner, Auto-WEKA limits individual
runs of any learner to 1/12 of the overall budget; it further limits feature search to 1/60 of the budget.

KoTTHOFF, THORNTON, HUTTER, HOOS, LEYTON-BROWN

java -cp autoweka.jar weka.classifiers.meta.AutoWEKAClassifier
-timelimit 5 -t iris.arff -no-cv
Figure 2: Command-line call for running Auto-WEKA with a time limit of 5 minutes on
training dataset iris.arff. Auto-WEKA performs cross-validation internally, so we disable
WEKA'’s cross-validation (-no-cv). Running with -h lists the available options.

Preprocess | Classify | cluster | Associate | Select attributes | visualize | Aute-WEKA | Projection Plot | Parallel Coordinates Plot | Forecast

AutoWEKAClassifier seed 123 timeLimit 15 -memLimit 1024 -nBestConfigs 1 -metric errorRate -paralleRuns 1

[Auto-WEKA Manual

| Auto.WEKA output
{Nom) class v

Auto-WEKA result:
Start best classifier: weka.classifiers.lazy. Ll
ol et argunents: [-U, 0, -A, weka.core.neighboursearch. LineariSearch, -W. weka.classifiers. functions Logistic, --. -
Result list (rightuclick for... | | 214/} 1e search: veka, attributeselection. GreedyStemaise

attribute search arqurents: (-, -8, -Rl

attribute evaluation: weka.attributeSelection. CsSubsetEval
attribute evaluation arguments: (1

metric: errorfate

estinated errorfate; 0,013333333333333334

training time on evaluation dataset: 0.0 seconds

You can use the chosen classifier in your own code as follows:

Attributeselection as = new Attributeselection(}:
ASSearch asSearch - ASSearch.forName"weka.attributeSelection.GreedyStepwise', new String[]1{"-C", "-B", "-R'}};
as.setSearchlasSearch);

ASEvaluation asEval = ASEvaluation. forName("weka.attributeselection.CfsSubsetEval®, new String(1i1}:
as.setEvaluator (asEval);

as.SelectAttributes (instances);

instances = as.reduceDinensionality(instances)

Classifier classifier = AbstractClassifier. forfiame("weka.classifiers.lazy.LWL", new String(1{"-U", *8", "-A"

. "weka
<lassifier buildClassifier(instances);

Correctly Classified Instances 128 98,6667 %
Incorrectly Classified Instances 2 1.3333 %
Kappa statistic .98

Mean absalute error .0199

Root mean squared errar 0.0899

Relative absolute errar 4.4856 %

Root relative squared error 19.0622 %

Total Nurber of Instances 150

=== Confusion Matrix ===

@ b < =-- classified as
50 0 0| as=Iris-setosa
649 1| b=Iris-versicolor
0 149 | < - Iris-virginica
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
1.000 ©.000 1.000 1.0 1.000 1.080 1.006 1.000 Iris-setosa
Iris-versicolor
Iris-virginica

0.980 ©0.010 0.980 0.980 ©.980 0.978 0.999 0.998
0,980 0.010 0,990 0,980 0,980 0,970 0,999 0.998
Weighted Avg. 0.987 0.007 0.987 0.957 0.987 0.980 0.999 0.998

For better performance, try giving Auto-WEKA more tine.

L1

T
Status

ok 9 | g *©

Figure 3: Example Auto-WEKA run on the iris dataset. The resulting best classifier along
with its parameter settings is printed first, followed by its performance. While Auto-WEKA
runs, it logs to the status bar how many configurations it has evaluated so far.

3. Related Implementations

Auto-WEKA was the first method to use Bayesian optimization to automatically instantiate
a highly parametric machine learning framework at the push of a button. This automated
machine learning (AutoML) approach has recently also been applied to Python and scikit-
learn (Pedregosa et al., 2011) in Auto-WEKA's sister package, Auto-sklearn (Feurer et al.,
2015). Auto-sklearn uses the same Bayesian optimizer as Auto-WEKA, but comprises a
smaller space of models and hyperparameters, since scikit-learn does not implement as many
different machine learning techniques as WEKA; however, Auto-sklearn includes additional
meta-learning techniques.

It is also possible to optimize hyperparameters using WEKA’s own grid search and
MultiSearch packages. However, these packages only permit tuning one learner and one
filtering method at a time. Grid search handles only one hyperparameter. Furthermore,
hyperparameter names and possible values have to be specified by the user.

AuTto-WEKA 2.0: AUTOMATIC MODEL AND HYPERPARAMETER SELECTION IN WEKA

References

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter opti-
mization. In Advances in Neural Information Processing Systems 24 (NIPS’11), pages
25462554, 2011.

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning. Computing Research Repository (arXiv), abs/1012.2599, 2010.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown.
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters.
In NIPS Workshop on Bayesian Optimization (BayesOpt’13), 2013.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient
and Robust Automated Machine Learning. In Advances in Neural Information Processing
Systems 28 (NIPS’15), pages 2944-2952, 2015.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA
Data Mining Software: An Update. SIGKDD Explor. Newsl., 11(1):10-18, Nov. 2009.
ISSN 1931-0145.

F. Hutter and M. Osborne. A Kernel for Hierarchical Parameter Spaces. Computing Research
Repository (arXiv), abs/1310.5738, Oct. 2013.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential Model-Based Optimization for
General Algorithm Configuration. In Learning and Intelligent OptimizatioN Conference
(LION 5), pages 507-523, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25 (NIPS’12),
pages 2951-2959, 2012.

K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. Osborne. Raiders of the lost
architecture: Kernels for Bayesian optimization in conditional parameter spaces. In NIPS
Workshop on Bayesian Optimization (BayesOpt’13), 2013.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms. In 19th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’13), 2013.

