
Automatic Construction of Parallel Portfolios
via Algorithm Configuration

Marius Lindauera, Holger Hoosb, Kevin Leyton-Brownb, Torsten Schaubc,d

aUniversity of Freiburg, Germany
bUniversity of British Columbia, Vancouver, Canada

cUniversity of Potsdam, Germany
dINRIA Rennes, France

Abstract

Since 2004, increases in computational power described by Moore’s law have
substantially been realized in the form of additional cores rather than through
faster clock speeds. To make effective use of modern hardware when solving hard
computational problems, it is therefore necessary to employ parallel solution
strategies. In this work, we demonstrate how effective parallel solvers for
propositional satisfiability (SAT), one of the most widely studied NP-complete
problems, can be produced automatically from any existing sequential, highly
parametric SAT solver. Our Automatic Construction of Parallel Portfolios
(ACPP) approach uses an automatic algorithm configuration procedure to identify
a set of configurations that perform well when executed in parallel. Applied to
two prominent SAT solvers, Lingeling and clasp, our ACPP procedure identified
8-core solvers that significantly outperformed their sequential counterparts on a
diverse set of instances from the application and hard combinatorial category of
the 2012 SAT Challenge. We further extended our ACPP approach to produce
parallel portfolio solvers consisting of several different solvers by combining
their configuration spaces. Applied to the component solvers of the 2012 SAT
Challenge gold medal winning SAT Solver pfolioUZK , our ACPP procedures
produced a significantly better-performing parallel SAT solver.

Keywords: Algorithm Configuration; Parallel SAT Solving; Algorithm
Portfolios; Programming by Optimization; Automated Parallelization

1. Introduction

Over most of the last decade, additional computational power has come
primarily in the form of increased parallelism. As a consequence, effective parallel
solvers are increasingly key to solving computationally challenging problems.

Email addresses: lindauer@informatik.uni-freiburg.de (Marius Lindauer),
hoos@cs.ubc.ca (Holger Hoos), kevinlb@cs.ubc.ca (Kevin Leyton-Brown),
torsten@cs.uni-potsdam.de (Torsten Schaub)

Preprint submitted to Elsevier April 27, 2016

Unfortunately, the manual construction of parallel solvers is non-trivial, often
requiring fundamental redesign of existing, sequential approaches, as identified
by Hamadi and Wintersteiger [33] as the challenge of Starting from Scratch.
It is thus very appealing to employ generic methods for the construction of
parallel solvers from inherently sequential sources as a first step. Indeed, the
prospect of a substantial reduction in human development cost means that such
approaches can have a significant impact, even if their performance does not
reach that of special-purpose parallel designs—just as high-level programming
languages are useful, even though compiled software tends to fall short of the
performance that can be obtained from expert-level programming in assembly
language. One promising approach for parallelizing sequential algorithms is the
design of parallel algorithm portfolios – sets of solvers that are run in parallel
on a given instance of a decision problem, such as SAT, until the first of them
finds a solution [40, 27].

In this work,1 we study generic methods for solving a problem we call Auto-
matic Construction of Parallel Portfolios (ACPP): automatically constructing
a static2 parallel solver from a sequential solver or a set of sequential solvers.
This task can be understood as falling within the programming by optimization
paradigm [35] in that it involves the design of software in which many design
decisions have been deliberately left open during the development process (here
exposed as parameters of SAT solvers) to be made automatically later (here by
means of an automated algorithm configurator) in order to obtain optimized
performance for specific use cases. Hence, all that is required by our ACPP
methods is a sequential solver whose configuration space contains complementary
configurations.

We study three variants of the ACPP problem. First, we consider building
parallel portfolios starting from a single, highly parametric sequential solver
design. However, for well-studied problems (e.g., SAT), there often exist a
wide range of different solvers that contribute to the state of the art (see, e.g.,
[74]). Complementarities among such solvers can be exploited by algorithm
portfolios, whether driven by algorithm selection (like SATzilla [73]) or by parallel
execution (such as ppfolio [64] or pfolioUZK [71]). Thus, the second problem we
consider is leveraging such complementarities within the context of the ACPP
problem, generating a parallel portfolio based on a design space induced from
a set of multiple (possibly parametrized) solvers. Finally, some parallel solvers
already exist; these have the advantage that they can increase performance by
communicating intermediate results—notably, learned clauses—between different
processes. The third problem we study is constructing parallel portfolios from a
set containing both sequential and parallel solvers.

We investigate three methods for solving the ACPP problem.

1. Global simultaneously configures all solvers in a k-solver parallel portfo-

1This paper extends a 2012 workshop publication [38].
2In contrast to parallel algorithm selection systems [54, 55, 56], we do not dynamically

select solvers on a per-instance base but automatically construct a static portfolio.

2

lio, representing this ACPP problem as a single-algorithm configuration
problem with a design space corresponding to the kth Cartesian power of
the design space of the given sequential solver. This has the advantages
of simplicity and comprehensiveness (no candidate portfolios are omitted
from the design space) but the disadvantage that the size of the design
space increases exponentially with k, which quickly produces extremely
difficult configuration problems.

2. Hydra is a method for building portfolio-based algorithm selectors from a
single, highly parameterized solver [72]. It proceeds iteratively. In the first
round, it aims to find a configuration that maximizes overall performance
on the given dataset. In the i+ 1st round, it aims to find a configuration
that maximizes marginal contribution across the configurations identified
in the previous i rounds. In the original version of Hydra, these marginal
contributions were calculated relative to the current selector; in the latest
version of Hydra, they are determined relative to an idealized, perfect
selector [42]. The wall-clock performance of a perfect selector across i
solvers (also known as virtual best solver) is the same as the wall-clock
performance of the same i solvers running in parallel; thus, the same general
idea can be used to build parallel portfolios. (Building a parallel portfolio
in this way has the added advantage that no instance features are required,
since there is no need to select among algorithms.) We introduce some
enhancements to this approach for the parallel portfolio setting (discussed
in Section 3.1.2), and refer to our method as parHydra.

3. Some parallel solvers only achieve strong performance when running on
more than one core; such solvers will not be found by a greedy approach
like parHydra, which only adds one configuration at a time and does
not recognize interaction effects that arise between different threads of a
parallel solver. To overcome this problem, we introduce a new method called
parHydrab, which augments parHydra to train b solvers per iteration.
This method trades off the computational benefit of parHydra’s greedy
approach with the greater coverage of Global.

We evaluated our ACPP methods on SAT. We chose this domain because it
is highly relevant to academia and industry and has been widely studied. We
thus had access to a wide range of strong, highly parametric solvers and were
assured that the bar for demonstrating efficacy of parallelization strategies was
appropriately high. We note that our approach is not limited to SAT solvers
and can be directly applied to other domains. To evaluate our methods in the
single-solver setting, we studied both Lingeling and clasp: prominent, highly
parametric state-of-the-art solvers for SAT. Lingeling won a gold medal in the
application (wall-clock) track of the 2011 SAT Competition and clasp placed
first in the hard combinatorial track of the 2012 SAT Challenge. To evaluate our
methods for generating parallel portfolios involving multiple solvers, we started
with the set of solvers included by pfolioUZK , a parallel portfolio solver based
on several solvers in their default configurations that won the gold medal in the
parallel track of the 2012 SAT Challenge. This set includes Plingeling , a parallel

3

solver.
Our results demonstrate that parHydra transforms single solvers into

parallel portfolios both well and robustly. Its performance on standard 8-core
CPUs compared favourably with that of hand-crafted parallel SAT solvers. For
the generation of parallel algorithm portfolios based on a set of both parallel and
sequential solvers, we found that parHydrab was best among the alternatives we
considered, notably outperforming pfolioUZK . More detailed experimental results
and open-source code are available at http://www.cs.uni-potsdam.de/acpp.

2. Background and Related Work

We now survey related work on parallel SAT solving and algorithm portfolios.

2.1. Background: SAT Solving

The Boolean satisfiability problem (SAT) is to decide whether it is possible to
assign truth values (true, false) to the variables in a given propositional formula
F such that F becomes true. If such an assignment exists, F is called satisfiable,
otherwise F is called unsatisfiable. A complete SAT solver takes as an input a
formula F , typically in conjunctive normal form (a conjunction of disjunctions
of variables and their negations) and determine a satisfiable assignment or prove
that none exists. An incomplete SAT solver can find satisfying assignments, but
not prove unsatisfiability.

Most state-of-the-art complete SAT solvers are based on conflict-driven clause
learning (CDCL; [58]). Their parameters control variable selection for branching
decisions, clause learning and restart techniques. State-of-the-art incomplete
SAT solvers use stochastic local search (SLS; [39]), and their parameters control
the selection of the variable whose value is modified in each local search step as
well as the diversification and additional intensification strategies. Furthermore,
there exist several preprocessing techniques (e.g., [21]) to simplify formulas and
their parameters control how long and how aggressive preprocessing will be used
– too much preprocessing can remove important structural information and hence,
it can increase the hardness of formulas. The efficacy of SAT solvers depends on
multiple heuristic components whose basic functions and the interplay between
them are controlled by parameters. Some parameters are categorical (e.g., choice
between different search strategies in SLS), while many others are integer- or
real-valued (e.g., the damping factor used in computing heuristic variable scores
in CDCL).

Parallel SAT solvers have received increasing attention in recent years.
ManySAT [30, 31, 29] was one of the first parallel SAT solvers. It is a static
portfolio solver that uses clause sharing between its components, each of which
is a manually configured, CDCL-type SAT solver based on MiniSat [22]. Pene-
LoPe [5, 23] is based on ManySAT and adds several policies for importing and
exporting clauses between the threads. Plingeling [12, 13, 14, 15, 16] is based on
a similar design; its version 587, which won a gold medal in the application track
of the 2011 SAT Competition (with respect to wall clock time on SAT+UNSAT

4

instances), and the 2012 version ala, share unit clauses as well as equivalences
between their component solvers. Similarly, CryptoMiniSat [66], which won
silver in the application track of the 2011 SAT Competition, shares unit and
binary clauses. clasp [26] is a state-of-the-art solver for SAT, ASP and PB that
supports parallel multithreading (since version 2.0.0) for search space splitting
and/or competing strategies, both combinable with a portfolio approach. clasp
shares unary, binary and ternary clauses, and (optionally) offers a parameterized
mechanism for distributing and integrating (longer) clauses. Finally, ppfolio [64]
is a simple, static parallel portfolio solver for SAT without clause sharing that
uses CryptoMiniSat , Lingeling , clasp, TNM [70] and march hi [34] in their
default configurations as component solvers, and that won numerous medals
at the 2011 SAT Competition. Like the previously mentioned portfolio solvers
for SAT, ppfolio was constructed manually, but uses a very diverse set of high-
performance solvers as its components. pfolioUZK [71] follows the same idea as
used for ppfolio but uses other component solvers; it won the parallel track of
the 2012 SAT Challenge. On one hand, ACPP can be understood as automati-
cally replicating the (hand-tuned) success of solvers like ManySAT , Plingeling ,
CryptoMiniSat or clasp, which are inherently based on different configurations of
a single parametric solver; on the other, it is also concerned with automatically
producing effective parallel portfolios from multiple solvers, such as ppfolio and
pfolioUZK , while exploiting the rich design spaces of these component solvers.

Katsirelos et al. [47] showed that an effective parallelisation of a CDCL SAT
solver does not merely hinge on picking a good clause sharing strategy, since
it is not straightforward to obtain shorter resolution proofs by parallelisation
without essential changes of the underlying sequential reasoning mechanism. Our
ACPP does not aim at parallelising the resolution proof, but rather runs multiple
algorithms and algorithm configurations in parallel, in order to maximise the
probability that at least one of them finds a short proof quickly.

2.2. Related Work

Well before there was widespread interest in multi-core computing, the
potential benefits offered by parallel algorithm portfolios were identified in
seminal work by Huberman et al. [40]. Their notion of an algorithm portfolio is
inspired by the use of portfolios of assets for risk management in finance and
amounts to running multiple algorithms concurrently and independently on the
same instance of a given problem, until one of them produces a solution. Gomes
et al. [27] further investigated conditions under which such portfolios outperform
their component solvers. Both lines of work considered prominent constraint
programming problems (graph colouring and quasigroup completion), but neither
presented methods for automatically constructing portfolio solvers. Parallel
portfolios have since made practical impact, both in cases where the allocation
of computational resources to algorithms in the portfolio is static [63, 77] and
where the component solvers contained in a portfolio or the resources assigned
to them can change over time [24].

A closely related notion of algorithm portfolios first saw practical application
in this domain as the basis for algorithm selectors such as SATzilla [59, 73] and

5

many conceptually related methods (see, e.g., [49]). In this context, a portfolio
is a set of candidate algorithms for a given problem from which one or more
solvers are selected to be run, based on characteristics of the problem instance
to be solved.

p3S [45, 54] and parCSHC [55, 56] were the first methods to automatically
select a parallel portfolio (in the case of p3S , actually, a parallel algorithm
schedule) from a given set of SAT solvers on a per-instance basis. p3S [54]
is a parallel extension of the sequential algorithm selector 3S [45]. Similar to
the sequential version, p3S uses k-nearest neighbour clustering to determine
the k training instances closest in the feature space to a new instance to be
solved, and computes a per-instance parallel algorithm schedule based on the
runtime data of these instances using Integer Linear Programming (ILP; [62, 65]).
In contrast to our ACPP method, which trains the portfolio offline, the ILP
problem within p3S has to be solved online for each new instance to determine
a well-performing parallel portfolio. This quickly becomes very time-consuming
as the number of available solvers grows and as more CPU cores are considered.
parCSHC was specially designed for the SAT Competition. It always statically
and independently runs 4 threads of the parallel SAT solver Plingeling , 1 thread
of the sequential SAT solver CCASat, and three solvers selected on a per-
instance basis. These latter solvers are selected by models that are trained on
application, hard-combinatorial and random SAT instances, respectively. Other
approaches to the per-instance selection of parallel portfolios that have emerged
since our own are sunny-cp2 [2], which selects a parallel algorithm schedule, and
claspfolio 2 [52], which implements several extensions of sequential algorithm
selectors to select a parallel portfolio.

One thing that all of these methods have in common—whether parallel,
selection-based or both—is that they build a portfolio from a relatively small
candidate set of distinct algorithms. While, in principle, these methods could also
be applied given a set of algorithms expressed implicitly as the configurations
of one parametric solver, in practice, they are useful only when the set of
candidates is relatively small. The same limitation applies to existing approaches
that combine algorithm selection and scheduling, notably CPHydra [61], which
also relies on cheaply computable features of the problem instances to be solved
and selects multiple solvers to be run in parallel. Two further, conceptually
related approaches are aspeed [36] and MIPSAT [60], which compute (parallel)
algorithm schedules by taking advantage of the modelling and solving capacities
of Answer Set Programming (ASP [10, 25]) and Mixed Integer Programming
(MIP; [62, 65]), respectively.

Recently, automatic algorithm configuration has become increasingly effec-
tive, with the advent of high-performance methods such as ParamILS [43],
GGA [3], irace [53] and SMAC [41]. As a result, there has been recent interest
in automatically identifying useful portfolios of configurations from large algo-
rithm design spaces. As before, such portfolio-construction techniques were first
demonstrated to be practical in the case of portfolio-based algorithm selectors.
We have already discussed one key method for solving this problem: Hydra [72],
which greedily constructs a portfolio by configuring solvers iteratively, changing

6

the configurator’s objective function at each iteration to direct it to maximize
marginal contribution to the portfolio. Another key method is ISAC [46], which
clusters instances based on features and runs the configurator separately for
each cluster. Malitsky et al. [57] extended ISAC ’s scope to the construction of
portfolios from a set of different solvers. However, there are three differences
between the construction of sequential portfolios and of static parallel portfolios.

1. Whereas we know how many algorithms we need for a parallel portfolio
when running exactly one solver per processor core (i.e., the size of the
portfolio is limited to the number of processor cores available), the potential
size of the portfolio is unlimited in the sequential case, since we may not
select all solvers to run.

2. A sequential portfolio solver must somehow select component solvers (which
can result in making the wrong decision), while static parallel solvers run
the entire portfolio in parallel and thus achieve nearly the same performance
as the portfolio’s virtual best solver. We note that both approaches are
bounded by the performance of the virtual best solver.

3. Using several cores in parallel introduces overhead which should be consid-
ered in the configuration process.

3. Parallel Portfolio Configuration from a Single Sequential Solver

We begin by considering the problem of automatically producing a parallel
portfolio solver from a single, highly-parametric sequential solver; this closely
resembles the problem (manually) addressed by the developers of solvers like
ManySAT , Plingeling , CryptoMiniSat and clasp. First, we define our three
ACPP methods. Next, we illustrate the performance of our ACPP portfolio
solvers based on Lingeling and clasp and analyze the empirical scalability of
our trained ACPP solvers. Finally, in the case where clause sharing is in the
design space of the component solvers, we extend our ACPP solvers with clause
sharing and investigate how much further performance can be achieved by this
extension.

3.1. Approach

We now describe three methods for automatically constructing parallel portfo-
lios from a single parametric solver. We use C to denote the configuration space
of our parametric solver, c ∈ C to represent individual configurations, and I to
refer to the given set of problem instances. Our goal is to optimize (without loss
of generality, to minimize) performance according to a given metric m. (In our
experiments, we minimize penalized average runtime, PAR10.3) We use a k-tuple
c1:k = (c1, . . . , ck) to denote a parallel portfolio with k component solvers. The

parallel portfolio’s full configuration space is Ck =
∏k

l=1{(c) | c ∈ C}, where the
product of two configuration spaces X and Y is defined as {x||y | x ∈ X, y ∈ Y },

3PARX penalizes each timeout with X times the given cutoff time [43].

7

Algorithm 1: Portfolio Configuration Procedure Global

Input : parametric solver with configuration space C; desired number k
of component solvers; instance set I; performance metric m;
configurator AC; number n of independent configurator runs;
total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k

1 for j := 1 . . . n do

2 obtain portfolio c
(j)
1:k by running AC on configuration space∏k

l=1{(c) | c ∈ C} on I using m for time t/n

3 choose ĉ1:k ∈ arg min
c
(j)
1:k|j∈{1...n}

m(c
(j)
1:k, I) that achieved best

performance on I according to m
4 return ĉ1:k

with x||y denoting the concatenation (rather than nesting) of tuples. Let AC
denote a generic algorithm configuration procedure; in our experiments, we used
SMAC [41]. Following established best practices (see [41]), we performed n
independent runs of AC, obtained configured solvers c(j) with j ∈ {1 . . . n} and
retained the configured solver ĉ which achieved the best performance on instance
set I according to metric m. By t we denote the overall time budget available
for producing a parallel portfolio solver.

3.1.1. Simultaneous configuration of all component solvers (Global)

Our first portfolio configuration method is the straightforward extension of
standard algorithm configuration to the construction of a parallel portfolio (see
Algorithm 1). Specifically, if the given solver has ` parameters, we treat the
portfolio c1:k as a single algorithm with ` · k parameters inducing a configuration
space of size |C|k, and configure it directly. As noted above, we identify a single
configuration as the best of n independent runs of AC. These runs can be
performed in parallel, meaning that this procedure requires wall clock time t/n
if n machines – one for each AC run – with k cores are available. The used
CPU time will be the given time budget t for Lines 1 and 2 in Algorithm 1 and
some small overhead ε to choose the best portfolio in Line 3. The scalability
of this approach is limited by the fact that the global configuration space Ck

to which AC is applied grows exponentially with k. However, given a powerful
configurator, a moderate value of k and a reasonably sized C, this simple
approach can be effective, especially when compared to manual parallel portfolio
construction.

3.1.2. Iterative configuration of component solvers (parHydra)

The key problem with Global is that Ck may be so large that AC cannot
effectively search it. We thus consider an extension of the Hydra methodology to
the ACPP problem, which we dub parHydra (see Algorithm 2). This method
has the advantage that it adds and configures component solvers one at a time.

8

Algorithm 2: Portfolio Configuration Procedure parHydra

Input : parametric solver with configuration space C; desired number k
of component solvers; instance set I; performance metric m;
configurator AC; number n of independent configurator runs;
total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k

1 for i := 1 . . . k do
2 for j := 1 . . . n do

3 obtain portfolio c
(j)
1:i := ĉ1:i−1||c(j) by running AC on configuration

space {ĉ1:i−1} × {(c) | c ∈ C} and initial incumbent ĉ1:i−1||cinit on
I using m for time t/(k · n)

4 let ĉ1:i ∈ arg min
c
(j)
1:i |j∈{1...n}

m(c
(j)
1:i , I) be the configuration which

achieved best performance on I according to m
5 let cinit ∈ arg minc(j)|j∈{1...n}m(ĉ1:i||c(j), I) be the configuration that

has the largest marginal contribution to ĉ1:i

6 return ĉ1:k

The key idea is to use AC only to configure the component solver added in the
given iteration, leaving all other components clamped to the configurations that
were determined for them in previous iterations. The procedure is greedy in the
sense that in each iteration i, it attempts to add a component solver to the given
portfolio ĉ1:i−1 in a way that myopically optimizes the performance of the new
portfolio ĉ1:i (Line 4). While the sets of n independent configurator runs in Line 2
can be performed in parallel (as in Global), the choice of the best-performing
configuration ĉ1:i must be made after each iteration i, introducing a modest
overhead compared to the cost of the actual configuration runs.

A disadvantage of the original Hydra approach is that it discards any in-
termediate results learned during configuration when it proceeds to the next
iteration. In particular, configurations that were examined but not selected
may turn out to be useful later on. We thus introduce a new idea here—which,
indeed, can also be applied to the construction of portfolio-based algorithm
selectors—as follows. We identify the unselected configuration c(j) 6= ĉi:i with
the best marginal contribution to the current portfolio ĉ1:i (Line 5), and use it
to initialize the configuration procedure in the next iteration (Line 3). This idea
helps when using different initial configurations in each iteration more quickly
guides the configuration procedure to complementary parts of the configuration
space.

Another way that parHydra differs from the original Hydra methodology is
that it runs entire portfolios on each instance considered during configuration.
Because we target multicore machines, we consider these computational resources
to be available without cost. While Hydra explicitly modifies the performance
metric in each round, parHydra thus achieves the same modification implicitly,
optimizing marginal contribution to the existing portfolio because only the ith

9

wall clock time CPU time

Global t/n+ ε t+ n · k · ε
parHydra t/n+ k · ε

∑k
i=1 i · (

t
k + n · ε)

Table 1: Required wall clock time and CPU time of Global and parHydra for a configuration
budget t, desired number k of component solvers, n algorithm configurator runs, n · k available
CPU cores, and a small overhead ε for evaluating the performance of a parallel portfolio.

element of the portfolio is available to be configured in the ith iteration. Because
parHydra only runs portfolios of size i in iteration i, if there is a cost to CPU
cycles, we achieve some savings relative to Global in iterations i < k. If the
overhead for the evaluation of the portfolios after each iteration is bounded by
ε, the CPU cycles used in parHydra are bounded by

∑k
i=1 i · (

t
k + n · ε) as

compared to t+ n · k · ε for Global. If k > 1 and t
k > ε, parHydra will use

fewer CPU cycles than Global. This is particularly important if ACPP is
used on commercial cloud infrastructure, where saving CPU cycles means saving
money. Table 1 gives an overview about the required wall clock time and CPU
time for Global and parHydra.

Obviously, for k > 1, even if we assume that AC finds optimal configurations
in each iteration, the parHydra procedure is not guaranteed to find a globally
optimal portfolio. For instance, since the configuration found in the first iteration
will be optimized to perform well on average on all instances I, the configuration
added in the second iteration will then specialize to some subset of I. A
combination of two configurations that are both specialized to different sets
of instances may perform better; however, the configuration tasks in each
parHydra iteration will be much easier than those performed by Global for
even a moderately sized portfolio, giving us reason to hope that under realistic
conditions, parHydra might perform better than Global, especially for large
configuration spaces C and for comparatively modest time budgets t.

3.1.3. Independent configuration of component solvers (Clustering)

We also investigated adapting the ISAC approach [46, 57] to the ACPP
setting. Specifically, we identified clusters in a space of instance features, ran a
configurator to identify a configuration that performed well on each cluster, and
combined these configurations into a parallel portfolio. However, our experiments
(see on-line Appendix A) showed that this approach achieved consistently worse
performance than Global and parHydra. In particular, we identified two
main issues. First, normalization of instance features was very important; we
struggled to determine a way of normalizing that produced good clusterings across
different solvers. Second, we did not consistently observe that clusters of instances
that were distinct in feature space necessarily led to solver configurations with
complementary performance (which, obviously, is necessary for good performance
in the ACPP setting). Thus, we do not further consider this approach in what
follows.

10

3.2. Experiments

To empirically evaluate our methods for solving the ACPP problem, we
applied Global and parHydra to two state-of-the-art SAT solvers: clasp
and Lingeling . Specifically, we compared our automatically configured parallel
portfolios alongside performance-optimized sequential solvers, running on eight
processor cores. Furthermore, we investigated the scalability of parHydra
by assessing the performance of our portfolio after each iteration, thereby also
assessing the slowdown observed for increasing number of component solvers
due to hardware bottlenecks. Finally, we integrated our configured portfolio
based on clasp into clasp’s flexible multithreading architecture and configured
the clause sharing policy to investigate the influence of clause sharing on our
trained ACPP solvers.

3.2.1. Scenarios

We compared six evaluation scenarios for each solver. We denote the default
configuration of a single-process solver as Default-SP and that of a multi-
process solver with 8 processes and without clause sharing as Default-MP(8);
Default-MP(8)+CS denotes the additional use of clause sharing, which is acti-
vated by default in both Plingeling and clasp. We contrasted these solver versions
with three versions obtained using automated configuration: Configured-SP
denotes the best (single-process) configuration obtained from configurator runs
on a given training set, while Global-MP(8) and parHydra-MP(8) repre-
sent the 8-component portfolios obtained using our Global and parHydra
methods. We chose this portfolio size to reflect widely available multi-core hard-
ware, as used, for example, in the 2013 SAT Competition and also supported
by the Amazon EC2 cloud (CC2 instances). We note that our approach is not
inherently limited to eight cores and can be expected to scale to higher degrees
of parallelism as long as sufficiently many complementary configurations can be
found in the given design space.

3.2.2. Solvers

We applied our approach to the SAT solvers clasp version 2.1.3 [26] and
Lingeling version ala [14]. We chose these two solvers because they were demon-
strated to achieve state-of-the-art performance on combinatorial and industrial
SAT instances in the 2012 SAT Challenge and therefore, represent an appropri-
ately high bar for demonstrating the efficacy of our ACPP approach. Furthermore,
both solvers are suitable for ACPP because they are highly parameterized; clasp
has 81 parameters and Lingeling has 118. Hence, the configuration space for 8
processes has 648 parameters for clasp and 944 parameters for Lingeling.

We ruled out from our study other state-of-the-art parameterized solvers like
glucose that have no parallelized counterpart for comparison with our automat-
ically constructed solvers. We did not study Plingeling , the “official” parallel
version of Lingeling , because it lacks configurable parameters for individual
threads. We also disregarded the native parallel version of clasp, because clasp’s
clause sharing mechanism, which cannot be turned off, results in highly non-
deterministic runtime behaviour, rendering the configuration process much more

11

difficult. Instead, we investigated the impact of clause sharing in a separate
experiment. We executed all automatically constructed parallel portfolios via a
simple wrapper script that runs a given number of solver instances independently
in parallel and without communication between the component solvers.

3.2.3. Instance Sets

We conducted our experiments on instances from the application and hard
combinatorial tracks of the 2012 SAT Challenge. Our configuration experiments
made use of disjoint training and test sets, which we obtained by randomly
splitting both instance sets into subsets with 300 instances each.4

To ensure that our experiments would complete within a feasible amount of
time, we made use of an instance selection technique [37] on our training set to
obtain a representative and effectively solvable subset of 100 instances for use
with a runtime cutoff time of 180 seconds. We did this by (i) removing instances
that we judged too easy and too hard from the instance set, (ii) clustering the
instances in the feature space, and (iii) subsampling the instance set to ensure
approximately equal coverage of the different clusters and normally distributed
runtimes. As a reference for the selection process, we used the base features of
SATzilla [73] and employed SINN [76], Lingeling [14], glucose [6], clasp [26] and
CCASat [18] as representative set of state-of-the-art solvers, following [37].

3.2.4. Resource Limits and Hardware

We chose a cutoff time of 180 seconds for algorithm configuration on the
training set and 900 seconds for evaluating solvers on the test set (as in the
2012 SAT Challenge). Additionally, we performed three repetitions of each
solver and test instance run and report the median of those three runs. We
restricted all solver runs (on both training and test sets) to use at most 12 GB
of memory (as in the 2012 SAT Challenge). If a solver terminated because of
memory limitations, we recorded it as a timeout. We performed all solver and
configurator runs on Dell PowerEdge R610 systems with 48GB RAM and two
Intel Xeon E5520 CPUs with four cores each (2.26GHz and 8MB Cache), running
64-bit Scientific Linux (2.6.18-348.6.1.el5).

3.2.5. Configuration Experiments

We performed configuration using SMAC (version 2.04.01) [41], a state-of-
the-art algorithm configurator. SMAC allows the user to specify the initial
incumbent, as required in the context of our parHydra approach (see Lines 2
and 5 of Algorithm 2). We specified PAR10 as our performance metric, and gave
SMAC access to the base features of SATzilla [73]. (SMAC builds performance
models internally; it can operate without instance features, but often performs

4A random split into training and test set is often used in machine learning to obtain
unbiased performance estimates. However, such a simple split has a higher variance in its
performance estimation than using a cross validation. Because of the large amount of CPU
resources needed for our experiments, we could not afford to measure the performance of our
ACPP methods on more splits, for example, based on cross validation.

12

Lingeling (application) clasp (hard combinatorial)

Solver Set #TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
Configured-SP 68 2204 368 140 4253 473

Default-MP(8) 64 2073 345 96 2950 358
Default-MP(8)+CS 53∗ 1730∗ 299∗ 90∗ 2763∗ 333∗

Global-MP(8) 52∗ 1702∗ 298∗ 98 3011 365
parHydra-MP(8) 55∗† 1788∗† 303∗† 96∗† 2945∗† 353∗†

Table 2: Runtime statistics on the test set from application and hard combinatorial SAT
instances achieved by single-processor (SP) and 8-processor (MP8) versions. Default-MP(8)
was Plingeling in case of Lingeling and clasp -t 8 for clasp where both use clause sharing (CS).
The performance of a solver is shown in boldface if it was not significantly different from
the best performance, and is marked with an asterisk (∗) if it was not significantly worse
than Default-MP(8)+CS (according to a permutation test with 100 000 permutations and
significance level α = 0.05). The best ACPP portfolio on the training set is marked with a
dagger (†).

better when they are available.) To enable fair performance comparisons, in the
case of Configured-SP (n = 80) and Global-MP(8) (n = 10) we allowed
80 hours of configuration time and 2 hours of validation time to determine the
best-performing portfolio on the training instances from our 10 independent
configuration runs, which amounts to a total of 6560 CPU hours for k = 8. For
parHydra-MP(8), we allowed for 10 hours of configuration time and 2 hours of
validation time (ε) per configurator run (n = 10) in each iteration, amounting to
a total of 3360 CPU hours (see Section 3.1.2). When using a cluster of dedicated
machines with 8-core CPUs, each of these solver versions could be produced
within 96 hours of wall-clock time.

3.2.6. Results and Interpretation

To evaluate our ACPP solvers, we present the number of timeouts (#TOs),
PAR10 and PAR1 based on the median performance of the three repeated runs
for each solver–test instance pair in Table 2. The best ACPP portfolio on the
training set is marked with a dagger (†) to indicate that we would have chosen this
portfolio if we had to make a choice only based on training data. Furthermore,
we applied a statistical test (a permutation test with 100 000 permutations and
significance level α = 0.05) to the (0/1) timeout scores, the PAR10 scores and
the PAR1 scores to determine whether performance differences between the
solvers were significant. In Table 2, performance of a given solver is indicated
in bold face if it was not significantly different from the performance of the
best solver. We use an asterisk (∗) to indicate that a given solver’s performance
was not significantly worse than the performance of Default-MP(8)+CS—the
official parallel solver with clause sharing produced by experts.

Table 2 summarizes the results of our experiments with Lingeling and
clasp. Running a configurator to obtain an improved, single-processor solver
(Configured-SP) made a statistically insignificant impact on performance.

13

We thus believe that these default configurations are nearly optimal, reflecting
the status of Lingeling and clasp as state-of-the-art solvers. With Lingeling
as the component solver, Global-MP(8) produced the best-performing port-
folio. There was no significant difference on any of these scores between
parHydra-MP(8), Global-MP(8) and Default-MP(8)+CS. However,
the portfolio performance of Default-MP(8) (Plingeling with deactivated
clause sharing) was significantly worse than the performance of all other parallel
portfolios and not even significantly better than Configured-SP in terms of
timeout scores or PAR10 scores. Note that Plingeling (without clause sharing)
builds a parallel portfolio only in a degenerate sense, simply using different
random seeds and thus making different choices in the default phase [14]. Hence,
it is not surprising that Plingeling without clause sharing performed significantly
worse than Plingeling with clause sharing.

With clasp as the component solver, the portfolio constructed by parHydra-MP(8)
was the best ACPP solver and matched (up to statistically insignificant dif-
ferences) the performance of Default-MP(8)+CS (the expert-constructed
portfolio solver with clause sharing) according to all metrics we considered,
despite incurring six more timeouts. All other ACPP solvers fell short of this
(high) bar; however, the portfolios of Global-MP(8) performed as well as
the default portfolio of clasp without clause sharing (Default-MP(8)). All
parallel solvers significantly outperformed the single-threaded versions of clasp.

Overall, parHydra-MP(8) was the only ACPP solver that matched the
performance of Default-MP(8)+CS on both domains. parHydra-MP(8)’s
portfolio had also the best training performance and therefore, out of the
ACPP solvers, we would choose it. However, while Default-MP(8)+CS uses
clause sharing, parHydra-MP(8) does not. This is surprising, because the
performance of Plingeling and clasp without clause sharing was significantly worse
than with clause sharing. Thus, parHydra-MP(8) was the best performing
method among those that did not perform clause sharing.

3.2.7. Scalability and Overhead

Although 8-core machines have become fairly common, 4-core machines are
still more commonly used as desktop computers. Furthermore, Asin et al. [4]
observed that parallel portfolios scale sublinearly in the number of cores—in part,
because component solvers share the same CPU cache. Therefore, we investigated
how the performance of our automatically constructed portfolios scaled with the
number of processors. The parHydra approach has the advantage that the
portfolio is extended by one configuration at each iteration, making it easy to
perform such scaling analysis.

Table 3 shows the test-set performance of parHydra-MP(i) after each iter-
ation. First of all, parHydra-MP(1) was able to find a better performing con-
figuration than Default-SP for clasp. In contrast, parHydra-MP(1) found
a poorly performing configuration for Lingeling in comparison to Default-SP,
and had to compensate in subsequent iterations. For both solvers, the largest
performance improvement occurred between the first and second iterations, with
the number of timeouts reduced by 17 for Lingeling and 18 for clasp. In later

14

Lingeling (application) clasp (hard combinatorial)

Solver #TOs PAR10 PAR1 #TOs PAR10 PAR1

Default-SP 72 2317 373 137 4180 481
parHydra-MP(1) 82 2594 380 136 4136 464
parHydra-MP(2) 65 2086 331 118 3607 421
parHydra-MP(3) 60 1933 313 115 3515 410
parHydra-MP(4) 56 1874 308 115 3507 402
parHydra-MP(5) 58 1878 312 105 3219 384
parHydra-MP(6) 60 1935 315 103 3161 380
parHydra-MP(7) 59 1902 309 102 3126 372
parHydra-MP(8) 55 1788 303 96 2945 353

Table 3: Runtime statistics of parHydra-MP(i) after each iteration i (test set). The per-
formance of a solver is shown in boldface if it was not significantly different from the best
performance, (according to a permutation test with 100 000 permutations and significance
level α = 0.05).

iterations, performance can stagnate or even drop: e.g., parHydra-MP(5)
solves two more instances than parHydra-MP(6) with Lingeling . This may
in part reflect hardware limitations: as the size of a portfolio increases, more
processes compete for fixed memory (particularly, cache) resources.

We investigated the influence of these hardware limitations on the performance
of our parallel solvers by constructing portfolios consisting of identical copies of
the same solver. In particular, we replicated the same configuration multiple
times with the same random seed; clearly, this setup should result in worsening
performance as portfolio size increases, because each component solver does
exactly the same work but shares hardware resources. (We note that these
experiments are particularly sensitive to the underlying hardware we used.) To
compare directly against Table 3, we used the configurations found in the first
iteration of parHydra-MP(1). In Table 4, we see that hardware limitations
did seem to impact the portfolio of Lingeling solvers; e.g., a single Lingeling
configuration solved 10 more instances than eight such configurations running in
parallel on an eight-core machine. In contrast, the performance of clasp varied
only slightly as duplicate solvers were added. Based on the results in [1], we
suspected that this overhead arose because of memory issues, noting that we
evaluated clasp on hard combinatorial instances with an average size of 1.4 MB
each, whereas we evaluated Lingeling on application instances with an average
size of 36.7 MB. We confirmed that clasp’s portfolio also did experience overhead
on instances with large memory consumption, and that Lingeling produced
nearly no overhead on instances with low memory consumption.

An interesting further observation is that Lingeling and clasp performed best
if two copies of the same configuration ran in parallel, and that running only
one copy was worse than two copies. We speculate that this is caused by cache
effects known to affect multi-core computations with more than one CPU. For
example, the operating system may move a solver from one CPU to another,
which may result in the loss of data in the CPU cache. However, if two solvers
run on two CPUs, the operating system might run each of them on its own CPU

15

Lingeling (application) clasp (hard combinatorial)

Processes #TOs PAR10 PAR1 #TOs PAR10 PAR1

1 82 2594 380 136 4136 464
2 79 2509 376 134 4079 461
3 79 2509 376 135 4106 451
4 85 2677 382 135 4107 452
5 86 2707 385 135 4108 463
6 89 2793 390 135 4110 465
7 90 2820 390 135 4110 465
8 92 2877 393 136 4139 467

Table 4: Runtime statistics of Lingeling and clasp with parallel runs of the same configuration
on all instances in the corresponding test sets. The performance of a solver is shown in boldface
if it was not significantly different from the best performance (according to a permutation test
with 100 000 permutations and significance level α = 0.05).

without moving them.

3.2.8. Algorithm Configuration of Clause Sharing

Our previous experiments did not allow our component solvers to share
clauses, despite evidence from the literature that this can be very helpful [31].
The implementation of clause sharing is a challenging task; for example, if too
many clauses are shared, the overhead caused by clause sharing may exceed the
benefits [50]. Furthermore, the best clause sharing policy varies across instance
sets and it is a tedious and time-consuming task to manually determine an
effective clause sharing policy. A combination of ACPP and clause sharing will not
completely compensate for human efforts to implement effective clause sharing,
but ACPP can help developers to automatically determine well-performing clause
sharing policies. In the following, we investigate the application of clause sharing
to our ACPP portfolio. Since there are many possible clause sharing policies, we
used algorithm configuration to identify effective clause sharing policies. This
can be understood as an additional instrument for improving the performance
of ACPP portfolios in cases where clause sharing is available.

To study the impact of clause sharing on our ACPP procedures, we relied
upon the clause sharing infrastructure provided by clasp [26], which has a
relatively highly parametrized clause sharing policy (10 parameters) and allows
for the configuration of each component solver. Plingeling , on the other hand,
does not support the configuration of each component solver. As before, we
considered the hard combinatorial instance set.

We started with the portfolio identified by parHydra-MP(8). clasp’s multi-
threading architecture performs preprocessing before threading is used. Hence,
we ignored the preprocessing parameters identified in the parHydra-MP(8)
portfolio, adding them again to the configuration space as global parameters.
Since the communication of clause sharing induces greater variation in solving
behaviour, we used 50 CPU hours as the configurator’s time budget.

Table 5 shows the performance of clasp’s default portfolio with clause sharing,
Default-MP(8)+CS; the portfolio originally returned by parHydra, which

16

clasp variant #TOs PAR10 PAR1

Default-MP(8) 96 2950 358
Default-MP(8)+CS 90 2763 333

parHydra-MP(8) 96 2945 353
parHydra-MP(8)+defCS 90 2777 347
parHydra-MP(8)+confCS 88 2722 346

Table 5: Runtime statistics of clasp’s parHydra-MP(8) portfolio with default clause sharing
(defCS) and configured clause sharing (confCS) on the test instances of the hard combinatorial
set. The performance of a solver is shown in boldface if its performance was at least as good as
that of any other solver, up to statistically insignificant differences (according to a permutation
test with 100 000 permutations and significance level α = 0.05).

does not perform clause sharing, parHydra-MP(8); the application of clasp’s
default clause sharing and preprocessing settings to the original parHydra port-
folio, parHydra-MP(8)+defCS; and the parHydra portfolio with newly con-
figured clause sharing and preprocessing settings, parHydra-MP(8)+confCS.
As confirmed by these results, the use of clause sharing led to significant perfor-
mance gains; furthermore, while the additional gains through configuring the
clause sharing and preprocessing mechanisms were too small to reach statis-
tical significance, parHydra-MP(8)+confCS solved two more instances than
Default-MP(8)+CS and parHydra-MP(8)+defCS.

We note that there is potential for performance to be improved even further if
clause sharing were configured alongside the portfolio itself. For example, clasp’s
default portfolio contains configurations that are unlikely to solve instances
directly, but that generate useful clauses for other clasp instances.5 Clearly, our
methodology for configuring clause sharing will not identify such configurations.
Configuration of clause sharing can be directly integrated in Global and
parHydra by adding the corresponding parameters to the configuration space,
because the solvers actually run in parallel. However, since clasp with clause
sharing is highly non-deterministic, the configuration process would require a
larger time budget for constructing the portfolio. In a similar vein, some results
in the literature indicate that the collaboration of SAT solvers via clause sharing
performs better if the solvers use similar strategies, e.g., the same solver with
a fixed configuration runs several times in parallel but with different seed (cf.
Plingeling). If the configuration of the portfolio is performed alongside the
configuration of the clause sharing policy, such homogeneous portfolios would
also belong to the configuration space of our ACPP methods. We plan to
investigate other approaches in future work.

3.2.9. Conclusion

Given a solver with a rich design space (such as Lingeling and clasp), all our
ACPP methods were able to generate 8-core parallel solvers that significantly

5Personal communication with the main developer of clasp, Benjamin Kaufmann.

17

outperformed their sequential counterparts. We have thus demonstrated that
our ACPP methods are able to automatically build parallel portfolio solvers,
without the need for costly, hand-crafted parallel implementations. However,
our scalability analysis indicates that hardware restrictions lead to substantial
overhead as more processor cores are used, and the scalability of our ACPP
methods depends on the richness of the given sequential solver’s design spaces
and the existence of complementary designs within these spaces. We were also
able to verify that clause sharing can be used to further improve the performance
of an ACPP solver, especially when configuration is performed alongside the
component solver instances.

4. Parallel Portfolio Configuration with Multiple Sequential Solvers

So far, we have shown that our procedures were able to construct effective
parallel portfolios based on single solvers with rich design spaces. There is
considerable evidence from the literature and from SAT competitions that strong
portfolios can also be built by combining entirely different solvers in their
default configurations (see, e.g., SATzilla [73], ppfolio [64] and pfolioUZK [71]).
For instance, ppfolio was obtained simply by combining the best solvers from
the previous competition into a parallel portfolio. pfolioUZK included more
state-of-the-art solvers from 2011 and relied on additional experiments to find
the best combination of solvers in a portfolio. Neither portfolio considers the
configuration space of the component solvers and therefore both can be seen as
simple baselines for other parallelization approaches, including ours. However,
ppfolio and pfolioUZK use Plingeling as a portfolio component. Since we aim
to investigate the strength of our ACPP methods without additional human
expert knowledge on parallel solving, we first consider only sequential solvers
as the basis for our ACPP approach. This section and the following section
investigates the extension of our automatic techniques to the construction of
portfolios based on the configuration spaces spanned by such solver sets.

4.1. Approach

As long as all of our component solvers are sequential, we can simply use the
ACPP procedures defined in Section 3. We can accommodate the multi-solver
setting by introducing a solver choice parameter for each portfolio component
(see Figure 1), and ensuring that the parameters of solver a ∈ A are only active
when the solver choice parameter is set to use a. This is implemented by using
conditional parameters (see the PCS format of the Algorithm Configuration
Library [44]). Similar architectures were used by SATenstein [48] and Auto-
WEKA [67].

We have so far aimed to create portfolios with size equal to the number of
available processor cores. But as observed in Section 3.2.7, each component solver
used within a parallel portfolio incurs some overhead. A similar observation was
made by the developer of pfolioUZK (personal communication) and prompted
the decision for pfolioUZK to use only 7 components on an 8-core platform.

18

for each portfolio component

solver choice parameter

Lingeling

glucose
clasp

. . .

Figure 1: Using a solver choice parameter, we can specify a single configuration space that
spans multiple solvers.

To allow our portfolios to make the same choice, we included “none” as one of
choices available for each portfolio component.

4.2. Experiments

While we would presumably have obtained the strongest parallel solver by
allowing our portfolio to include a very wide range of modern SAT solvers,
this would have made it difficult to answer the question how our automated
methods compare to human expertise in terms of the performance of the parallel
portfolios thus obtained. In particular, we were interested in pfolioUZK [71],
a parallel solver that won the parallel track of the 2012 SAT Challenge with
application instances. To compare our automatic methods with the manual efforts
of pfolioUZK ’s authors, we thus chose the same set of solvers they considered as
the basis for our experiments.

4.2.1. Solvers

pfolioUZK uses satUZK , Lingeling , TNM , and MPhaseSAT M on the same
core in its sequential version (Default-SP) and uses satUZK , glucose, con-
trasat and Plingeling with 4 threads and clause sharing in its 8-process parallel
version (Default-MP(8)+CS). In all cases, solvers are used in their default
configurations. However, in designing pfolioUZK [71], Wotzlaw et al. considered
the following, larger set of component solvers:

• contrasat [69]: 15 parameters

• glucose 2.0 [6]: 10 parameters for satelite preprocessing and 6 for glucose

• Lingeling 587 [13]: 117 parameters

• march hi 2009 [34]: 0 parameters

• MPhaseSAT M [19]: 0 parameters

• satUZK [28]: 1 parameter

19

8-Processor Parallel Solver #TOs PAR10 PAR1

pfolioUZK -ST 150 4656 606
pfolioUZK -MP(8)+CS 35 1168 223

Global-MP(8)(pfolioUZK w/o Plingeling) 44 1463 275
parHydra-MP(8)(pfolioUZK w/o Plingeling) 39† 1297† 244†

Table 6: Runtime statistics for 8-processor parallel solvers on the application test set. The
performance of a solver is shown in boldface if it was not significantly different from the best
performance (according to a permutation test with 100 000 permutations at significance level
α = 0.05). The best ACPP portfolio on the training set is marked with a dagger (†).

• sparrow2011 [68]: 0 parameters6

• TNM [51]: 0 parameters

Overall, the configuration space we considered has 150 parameters for each
portfolio component (including the top-level parameter used to select a solver),
and thus 1200 parameters for an 8-component parallel portfolio.

4.2.2. Instances and Setup

We evaluated pfolioUZK as well as our Global and parHydra approaches
on the same 300 application test instances of the 2012 SAT Challenge as used
before. Otherwise, our experimental setup was as described in Section 3.2.

4.2.3. Results and Interpretation

The first part of Table 6 shows the results of pfolioUZK in its sequential and
parallel versions. Recall that pfolioUZK uses Plingeling with clause sharing as a
component solver. Sequential pfolioUZK experienced 115 more timeouts than
its parallel version; indeed, it was only ranked 16th in the sequential application
track of the 2012 SAT Challenge.

The second part of Table 6 summarizes the performance of our ACPP solvers
(which do not use Plingeling as a component solver). parHydra-MP(8) per-
formed best; indeed, there was no significant difference between parHydra-MP(8)
and pfolioUZK -MP(8) in terms of timeout and PAR10 scores. This indicates
that our ACPP approach was indeed able to match the performance of parallel
portfolios manually constructed by experts, even with the disadvantage of being
prohibited from using Plingeling and thus clause sharing. Global-MP(8) per-
formed significantly worse than pfolioUZK -MP(8), but not significantly worse
than parHydra-MP(8) in terms of timeout and PAR10 scores.

Although we allowed our portfolio-building procedures to choose “none” for
any component solver, this option was never selected.

6Although sparrow2011 should be parameterized [68], the source code and binary provided
with pfolioUZK does not expose any parameters.

20

4.2.4. Conclusion

We have demonstrated that by exploiting the configuration spaces of a set of
complementary solvers, even-better-performing ACPP solvers can be obtained,
compared to those constructed from a single parametric SAT solver such as
Lingeling (compare Table 2 and Table 6). To produce such an ACPP solver, we
did not need to modify our ACPP methods, but instead used conditionals in our
configuration space to distinguish between the design spaces of the individual
solvers. Although we did not use parallel solvers with clause sharing (such as
Plingeling) in our portfolio, our parHydra method was able to generate a
parallel solver without clause sharing that nevertheless performed as well as
pfolioUZK .

5. Parallel Portfolio Configuration with Multiple Sequential and Par-
allel Solvers

Our results reported in Section 3.2.8 confirm the intuition that clause sharing
is an important ingredient of high-performance parallel solvers. This section
extends the scope of our ACPP methods to allow inclusion of parallel solvers
that perform clause sharing as portfolio components. This way, we combine our
automatic methods with the human expert knowledge inherent in existing clause
sharing mechanisms to boost performance even further.

5.1. Approach: parHydrab

To add parallel solvers as components in our ACPP approach, we consider
each of them by adding multiple copies of the same solver, where each copy
represents one thread of the parallel solver. Thereby, we mark parameters that
have to be joined to be used across different cores; for example, the number of
threads of a parallel solver. In contrast to other approaches that use scheduling
(e.g., [54]), we do not have to decide on which core a solver runs, but only how
many cores it will utilize.

The parHydra approach has a drawback when used to configure parallel
SAT solvers. This can be seen when considering the solvers Lingeling and
Plingeling . First of all, the components of Plingeling are not parameterized,
and we can only choose the number of threads it is assigned. If the portfolio
can also consist of configured versions of Lingeling , which subsumes single-core
Plingeling , and the configurator is run for long enough, there is no reason for
the parHydra approach to choose Plingeling as a component, unless Plingeling
already belongs to the previous iteration’s portfolio (in which case the benefits
of clause sharing can make themselves felt). Obviously then, an argument by
induction shows that Plingeling will never be preferred by parHydra, revealing
a disadvantage of its greedy optimization strategy. In contrast, Global does
not have this problem, but has difficulties dealing with the large configuration
space encountered here.

To overcome both of these limitations and effectively interpolate between
parHydra and Global, we introduce a new approach, which we call parHydrab

21

Algorithm 3: Portfolio Configuration Procedure parHydrab

Input : set of parametric solvers a ∈ A with configuration space Ca;
desired number k of component solvers; number b of component
solvers simultaneously configured per iteration; instance set I;
performance metric m; configurator AC; number n of
independent configurator runs; total configuration time t

Output : parallel portfolio solver with portfolio ĉ1:k

1 i := 1
2 while i < k do
3 i′ := i+ b− 1
4 for j := 1..n do

5 obtain portfolio c
(j)
1:i′ := ĉ1:i−1||c(j)i:i′ by running AC on configuration

space {ĉ1:i−1} × (
∏i′

l=i

⋃
a∈A{(c) | c ∈ Ca}) and initial incumbent

ĉ1:i−1||cinit on I using m for time t · b/(k · n)

6 let ĉ1:i′ ∈ arg min
c
(j)

1:i′ |j∈{1...n}
m(c

(j)
1:i′ , I) be the configuration that

achieved best performance on I according to m

7 let cinit ∈ arg min
c
(j)

i:i′ |j∈{1...n}
m(ĉ1:i′ ||c(j)i:i′ , I) be the configuration that

has the largest marginal contribution to ĉ1:i′

8 i := i+ b

9 return ĉ1:k

(Algorithm 3). In brief, unlike parHydra, parHydrab simultaneously config-
ures b processes in each iteration. Specifically, in Lines 2 and 3, parHydrab

iterates up to the desired number of component solvers with a step size of b; in
Line 5, the algorithm configurator is used to find a portfolio of b configurations
with b times the configuration time budget and adds them to the current port-

folio c
(j)
1:i′ . After the n independent runs of the algorithm configurator (Line 4

and 5), the best performing portfolio ĉ1:i′ is selected in Line 6, and in Line 7,
the initial incumbent for the next iteration is selected based on the marginal
contribution to the currently selected portfolio. The parameter b controls the size
of the configuration space in each iteration. Since the configuration space grows
exponentially with b but we allow configuration time to grow only linearly, the
algorithm configurator has a harder task under parHydrab than under parHy-
dra. However, for sufficiently small b, this additional cost can be worthwhile,
because of parHydrab’s reduced tendency to stagnate in local minima.

5.2. Experiments

We used the set of solvers described in Section 4.2, with the addition of
Plingeling . We added parHydrab to the set of ACPP methods considered and
allowed b ∈ {2, 4}. We use the same setup as before, except that we allowed a
20-hour configuration budget per configured process, twice as much as before, to

22

take into consideration the greater variation in solving behaviour of Plingeling
which induces a harder configuration task.

We compared our results to a variety of state-of-the-art solvers from the
2012 SAT Challenge on this benchmark set. We considered two state-of-the-art
sequential solvers: glucose (2.1) [6] (winner of the single-engine application track—
like all other competition results cited below, in the 2012 SAT Challenge); and
SATzilla-App [75], which is SATzilla trained on application instances (winner
of the sequential portfolio application track). We also considered the following
high-performance parallel solvers7:

• clasp (2.1.3) [26];

• Plingeling (ala) [14] and Plingeling (aqw) [15]8;

• ppfolio [64] (bronze medal in the parallel track);

• PeneLoPe [5] (silver medal in the parallel track);

• and again pfolioUZK [71] (winner of the parallel track).

The first part of Table 7 summarizes the performance results for these
solvers: first the sequential solvers in their default configurations (Default-SP),
then the parallel solvers using clause sharing in their default configurations
(Default-MP(8)+CS), and finally our ACPP solvers based on the component
solvers of pfolioUZK . As already discussed, the performance of the sequential
pfolioUZK did not achieve state-of-the-art performance; this distinction goes to
glucose for a single solver, and SATzilla for a portfolio-based algorithm selector.

pfolioUZK and clasp performed significantly better than ppfolio, PeneLoPe
and Plingeling ; we observed no significant performance difference between pfo-
lioUZK and clasp in terms of any of the scores we measured. (Even with further,
extensive experiments, we have not been able to determine why clasp performed
significantly worse than pfolioUZK and Lingeling in the 2012 SAT Challenge.)

parHydra4-MP(8) produced the best parallel portfolio solver overall, which
turned out to be significantly faster than pfolioUZK . The portfolio solvers pro-
duced by parHydra-MP(8) and parHydra2-MP(8) exhibited no significant
performance differences from pfolioUZK . Furthermore, parHydra4-MP(8) also
solved more instances than Plingeling(aqw), although Plingeling(aqw) won the
2013 SAT competition and the solvers in parHydra4-MP(8) were mostly pub-
lished in 2011, which gives Plingeling(aqw) an advantage of two additional years
of development.

7We did not consider the parallel algorithm selection solvers p3S and parCSHC , since the
only versions available are optimized for a mixed set of SAT instances (application, handcrafted
and random) and there is no trainable version available. Therefore, we had no way of performing
a fair comparison between those methods and our ACPP portfolios.

8The work we describe in this study took more than a year. In the meantime, the 2013
SAT Competition took place and the new Plingeling version aqw won the gold medal in the
parallel track.

23

Solver #TOs PAR10 PAR1

Single threaded solvers: Default-SP
pfolioUZK -ST 150 4656 606
glucose-2.1 55 1778 293
SATzilla-2012-APP 38 1289 263

Parallel solvers with default config: Default-MP(8)
Plingeling(ala)+CS 53 1730 299
PeneLoPe+CS 49 1563 240
ppfolio+CS 46 1506 264
clasp+CS 37 1203 204
pfolioUZK -MP8+CS 35 1168 223
Plingeling(aqw)+CS 32 1058 194

ACPP solvers including a parallel solver
parHydra-MP(8)(pfolioUZK) 34 1143 225
parHydra2-MP(8)(pfolioUZK) 32 1082 218
parHydra4-MP(8)(pfolioUZK) 29† 992† 209†

Global-MP(8)(pfolioUZK) 35 1172 227

Table 7: Comparison of parallel solvers with 8 processors on the test set of application. The
performance of a solver is shown in boldface if its performance was at least as good as that of
any other solver, up to statistically insignificant differences (according to a permutation test
with 100 000 permutations at significance level α = 0.05). The best ACPP portfolio on the
training set is marked with a dagger (†).

Taking a closer look at these portfolio solvers, parHydra2-MP(8),
parHydra4-MP(8) and Global-MP(8) allocated three cores to Plingeling .
As expected, parHydra-MP(8) did not include Plingeling in its portfolio; how-
ever, it did include three variants of Lingeling . All four portfolio solvers used
at most seven processes by selecting “none” on one process; Global-MP(8)
selected “none” twice.

5.3. Comparison with Sequential Portfolio Solvers

As illustrated in Table 7, our ACPP portfolios outperformed SATzilla—the
winning sequential portfolio solver of the SAT Challenge 2012. However, SATzilla
used a different set of component solvers. Therefore, one might wonder how well a
sequential portfolio solver could perform when using our ACPP methods to obtain
a configured portfolio. For all sequential portfolio solvers, such as algorithm
selection or scheduling systems, without communication between the components,
the best possible performance is achieved by the virtual best solver (VBS). We
thus compared such a VBS to our ACPP method. Specifically, we assessed the
performance of all components of our best-performing parallel portfolio that
does not use any parallel solvers: parHydra-MP(8)(pfolioUZK w/o Plingeling)
(see Table 6). In contrast to parHydra-MP(8)(pfolioUZK w/o Plingeling),
which gave rise to 39 timeouts, the VBS of parHydra-MP(8)(pfolioUZK w/o
Plingeling)’s components gave rise to 35 timeouts. This performance difference
arises due to hardware overhead, as discussed earlier. Comparing this VBS
performance with our parHydra4-MP(8) with 29 timeouts (see Table 7), we
conclude that no sequential portfolio solver would have been able to outperform

24

Plingeling(ala) parHydra4-MP(8)

#Processes #TOs PAR10 PAR1 #TOs PAR10 PAR1

4 27 938 209 34 1137 219
8 30 1009 199 22 766 172
12 28 950 194 22 761 167
16 28 949 193 25 845 25

Table 8: Comparing Plingeling (ala) and parHydra4-MP(8) with increasing number of cores
where parHydra4-MP(8) with more than 8 cores used more threads for Plingeling.

our parHydra4-MP(8) portfolios. parHydra4-MP(8) has a speedup of 1.18
on PAR10 (VBS: 1173 vs. parHydra4-MP(8): 992) and 1.09 on PAR1 (VBS:
228 vs. parHydra4-MP(8): 209).

5.4. Scaling to more than 8 cores

Our ACPP methods are able to take advantage of an arbitrary number of cores,
as long we can find a sufficient number of complementary solver configurations
within the given configuration space. The comparison of parHydra-MP(8) with
only Lingeling (Section 3.2) and with the solvers of pfolioUZK demonstrated that
a more extensive configuration space with several solvers can lead to better per-
formance (compare Table 2 and 7). However, parHydra4-MP(8)(pfolioUZK)
used only 7 out of 8 available CPU cores. This indicates that the configuration
space of parHydra4-MP(8)(pfolioUZK) was relatively exhausted, to the point
where running a further solver produced less benefit than incurring additional
hardware overhead.

Looking at the training performance of parHydra4-MP(8)(pfolioUZK), we
note that the improvement between the first and second iterations (first and last
four components, respectively) of parHydra4-MP(8) was less than 10%. The
performance improvement achieved by the more fine-grained
parHydra2-MP(8)(pfolioUZK) between its third and fourth iterations was
even lower, less than 3%. Indeed, the majority of our SMAC runs (7 out of 10)
found similarly performing portfolios after their last iterations (with a difference
of less than 1 CPU seconds), and one of these 7 portfolios showed the overall best
performance on our training set. Therefore, given the configuration space we
studied, we do not expect the potential for substantial performance improvements
by leveraging more than 8 cores.

Using a parallel solver with clause sharing in our ACPP portfolios, we expect
that performance could always be improved by increasing the number of parallel
threads. Therefore, we studied the effect of increasing the number of parallel
threads of Plingeling (ala) in parHydra4-MP(8)(pfolioUZK) by using more
than 8 cores. Since the machines we used for our previous experiments had
only 8 cores, we used another cluster for the following experiment, consisting of
machines with 64GB memory and two Intel Xeon E5-2650v2 8-core CPUs with
2.60GHz and 20 MB L2 cache each, running 64-bit Ubuntu 14.04 LTS.

Table 8 shows the scalability of Plingeling (ala) and parHydra4-MP(8)(pfolioUZK)
in steps of 4 processes, since parHydra4-MP(8)(pfolioUZK) also adds 4 compo-

25

nents at a time. On this new hardware, we observed that hardware overhead influ-
enced performance less than in our previous experiments. parHydra4-MP(8)(pfolioUZK)
reached a performance peak at 12 processes and performed worse when using
all 16 cores. Furthermore, parHydra4-MP(8)(pfolioUZK) did not solve more
instances when using additional Plingeling threads; we note that the original
parHydra4-MP(8) already used 3 threads for Plingeling . However, the av-
erage runtime (PAR1) of parHydra4-MP(8)(pfolioUZK) slightly improved
between 8 and 12 cores. Running only Plingeling had similar effects; Plingeling
performance improved as cores were added up to 12 and then stagnated.

Based on these results, we conjecture that the number of CPU cores at which
hardware overhead becomes important is higher on newer hardware; indeed,
perhaps future hardware architectures will permit running even larger parallel
portfolios on one machine without significant hardware overhead. We also observe
that adding a reasonable number of additional threads to Plingeling did not
substantially improve the performance of parHydra-MP(8)(pfolioUZK) .

5.4.1. Conclusion

Using our extended parHydrab method and a parallel solver with clause
sharing, we were able to automatically generate an ACPP solver that outper-
formed pfolioUZK and reached the performance level of Plingeling(aqw), which
is based on considerably more advanced solving strategies than are used in
the baseline portfolio from pfolioUZK . This shows that the combination of our
automatic ACPP methods and expert knowledge can be used not only to gener-
ate efficient parallel solvers, but also to automatically (albeit slightly) improve
Plingeling(aqw), the 2013 state of the art in parallel SAT solving.

6. Conclusions and Future Work

In this work, we demonstrated that sequential algorithms can be combined
automatically and effectively into parallel portfolios, following an approach
we call Automatic Construction of Parallel Portfolios (ACPP). This approach
enables solver developers to leverage parallel resources without having to be
concerned with synchronization, race conditions or other difficulties that arise
in the explicit design of parallel code. Of course, inherently parallel solving
techniques (e.g., based on clause sharing) can further improve the performance of
our ACPP portfolios. In this view, ACPP can also be used to support a human
developer by determining a well-performing parallel portfolio which can provide
a base for (i) adding clause sharing, (ii) identifying complementary configurations
or (iii) as starting point for further manual fine-tuning and development of new
techniques.

We investigated two different ACPP procedures: (i) configuration in the joint
configuration space of all portfolio components (Global); ; and (ii) iteratively
adding one or more component solvers at a time (parHydra). We assessed these
procedures on widely studied classes of satisfiability problems: the application
and hard combinatorial tracks of the 2012 SAT Challenge. Overall, we found

26

that parHydra was the most practical method. The configuration space
of Global grows exponentially with the size of the portfolio; thus, while in
principle it subsumes the other methods, in practice, it tended to find worse
portfolios than parHydra within available time budgets. In contrast to Global,
parHydra was able to find well-performing portfolios on all of our domains;
using pfolioUZK ’s solvers on application instances, it even was able to reach
the performance level of Plingeling(aqw), which won the 2013 parallel track.
We expect that as additional highly parametric SAT solvers become available,
parHydra will produce even stronger parallel portfolios.

In future work, it would be interesting to investigate how information ex-
change strategies such as clause sharing can be integrated more deeply into our
procedures. This could be done, e.g., by combining our ACPP approach with
HordeSAT [9], a modular, massively parallel SAT solver with clause sharing
that can make use of arbitrary CDCL solvers. Since parameters governing
such information exchange are global (rather than restricted to an individual
component solver), we also intend to investigate improved methods for handling
global portfolio parameters. Finally, we plan to investigate ways of reusing
previously-trained portfolios for building new ones, for instance, in cases where
the instance set changes slightly or new solvers become available.

Acknowledgments

M. Lindauer was supported by the DFG (German Research Foundation)
under Emmy Noether grant HU 1900/2-1 and project SCHA 550/8-3, H. Hoos
and K. Leyton-Brown by NSERC Discovery Grants, and T. Schaub by the DFG
under project SCHA 550/8-3, respectively.

[1] Aigner, M., Biere, A., Kirsch, C., Niemetz, A., Preiner, M., 2013. Analysis
of portfolio-style parallel SAT solving on current multi-core architectures.
In: Proceeding of the Fourth International Workshop on Pragmatics of SAT
(POS’13).

[2] Amadini, R., Gabbrielli, M., Mauro, J., 2015. A multicore tool for constraint
solving. In: Yang, Q., Wooldridge, M. (Eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence (IJCAI’15).
AAAI Press, pp. 232–238.

[3] Ansótegui, C., Sellmann, M., Tierney, K., 2009. A gender-based genetic
algorithm for the automatic configuration of algorithms. In: Gent, I. (Ed.),
Proceedings of the Fifteenth International Conference on Principles and
Practice of Constraint Programming (CP’09). Vol. 5732 of Lecture Notes in
Computer Science. Springer-Verlag, pp. 142–157.

[4] Asin, R., Olate, J., Ferres, L., 2013. Cache performance study of portfolio-
based parallel CDCL SAT solvers. CoRR abs/1309.3187 (v1).

27

[5] Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C., 2012.
Penelope, a parallel clause-freezer solver. In: [7], pp. 43–44, available at
https://helda.helsinki.fi/handle/10138/34218.

[6] Audemard, G., Simon, L., 2012. Glucose 2.1. in the SAT challenge 2012. In:
[7], pp. 23–23, available at https://helda.helsinki.fi/handle/10138/

34218.

[7] Balint, A., Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (Eds.),
2012. Proceedings of SAT Challenge 2012: Solver and Benchmark Descrip-
tions. Vol. B-2012-2 of Department of Computer Science Series of Publica-
tions B. University of Helsinki, available at https://helda.helsinki.fi/
handle/10138/34218.

[8] Balint, A., Belov, A., Heule, M., Järvisalo, M. (Eds.), 2013. Proceedings of
SAT Competition 2013: Solver and Benchmark Descriptions. Vol. B-2013-1
of Department of Computer Science Series of Publications B. University of
Helsinki.

[9] Balyo, T., Sanders, P., Sinz, C., 2015. HordeSat: A massively parallel
portfolio SAT solver. In: Heule, M., Weaver, S. (Eds.), Proceedings of the
International Conference on Theory and Applications of Satisfiability Testing
(SAT’15). Vol. 9340 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 156–172.

[10] Baral, C., 2003. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press.

[11] Belov, A., Diepold, D., Heule, M., Järvisalo, M. (Eds.), 2014. Proceedings of
SAT Competition 2014: Solver and Benchmark Descriptions. Vol. B-2014-2
of Department of Computer Science Series of Publications B. University of
Helsinki.

[12] Biere, A., 2010. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT
race 2010. Tech. Rep. 10/1, Institute for Formal Models and Verification.
Johannes Kepler University.

[13] Biere, A., 2011. Lingeling and friends at the SAT competition 2011. Technical
Report FMV 11/1, Institute for Formal Models and Verification, Johannes
Kepler University.

[14] Biere, A., 2012. Lingeling and friends entering the SAT challenge 2012. In:
[7], pp. 33–34, available at https://helda.helsinki.fi/handle/10138/

34218.

[15] Biere, A., 2013. Lingeling, plingeling and treengeling entering the sat com-
petition 2013. In: [8], pp. 51–52.

[16] Biere, A., 2014. Yet another local search solver and lingeling and friends
entering the SAT competition 2014. In: [11], pp. 39–40.

28

[17] Boutilier, C. (Ed.), 2009. Proceedings of the Twenty-first International Joint
Conference on Artificial Intelligence (IJCAI’09). AAAI/MIT Press.

[18] Cai, S., Luo, C., Su, K., 2012. CCASAT: Solver description. In: [7], pp.
13–14, available at https://helda.helsinki.fi/handle/10138/34218.

[19] Chen, J., 2011. Phase selection heuristics for satisfiability solvers. CoRR
abs/1106.1372 (v1).

[20] Cimatti, A., Sebastiani, R. (Eds.), 2012. Proceedings of the Fifteenth
International Conference on Theory and Applications of Satisfiability Testing
(SAT’12). Vol. 7317 of Lecture Notes in Computer Science. Springer-Verlag.

[21] Eén, N., Biere, A., 2005. Effective preprocessing in SAT through variable
and clause elimination. In: Bacchus, F., Walsh, T. (Eds.), Proceedings
of the Eighth International Conference on Theory and Applications of
Satisfiability Testing (SAT’05). Vol. 3569 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 61–75.

[22] Eén, N., Sörensson, N., 2004. An extensible SAT-solver. In: Giunchiglia,
E., Tacchella, A. (Eds.), Proceedings of the Sixth International Conference
on Theory and Applications of Satisfiability Testing (SAT’03). Vol. 2919 of
Lecture Notes in Computer Science. Springer-Verlag, pp. 502–518.

[23] G. Audemard, B. H., Jabbour, S., Lagniez, J., Piette, C., 2014. PeneLoPe
in SAT competition 2014. In: [11], pp. 58–59.

[24] Gagliolo, M., Schmidhuber, J., 2006. Learning dynamic algorithm portfolios.
Annals of Mathematics and Artificial Intelligence 47 (3-4), 295–328.
URL http://www.springerlink.com/content/g10248526jq91k52/

[25] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2012. Answer Set
Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan and Claypool Publishers.

[26] Gebser, M., Kaufmann, B., Schaub, T., 2012. Multi-threaded ASP solving
with clasp. Theory and Practice of Logic Programming 12 (4-5), 525–545.

[27] Gomes, C., Selman, B., 2001. Algorithm portfolios. Artificial Intelligence
126 (1-2), 43–62.

[28] Grinten, A., Wotzlaw, A., Speckenmeyer, E., Porschen, S., 2012. satUZK:
Solver description. In: [7], pp. 54–55, available at https://helda.helsinki.
fi/handle/10138/34218.

[29] Guo, L., Hamadi, Y., Jabbour, S., Sais, L., 2010. Diversification and
intensification in parallel SAT solving. In: Cohen, D. (Ed.), Proceedings
of the Sixteenth International Conference on Principles and Practice of
Constraint Programming (CP’10). Vol. 6308 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 252–265.

29

[30] Hamadi, Y., Jabbour, S., Sais, L., 2009. Control-based clause sharing in
parallel SAT solving. In: [17], pp. 499–504.

[31] Hamadi, Y., Jabbour, S., Sais, L., 2009. ManySAT: a parallel SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation 6, 245–262.

[32] Hamadi, Y., Schoenauer, M. (Eds.), 2012. Proceedings of the Sixth Interna-
tional Conference Learning and Intelligent Optimization (LION’12). Vol.
7219 of Lecture Notes in Computer Science. Springer-Verlag.

[33] Hamadi, Y., Wintersteiger, C., 2013. Seven challenges in parallel SAT
solving. AI Magazine 34, 99–106.

[34] Heule, M., Dufour, M., van Zwieten, J., van Maaren, H., 2004. March eq:
Implementing additional reasoning into an efficient look-ahead SAT solver.
In: Hoos, H., Mitchell, D. (Eds.), Proceedings of the Seventh International
Conference on Theory and Applications of Satisfiability Testing (SAT’04).
Vol. 3542 of Lecture Notes in Computer Science. Springer-Verlag, pp. 345–
359.

[35] Hoos, H., 2012. Programming by optimisation. Communications of the ACM
55, 70–80.

[36] Hoos, H., Kaminski, R., Schaub, T., Schneider, M., 2012. aspeed: ASP-
based solver scheduling. In: Dovier, A., Santos Costa, V. (Eds.), Technical
Communications of the Twenty-eighth International Conference on Logic
Programming (ICLP’12). Vol. 17. Leibniz International Proceedings in
Informatics (LIPIcs), pp. 176–187.

[37] Hoos, H., Kaufmann, B., Schaub, T., Schneider, M., 2013. Robust bench-
mark set selection for boolean constraint solvers. In: Pardalos, P., Nicosia,
G. (Eds.), Proceedings of the Seventh International Conference on Learning
and Intelligent Optimization (LION’13). Vol. 7997 of Lecture Notes in
Computer Science. Springer-Verlag, pp. 138–152.

[38] Hoos, H., Leyton-Brown, K., Schaub, T., Schneider, M., 2012. Algorithm
configuration for portfolio-based parallel SAT-solving. In: Coletta, R., Guns,
T., O’Sullivan, B., Passerini, A., Tack, G. (Eds.), Proceedings of the First
Workshop on Combining Constraint Solving with Mining and Learning
(CoCoMile’12). pp. 7–12.

[39] Hoos, H., Stützle, T., 2004. Stochastic Local Search: Foundations and
Applications. Elsevier/Morgan Kaufmann.

[40] Huberman, B., Lukose, R., Hogg, T., 1997. An economic approach to hard
computational problems. Science 275, 51–54.

[41] Hutter, F., Hoos, H., Leyton-Brown, K., 2011. Sequential model-based
optimization for general algorithm configuration. In: Proceedings of the
Fifth International Conference on Learning and Intelligent Optimization

30

(LION’11). Vol. 6683 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 507–523.

[42] Hutter, F., Hoos, H., Leyton-Brown, K., 2014. Submodular configuration of
algorithms for portfolio-based selection. Tech. rep., Department of Computer
Science, University of British Columbia, to appear.

[43] Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T., 2009. ParamILS:
An automatic algorithm configuration framework. Journal of Artificial
Intelligence Research 36, 267–306.

[44] Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-
Brown, K., Stützle, T., 2014. AClib: a benchmark library for algorithm
configuration. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J.
(Eds.), Proceedings of the Eigth International Conference on Learning and
Intelligent Optimization (LION’14). Vol. 8426 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 36–40.

[45] Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.,
2011. Algorithm selection and scheduling. In: Lee, J. (Ed.), Proceedings
of the Seventeenth International Conference on Principles and Practice of
Constraint Programming (CP’11). Vol. 6876 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 454–469.

[46] Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K., 2010. ISAC – instance-
specific algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M.
(Eds.), Proceedings of the Nineteenth European Conference on Artificial
Intelligence (ECAI’10). IOS Press, pp. 751–756.

[47] Katsirelos, G., Sabharwal, A., Samulowitz, H., Simon, L., 2013. Resolution
and parallelizability: Barriers to the efficient parallelization of SAT solvers.
In: desJardins, M., Littman, M. (Eds.), Proceedings of the Twenty-Seventh
National Conference on Artificial Intelligence (AAAI’13). AAAI Press.

[48] KhudaBukhsh, A., Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K., 2009.
SATenstein: Automatically building local search SAT solvers from compo-
nents. In: [17], pp. 517–524.

[49] Kotthoff, L., 2012. Algorithm selection for combinatorial search problems:
A survey. Tech. rep., University College Cork.

[50] Lazaar, N., Hamadi, Y., Jabbour, S., Sebag, M., 2012. Cooperation control
in parallel SAT solving: a multi-armed bandit approach. Tech. rep., INRIA.
URL http://hal.inria.fr/hal-00733282

[51] Li, C., Wei, W., Li, Y., 2012. Exploiting historical relationships of clauses
and variables in local search for satisfiability. In: [20], pp. 479–480.

31

[52] Lindauer, M., Hoos, H., , Hutter, F., 2015. From sequential algorithm
selection to parallel portfolio selection. In: Proceedings of the International
Conference on Learning and Intelligent Optimization (LION’15). pp. 1–16.

[53] López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M., 2011. The
irace package, iterated race for automatic algorithm configuration. Tech.
rep., IRIDIA, Université Libre de Bruxelles, Belgium.
URL http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.

pdf

[54] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M., 2012. Parallel
SAT solver selection and scheduling. In: Milano, M. (Ed.), Proceedings
of the Eighteenth International Conference on Principles and Practice of
Constraint Programming (CP’12). Vol. 7514 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 512–526.

[55] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M., 2013. Algorithm
portfolios based on cost-sensitive hierarchical clustering. In: Rossi, F. (Ed.),
Proceedings of the Twenty-third International Joint Conference on Artificial
Intelligence (IJCAI’13). IJCAI/AAAI, pp. 608–614.

[56] Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M., 2013. Parallel
lingeling, ccasat, and csch-based portfolio. In: [8], pp. 26–27.

[57] Malitsky, Y., Sellmann, M., 2012. Instance-specific algorithm configuration
as a method for non-model-based portfolio generation. In: Beldiceanu, N.,
Jussien, N., Pinson, E. (Eds.), CPAIOR. Vol. 7298 of Lecture Notes in
Computer Science. Springer-Verlag, pp. 244–259.

[58] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S., 2001. Chaff:
Engineering an efficient SAT solver. In: Proceedings of the Thirty-eighth
Conference on Design Automation (DAC’01). ACM Press, pp. 530–535.

[59] Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes, C., McFadden, J.,
Selman, B., Shoham, Y., 2003. Satzilla 0.9, solver description, International
SAT Competition.

[60] Núnez, S., Borrajo, D., López, C., 2013. Mipsat. In: [8], pp. 59–60.

[61] O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B., 2008.
Using case-based reasoning in an algorithm portfolio for constraint solving.
In: Bridge, D., Brown, K., O’Sullivan, B., Sorensen, H. (Eds.), Proceedings
of the Nineteenth Irish Conference on Artificial Intelligence and Cognitive
Science (AICS’08).

[62] Papadimitriou, C., Steiglitz, K., 1982. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, Upper Saddle River, NJ, USA.

32

[63] Petrik, M., Zilberstein, S., 2006. Learning static parallel portfolios of al-
gorithms. In: Proceedings of the International Symposium on Artificial
Intelligence and Mathematics (ISAIM 2006).

[64] Roussel, O., 2011. Description of ppfolio. Available at http://www.cril.

univ-artois.fr/~roussel/ppfolio/solver1.pdf.

[65] Schrijver, A., 1986. Theory of Linear and Integer Programming. John Wiley
& sons, New York, NY, USA.

[66] Soos, M., Nohl, K., Castelluccia, C., 2009. Extending SAT solvers to
cryptographic problems. In: Kullmann, O. (Ed.), Proceedings of the Twelfth
International Conference on Theory and Applications of Satisfiability Testing
(SAT’09). Vol. 5584 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 244–257.

[67] Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K., 2013. Auto-WEKA:
Combined selection and hyperparameter optimization of classification algo-
rithms. In: Proceedings of the 19th International Conference on Knowledge
Discovery and Data Mining (KDD’13). pp. 847–855.

[68] Tompkins, D., Balint, A., Hoos, H., 2011. Captain Jack – new variable
selection heuristics in local search for SAT. In: Sakallah, K., Simon, L.
(Eds.), Proceedings of the Fourteenth International Conference on Theory
and Applications of Satisfiability Testing (SAT’11). Vol. 6695 of Lecture
Notes in Computer Science. Springer-Verlag, pp. 302–316.

[69] van Gelder, A., 2012. Contrasat - a contrarian SAT solver. Journal on
Satisfiability, Boolean Modeling and Computation 8 (1/2), 117–122.

[70] Wei, W., Li, C., 2009. Switching between two adaptive noise mechanism
in local search for SAT. Available at http://home.mis.u-picardie.fr/~cli/

EnglishPage.html.

[71] Wotzlaw, A., van der Grinten, A., Speckenmeyer, E., Porschen, S., 2012.
pfolioUZK: Solver description. In: [7], p. 45, available at https://helda.

helsinki.fi/handle/10138/34218.

[72] Xu, L., Hoos, H., Leyton-Brown, K., 2010. Hydra: Automatically con-
figuring algorithms for portfolio-based selection. In: Fox, M., Poole, D.
(Eds.), Proceedings of the Twenty-fourth National Conference on Artificial
Intelligence (AAAI’10). AAAI Press, pp. 210–216.

[73] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K., 2008. SATzilla: Portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Research
32, 565–606.

[74] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K., 2012. Evaluating component
solver contributions to portfolio-based algorithm slelectors. In: [20], pp.
228–241.

33

[75] Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K., 2012. SATzilla2012:
Improved algorithm selection based on cost-sensitive classification models. In:
[7], pp. 57–58, available at https://helda.helsinki.fi/handle/10138/

34218.

[76] Yasumoto, T., 2012. Sinn. In: [7], pp. 61–61, available at https://helda.

helsinki.fi/handle/10138/34218.

[77] Yun, X., Epstein, S., 2012. Learning algorithm portfolios for parallel execu-
tion. In: [32], pp. 323–338.

34

Appendix A. Clustering Approach

Algorithm 4: Portfolio Configuration Procedure Clustering

Input : parametric solvers with configuration space C; desired number k
of component solvers; instance set I; performance metric m;
configurator AC; number n of independent configurator runs;
total configuration time t; feature normalizer FN ; cluster
algorithm CA; features f(i) for all instances i ∈ I

Output : parallel portfolio solver with portfolio ĉS

1 normalize features with FN into feature space f ′

2 cluster instances with CA in normalized feature space f ′ into k clusters S
3 foreach s ∈ S do
4 for j := 1..n do

5 obtain configuration c
(j)
s by running AC with configuration space

C on Is using m for time t/(k · n), where Is denotes all instances in
cluster s

6 let ĉs ∈ arg min
c
(j)
s |j∈{1...n}

m(c
(j)
s , I) be the configuration which

achieved best performance on I according to m

7 let ĉS be the portfolio consisting the configurations for each clusters
8 return ĉS

ISAC [46, 57] is a second method for automatically designing portfolio-
based algorithm selectors. It works by clustering a set of instances in a given
(normalized) instance feature space and then independently configuring the given
highly parameterized algorithm on each instance cluster (see Algorithm 4). We
adapted ISAC to the ACPP problem by generalizing it in two ways. First, ISAC
uses a linear normalization of the features, whereas we leave this decision as a
parameter open to the user, allowing linear, standard (or so-called z-score), or
no normalization. In general the best normalization strategy may vary between
feature sets, and there is no way to assess cluster quality before configuration
experiments are complete. Second, we controlled the number of clusters via a
parameter, allowing us to set it to the number of cores targeted by the parallel
portfolio. Hence, we do not have to use a clustering method to determine how
many clusters to choose (e.g., ISAC uses g-means). To avoid suggesting that
ISAC ’s authors endorsed these changes, we refer to the resulting method using
the neutral moniker Clustering.

Table A.9 shows results of Clustering in addition to Table 2. We note
that Clustering-MP(8) clusters the training instances based on instance
features; thus, normalizing these features in different ways can result in different
instance clusters. There is no way to assess cluster quality before configuration
experiments are complete; one can only observe the distribution of the instances
in the clusters. For example, the instances in the training set of the application
distribution for Clustering-None-MP(8) were distributed across clusters of

35

Lingeling (application) clasp (hard combinatorial)

Solver Set #TOs PAR10 PAR1 #TOs PAR10 PAR1

Clustering-None-MP(8) 47∗ 1571∗ 302∗ 107 3257 368
Clustering-Linear-MP(8) 61 1970 323 114 3476 398
Clustering-Zscore-MP(8) 51∗ 1674∗ 297∗ 99 3035 362

Table A.9: Runtime statistics on the test set from application and hard combinatorial
SAT instances achieved by Clustering with different feature normalization strategies,
Clustering-None-MP(8): no normalization, Clustering-Linear-MP(8): linear normaliza-
tion ([0,1]), Clustering-Zscore-MP(8): z-score normalization. The performance of a solver is
shown in boldface if it was not significantly different from the best performance, and is marked
with an asterisk (∗) if it was not significantly worse than Default-MP(8)+CS (according to a
permutation test with 100 000 permutations and significance level α = 0.05).

sizes 2, 2, 3, 11, 13, 18, 21, and 30; we observed qualitatively similar distributions
for Clustering-Linear-MP(8) and Clustering-Zscore-MP(8). This is
potentially problematic, because running a configurator on sets of 2 or 3 instances
can lead to overfitting and produce configurations whose performance does not
generalize well to new instances. One reason for these small clusters could be
related to our instance selection technique (see Section 3.2.3), which reduced the
number of training instances to speed up the configuration process. However, the
instance selection technique we used already provides a mechanism to improve the
distribution of the instances in the feature space. Kadioglu et al. [46] described
how ISAC removes such small clusters by merging them into larger clusters.
However, in the case of parallel portfolios, the number of clusters is fixed, because
the number of clusters has to match the desired portfolio size, in order to ensure
maximal utilization of the given parallel computing resources.

For both solvers, linear feature normalization (Clustering-Linear-MP(8))
produced clusters that were insufficiently complementary, and hence led to rela-
tively poor performance. (We note that linear normalization is used in ISAC .)
Using clustering without feature normalization (Clustering-None-MP(8))
led to surprisingly strong performance in the case of Lingeling on the application
instances, but failed to reach the performance of Default-MP(8)+CS for clasp
on the hard combinatorial scenario. Similarly, the use of z-score normaliza-
tion (Clustering-Zscore-MP(8)) did not produce portfolios that consistently
reached the performance of Default-MP(8)+CS.

Table A.10 shows results of Clustering in addition to Table 6. All Clus-
tering approaches performed significantly worse than the best ACPP approach
(parHydra-MP(8)).

As we previously observed with portfolios based on Lingeling ,
Clustering-None-MP(8) (no feature normalization) performed best among
the Clustering approaches. However, this time, Clustering-Zscore-MP(8)
performed worse than Clustering-Linear-MP(8). This indicates that the
quality of the clusters depends not only on the instance set but also on the config-
uration space of the portfolio (which, indeed, is disregarded by the Clustering
approach).

36

8-Processor Parallel Solver #TOs PAR10 PAR1

Clustering-None-MP(8)(pfolioUZK w/o Plingeling) 42 1390 256
Clustering-Linear-MP(8)(pfolioUZK w/o Plingeling) 48 1581 285
Clustering-Zscore-MP(8)(pfolioUZK w/o Plingeling) 52 1676 272

Table A.10: Runtime statistics for 8-processor parallel solvers on the application test set. The
performance of a solver is shown in boldface if it was not significantly different from the best
performance (according to a permutation test with 100 000 permutations at significance level
α = 0.05).

The Clustering approach cannot be effectively applied to sets of component
solvers that include parallel solvers. When the configuration of each component
solver is performed independently of all other solvers, there is no way to direct a
configurator to consider synergies between solvers, such as those arising from
clause sharing. Therefore, an unparameterized, parallel solver with clause sharing,
such as Plingeling , will never be selected. Thus, we did not consider a variant of
Clustering in the experiments of Section 5.2.

37

