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Abstract

We investigate the problem of repacking stations in the FCC’s
upcoming, multi-billion-dollar “incentive auction”. Early ef-
forts to solve this problem considered mixed-integer program-
ming formulations, which we show are unable to reliably solve
realistic, national-scale problem instances. We describe the
result of a multi-year investigation of alternatives: a solver,
SATFC, that has been adopted by the FCC for use in the in-
centive auction. SATFC is based on a SAT encoding paired
with a wide range of techniques: constraint graph decomposi-
tion; novel caching mechanisms that allow for reuse of partial
solutions from related, solved problems; algorithm configu-
ration; algorithm portfolios; and the marriage of local-search
and complete solver strategies. We show that our approach
solves virtually all of a set of problems derived from auction
simulations within the short time budget required in practice.

1 Introduction
The US government will soon hold an innovative “incentive
auction” for radio spectrum, in which television broadcast-
ers are paid to relinquish broadcast rights via a “reverse
auction”, remaining broadcasters are repacked into a nar-
rower band of spectrum, and cleared spectrum is sold to
telecommunications companies. The stakes are enormous:
the auction is forecast to net the government tens of bil-
lions of dollars, as well as creating massive economic value
by reallocating spectrum to more socially beneficial uses
(Congressional Budget Office 2015). As a result of both its
economic importance and its conceptual novelty, the auc-
tion has been the subject of considerable recent study by
the research community, mostly focusing on elements of
the auction design (Bazelon, Jackson, and McHenry 2011;
Kwerel, LaFontaine, and Schwartz 2012; Milgrom et al. 2012;
Calamari et al. 2012; Marcus 2013; Milgrom and Segal 2014;
Dütting, Gkatzelis, and Roughgarden 2014; Vohra 2014;
Nguyen and Sandholm 2014; Kazumori 2014). After con-
siderable study and discussion, the FCC has selected an
auction design based on a descending clock (FCC 2014c;
2014a). Such an auction offers each participating station a
price for relinquishing its broadcast rights, with this price of-
fer falling for a given station as long as it remains repackable.
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A consequence of this design is that the auction must (se-
quentially!) solve hundreds of thousands of such repacking
problems. This is challenging, because the repacking prob-
lem is NP-complete. It also makes the performance of the
repacking algorithm extremely important, as every failure
to solve a single, feasible repacking problem corresponds
to a lost opportunity to lower a price offer. Given the scale
of the auction, individual unsolved problems can cost the
government millions of dollars each.

This paper is the first to show how the station repacking
problem can be solved exactly and reliably at the national
scale. It describes the results of an extensive, multi-year in-
vestigation into the problem, which culminated in a solver
that we call SATFC. This solver combines a wide variety
of techniques: SAT encoding; algorithm configuration; algo-
rithm portfolios; and a bevy of problem-specific speedups,
including a powerful and novel caching scheme that gener-
alizes from different but related problem instances. Overall,
SATFC solves virtually all problems in a previously-unseen
test set—99.6%—within one minute. It has been adopted
by the FCC for use in the incentive auction (FCC 2014b).
SATFC is open-source; pointers both to the solver and to data
used in this paper are available at http://www.cs.ubc.ca/labs/
beta/Projects/SATFC.

In what follows, we begin by defining the station repack-
ing problem and explaining some of its salient properties
(Section 2). We then discuss the encodings we considered
and the tools we leverage (Section 3) before detailing the
problem-specific speedups that make our approach effective
(Section 4). We report experimental results throughout, estab-
lishing a baseline in Section 2 and then showing the extent to
which each of our extensions strengthens our solver.

2 The Station Repacking Problem
Each US television station s ∈ S is currently assigned a
channel cs ∈ C ⊆ N that ensures that it will not exces-
sively interfere with other, nearby stations. The FCC reasons
about what interference would be harmful via a complex,
grid-based physical simulation (“OET-69” (FCC 2013)), but
has also processed the results of this simulation to obtain
a CSP-style formulation listing forbidden pairs of stations
and channels, which it has publicly released (FCC 2014e).
Let I ⊆ (S × C)2 denote a set of forbidden station–channel
pairs {(s, c), (s′, c′)}, each representing the proposition that



stations s and s′ may not concurrently be assigned to chan-
nels c and c′, respectively. The effect of the auction will be to
remove some broadcasters from the airwaves completely, and
to reassign channels to the remaining stations from a reduced
set. This reduced set will be defined by a clearing target:
some channel c ∈ C such that all stations are only eligible to
be assigned channels from C = {c ∈ C : c < c}. The sets
of channels a priori available to each station are given by
a domain function D : S → 2C that maps from stations to
these reduced sets. The station repacking problem is then the
task of finding a repacking γ : S → C that assigns each sta-
tion a channel from its domain that satisfies the interference
constraints: i.e., for which γ(s) ∈ D(s) for all s ∈ S, and
γ(s) = c⇒ γ(s′) 6= c′ for all {(s, c), (s′, c′)} ∈ I . It is easy
to see that the station repacking problem is NP-complete; e.g.,
it generalizes graph coloring (see below). It also falls under
the umbrella of frequency assignment problems (see Aardal
et al. (2007) for a survey and a discussion of applications
to mobile telephony, radio and TV broadcasting, satellite
communication, wireless LANs, and military operations).

Luckily, there is reason to hope that this problem could
nevertheless be solved effectively in practice. First, we only
need to be concerned with problems involving subsets of a
fixed set of stations and a fixed set of interference constraints:
those describing the television stations currently broadcasting
in the United States. Channels can be partitioned into three
equivalence classes: LVHF (channels 1–6), HVHF (channels
7–13), and UHF (channels 14–c, excepting 37), where c ≤ 51
is the largest available UHF channel set by the auction’s
clearing target, and 37 is never available. No interference
constraints span the three equivalence classes of channels,
giving us a straightforward way of decomposing the problem.
A problem instance thus corresponds to a choice of stations
S ⊆ S and channels C ⊆ C to pack into, with domains D
and interference constraints I implicitly being restricted to S
and C; we call the resulting restrictions D and I.

Let us define the interference graph as an undirected graph
in which there is one vertex per station and an edge exists
between two vertices s and s′ if the corresponding stations
participate together in any interference constraint: i.e., if there
exist c, c′ ∈ C such that {(s, c), (s′, c′)} ∈ I . Figure 1 shows
the US interference graph. We know that every repacking
problem we will encounter will be derived from the restriction
of this interference graph to some subset of S. This suggests
the possibility of doing offline work to capitalize on useful
structure present in the interference graph. However, this
graph involves a total of |S| = 2173 stations, and the number
of possible subsets is exponential in this number. Thus, it is
not possible to exhaustively range over all possible subsets.
Nevertheless, meaningful structure exists, whether leveraged
explicitly or implicitly (see e.g., a computational analysis of
unavoidable constraints by Kearns and Dworkin (2014)).

Interference constraints are more structured than in the gen-
eral formulation: they come in only two kinds. Co-channel
constraints specify that two stations may not be assigned
to the same channel; adjacent-channel constraints specify
that two stations may not be assigned to two adjacent chan-
nels. Hence, any forbidden station–channel pairs are of the
form {(s, c), (s′, c)} or {(s, c), (s′, c+ 1)} for some stations

Figure 1: Interference graph derived from the FCC’s May
2014 constraint data (FCC 2014e).

s, s′ ∈ S and channel c ∈ C. Note that if we were dealing
exclusively with co-channel constraints, we would face a
graph coloring problem.

Interestingly, our cost function is asymmetric: it is ter-
rible to incorrectly conclude that a repacking problem is
feasible (this could make the auction outcome infeasible)
whereas the consequences are fairly mild for wrongly claim-
ing that a given repacking is infeasible (this prevents a price
offer from being lowered, costing the government money, but
does not pose a fundamental problem for the auction itself).
Thus, whenever a problem cannot be solved within the given
amount of time, we can safely treat it as though it was proven
infeasible—albeit at some financial cost.

The last key property that gives us reason to hope that this
large, NP-complete problem can be tamed in practice is that
we are not interested in worst-case performance, but rather
in good performance on the sort of instances generated by
actual reverse auctions. The question of which stations will
need to be repacked in which order depends on the stations’
valuations, which depend in turn (among many other factors)
on the size and character of the population reached by their
broadcasts. The distribution over repacking orders is hence
far from uniform. Second, descending clock auctions repeat-
edly generate station repacking problems by adding a single
station s+ to a set S− of provably repackable stations. This
means that every station repacking problem (S− ∪ {s+}, C)
comes along with a partial assignment γ− : S− → C which
we know is feasible on restricted station set S−.

In order to validate the auction design, the FCC has run ex-
tensive simulations of the auction, based on a wide variety of
assumptions about station participation and bidding behavior.
We obtained anonymized versions of some repacking prob-
lems from five such simulations,1 and randomly partitioned
them into a training set of 100,572 examples, a validation

1This small set of simulations explores a very narrow set of
answers to the questions of which stations would participate and
how bidders would interact with the auction mechanism; it does not
represent a statement either by us or by the FCC about how these
questions are likely to be resolved in the real auction. While this
data represents the best proxy currently available for the sorts of
computational problems that would arise in practice, it is of course
impossible to guarantee that variations in the assumptions would
not yield computationally different problems.



set of 1,000 examples, and a test set of 10,000 examples.
All of these problems were nontrivial in the sense that the
auction’s previous solution could not be directly augmented
with an assignment to the newly introduced station; such triv-
ial problems (80–90% of the total encountered in a typical
auction simulation) are solved directly in the FCC’s software
without calling an external solver. Preliminary experiments
showed that repacking problems in the VHF bands are very
easy, because these bands contain at most 7 channels. We
thus constrained ourselves to the much harder UHF band,
fixing the interference model and setting the clearing target
such that |C| = 16. The encoded test problems contained
between 453 and 16,299 variables (averaging 8,654) and
between 3,197 and 342,450 clauses (averaging 146,871) of
which between 210 and 228,042 (averaging 86,849) were
interference clauses. Station domains ranged from 1–16 chan-
nels (averaging 14). We used test instances solely to perform
the benchmarking reported here, having performed prelim-
inary experimentation and optimization using the training
and validation sets. We chose a cutoff time of 60 seconds,
reflecting the constraints involved in solving up to hundreds
of thousands of problems sequentially in a real auction.

3 Encoding and Tools
3.1 Initial Efforts
The FCC’s initial investigations included modeling the sta-
tion repacking problem as a mixed-integer program (MIP)
and using off-the-shelf solvers paired with problem-specific
speedups (FCC 2014d). Unfortunately, the problem-specific
elements of this solution were not publicly released, so we
do not discuss them further in this paper. Instead, to as-
sess the feasibility of a MIP approach, we ran what are
arguably the two best-performing MIP solvers—CPLEX
and Gurobi—on the test set described above; the results are
summarized as the dashed lines in Figure 2. To encode the
station repacking problem as a MIP, we create a variable
xs,c ∈ {0, 1} for every station–channel pair, representing
the proposition that station s is assigned to channel c. We
then add the constraints

∑
c∈D(s) xs,c = 1∀s ∈ S, and

xs,c + xs′,c′ ≤ 1∀{(s, c), (s′, c′)} ∈ I . These constraints
ensure that each station is assigned to exactly one channel,
and that interference constraints are not violated.

On our experimental data, both solvers solved under half
of the instances within our cutoff time of one minute. Such
performance would likely be insufficient for deployment in
practice, since it means that most stations would be paid
unnecessarily high amounts due to computational constraints
(recall that each station gives rise to many feasibility checking
problems over the course of a single auction).

3.2 SAT Encoding
We propose instead that the station repacking problem should
be encoded as a propositional satisfiability (SAT) problem.
This formalism is well suited to station repacking, which is a
pure feasibility problem with only combinatorial constraints.2

2Of course, it may nevertheless be possible to achieve good
performance with MIP or other techniques; we did not investigate
such alternatives in depth.

Figure 2: ECDF of runtimes for default MIP and SAT solvers.
The bars show fraction of SAT and UNSAT instances binned
by their (fastest) runtime. Although present, unsatisfiable
instances form an insignificant portion of instances solved.

The SAT reduction is straightforward (and similar to the MIP
reduction just described): given a station repacking problem
(S,C) with domains D and interference constraints I , we
create a boolean variable xs,c ∈ {>,⊥} for every station–
channel pair (s, c) ∈ S×C, representing the proposition that
station s is assigned to channel c. We then create three kinds
of clauses: (1)

∨
d∈D(s) xs,d ∀s ∈ S (each station is assigned

at least one channel); (2) ¬xs,c ∨ ¬xs,c′ ∀s ∈ S, ∀c, c′ 6=
c ∈ D(s) (each station is assigned at most one channel);
(3) ¬xs,c ∨ ¬xs′,c′ ∀{(s, c), (s′, c′)} ∈ I (interference con-
straints are respected).

Besides parsimony, a SAT encoding has the advantage of
making it possible to leverage the research community’s vast
investment into developing high-performance SAT solvers
(see e.g., Järvisalo et al. (2012)). We experimented with 18
different SAT solvers, obtained mainly from SAT solver com-
petition entries collected in AClib (Hutter et al. 2014b). The
performance of the seven best solvers, measured according
to the number of instances solved by the cutoff time, is sum-
marized as the solid lines in Figure 2. We observed a range
of performance, but found that no solver did well enough to
recommend use in practice: the best solver could not even
solve three quarters of the instances. The best was DCCA
(Luo et al. 2014), which as a local search algorithm can only
prove satisfiability. This turns out not to be a major imped-
iment because, due to the way a descending clock auction
works, the instances we encounter are predominantly satisfi-
able. More specifically, out of the 9963 test instances that we
were able to solve by any means, including the solvers intro-
duced later in this paper, 9871 (99.07%) were satisfiable and
only 92 (0.93%) unsatisfiable. We illustrate the distribution
of instances labeled by feasibility at the bottom of Figure 2.

3.3 Meta-Algorithmic Techniques
In recent years, there has been increasing development of ar-
tificial intelligence techniques that reason about how existing
heuristic algorithms can be modified or combined together
to yield improved performance on specific problem domains
of interest. These techniques are called meta-algorithmic be-
cause they consist of algorithms that take other algorithms



as part of their input. For example, algorithm configuration
consists of setting design decisions exposed as parameters
to optimize an algorithm’s average performance across an
instance distribution. This approach has proven powerful in
the SAT domain, as many SAT solvers expose parameters that
can drastically modify their behavior, from probability of ran-
dom restarts to choice of search heuristics or data structures
(Hutter et al. 2014a). We performed configuration using the
Sequential Model-based Algorithm Configuration algorithm,
or SMAC (Hutter, Hoos, and Leyton-Brown 2011).

Unfortunately, even after performing algorithm config-
uration, it is rare to find a single algorithm that outper-
forms all others on instances of an NP-hard problem such
as SAT. This inherent variability across solvers can be ex-
ploited by algorithm portfolios (Gomes and Selman 2001;
Nudelman et al. 2003). Most straightforwardly, one selects a
small set of algorithms with complementary performance on
problems of interest and, when asked to solve a new instance,
executes them in parallel.

Finally, algorithm configuration and portfolios can be com-
bined. Hydra (Xu, Hoos, and Leyton-Brown 2010) is a tech-
nique for identifying sets of complementary solvers from
highly parameterized design spaces via algorithm configura-
tion, by greedily adding configurations that make the greatest
possible marginal contribution to an existing portfolio. Specif-
ically, we create a (parallel) portfolio by greedily selecting
the algorithm that most improves its performance. In our
experiments we measured improvement by percentage of
instances solved within a one-minute cutoff. Therefore, we
started off by picking the best solver, then used algorithm
configuration to construct many new solvers that complement
it well, then identified the next best solver given that solver,
and so on.

Performing this procedure on our experimental data, we
committed to the best default SAT solver, DCCA (which unfor-
tunately exposes no parameters), and configured the remain-
ing 17 solvers with the objective of maximizing marginal
contribution. The solver clasp (Gebser et al. 2007) was the
best in this regard, improving the number of instances solved
in our validation set by 4% when executed in parallel with
DCCA. We could then have performed further Hydra itera-
tions; however, our first two enhancements from Section 4
end up altering our configuration scenario. Hence, we revisit
the impact of Hydra at the end of Section 4.2.

4 Problem-Specific Enhancements
We now describe the novel methods we developed to bring
our SAT-based station repacking solver to the point where
it could deliver high performance in practice.3 In what fol-
lows, we assume that the sets S and C consist of all stations
and channels, domains D and interference constraints I are
fixed, and that we are given a station repacking instance
(S = S− ∪ {s+}, C) along with a feasible, partial assign-
ment γ−.

3While we only discuss positive results, we unsucessfully ex-
plored many other avenues, notably including incremental SAT
solvers, various heuristics, and local consistency techniques.

4.1 Incremental Station Repacking

Local Augmenting. On a majority of problem instances, a
simple transformation of γ− is enough to yield a satisfiable
repacking: we consider whether it is possible to assign s+ to
a channel and update the channel assignments of the stations
in s+’s neighborhood, holding the rest of γ− fixed. Specifi-
cally, we find the set of stations Γ(s+) ⊆ S that neighbor s+
in the interference graph, then solve the reduced repacking
problem in which all non-neighbors S \ Γ(s+) are fixed to
their assignments in γ−. Observe that a feasible repacking
for this reduced problem is also feasible on the full set; on the
other hand, if we prove that the reduced problem is infeasible,
we cannot conclude anything. The value of this approach is in
its speed: the sparseness of the interference graph often yields
very small neighborhoods, hence small reduced problems.

To evaluate this technique experimentally, we performed
local augmentation on all our instances and used the training
set to configure each SAT solver for best performance on
this new instance distribution. DCCA was once again the best-
performing solver. The performance of this altered version of
DCCA, dubbed DCCA-preSAT, is shown as one of the dotted
lines in Figure 5: it solved 78.5% of the instances and then
stagnated within 0.1 seconds.

Starting Assignment for Local Search Solvers. Local
search solvers such as DCCA work by searching a space of
complete assignments and seeking a feasible point, typically
following gradients to minimize an objective function that
counts violated constraints, and periodically randomizing.
When working with such solvers we can leverage γ− in a
second way, by assigning the stations in γ− to their chan-
nels in γ− and randomly assigning a channel for s+. If a
solution does indeed exist near this starting point, such an ini-
tialization can help us to find it much more quickly (although
there is no guarantee that the solver will not immediately
randomize away to another part of the space). We observe
that this approach does not generalize the “local augmenting”
approach, as we do not constrain the local search algorithm
to consider only s+’s (extended) neighborhood.

The performance of DCCA starting from the previously
feasible assignment, which we dub DCCA+, is shown in Fig-
ure 5. It solved 85.4% of the instances, clearly dominating
the original, randomly initialized DCCA.

4.2 Problem Simplification
We now describe two ways of simplifying problem instances.

Graph Decomposition. First, the subgraph of the interfer-
ence graph induced by the set of stations considered in a
particular problem instance is usually disconnected. It can
therefore help to identify disconnected components and solve
each separately, giving smaller instances to our SAT solvers.
An additional benefit is that if we identify a single compo-
nent as infeasible, we can immediately declare the entire
problem infeasible without looking at all of its components.
In practice, we decompose each problem into its connected
components and solve each component sequentially, starting
with the smallest component. While we could have instead



solved each component in parallel, we found that in prac-
tice runtimes were almost always dominated by the cost of
solving the largest component, so that it did not make much
of a difference whether or not the components were solved
simultaneously. This did not mean that decomposition was
not worth doing—we also found that the largest component
was often considerably smaller than the full problem (e.g.,
first, second and third quartiles over number of stations of
346, 458, and 559 after simplification as compared to 494,
629, and 764 before).

Underconstrained Station Removal. Second, in some
cases we can delete stations completely from a repacking
problem and thereby reduce its size. This occurs when there
exist stations for which, regardless of how every other sta-
tion is assigned, there always exists some channel into which
they can be packed. Verifying this property exactly costs
more time than it saves; instead, we check it via the sound
but incomplete heuristic of comparing a station’s available
channels to its number of neighboring stations. This prob-
lem simplification complements graph decomposition: we
perform it first in order to increase the number of compo-
nents into which we will be able to decompose the graph.
We observe that a few important stations of high degree are
often underconstrained; these are the stations whose removal
makes the biggest difference to graph decomposition.

4.3 Hydra Revisited
The problem-specific enhancements we have discussed so far
impact the Hydra procedure: incremental solvers solve many
instances extremely quickly, allowing the remaining solvers
in the portfolio to concentrate their efforts elsewhere; our
problem simplifications change instances enough to reduce
correlation between solvers. We thus augmented the set of
solvers available to Hydra to include DCCA-presat, DCCA+,
and all base SAT solvers given simplified problem instances.
Our first two rounds of Hydra, already described, identified
our base DCCA-preSAT and DCCA+ solvers. Our third round
selected a configured version of clasp; we dub this new
contributor clasp-h1. The fourth iteration found a second
clasp configuration that operates on simplified instances; we
dub that clasp-h2. The (test-set) performance of these two
clasp configurations is shown in Figure 5. clasp-h1 solves
2.8% of the (test-set) instances previously unsolved by the
(DCCA-preSAT; DCCA+) portfolio, and clasp-h2 solves an
additional 0.9% that were unsolved by the 3-solver portfolio.
The next Hydra step yielded only a 0.2% (validation-set)
improvement, and we found it desirable to obtain a portfolio
that could be run on a 4-core workstation, so we stopped with
this set of 4 solvers.

4.4 Caching Instances
So far, we have concentrated on building the best station
repacking solver possible, based on no contextual informa-
tion except a previous assignment. However, our advance
knowledge of the constraint graph means that we have con-
siderably more context. Furthermore, it is feasible to invest
an enormous amount of offline computational time before the
actual auction, in order to ensure that the repacking problem

can be solved quickly online. We investigated a wide range of
strategies for leveraging such offline computation (including
incremental SAT solving), but had the most success with a
novel caching scheme we call containment caching.

Containment Caching. “Caching” means storing the result
of every repacking problem solved on our training set, for
reference at test time. Unfortunately, in experiments on our
validation set, we observed that it was extremely rare to en-
counter previously-seen problems, even given our training
set of over 100,000 problems. However, observe that if we
know whether or not it is possible to repack a particular set
of stations S, we can also answer many different but related
questions. Specifically, if we know that S was packable then
we know the same for every S′ ⊆ S (and indeed, we know
the packing itself—the packing for S restricted to the sta-
tions in S′). Similarly, if we know that S was unpackable
then we know the same for every S′ ⊇ S. This observation
dramatically magnifies the usefulness of each cached entry
S, as S can be used to answer queries about an exponential
number of subsets or supersets (depending on the feasibility
of repacking S).

We call a cache meant to be used in this way a containment
cache, because it is queried to determine whether one set con-
tains another (i.e., whether the query contains the cache item
or vice versa). To the best of our knowledge, containment
caching is a novel idea. A likely reason why this scheme is
not already common is that querying a containment cache is
nontrivial; see below. We observe that containment caching
is applicable to any family of feasibility testing problems
generated as subsets of a master set of constraints, not just to
spectrum repacking.

In more detail, containment caching works as follows. We
maintain two caches, a feasible cache and an infeasible cache,
and store each problem we solve (including both full in-
stances and their components resulting from problem simpli-
fications) in the appropriate cache. When asked whether it is
possible to repack station set S, we proceed as follows. First,
we check whether the feasible cache contains a superset of
S, in which case the original problem is feasible. If we find
no matches, we check to see whether a subset of S belongs
to the infeasible cache, in which case the original problem is
infeasible. If both queries fail, we simplify and decompose
the given instance and query each component in the feasible
cache. We do not check the infeasible cache again after prob-
lem simplification, because a subset of a component of the
original instance is also a subset of the original instance.

Querying the Containment Cache. Containment caching
is less straightforward than traditional caching, because we
can not simply index entries with a hash function. Instead, an
exponential number of keys could potentially match a given
query. We were nevertheless able to construct an algorithm
that solved this problem extremely quickly: within an average
time of 30 ms on a cache of nearly 200,000 entries.4

4There is a literature on efficiently finding subsets and supersets
of a query set (Hoffmann and Koehler 1999; Savnik 2013; Charikar,
Indyk, and Panigrahy 2002; Patrascu 2011). However, our algorithm
was so fast in our setting that we did not explore alternatives; indeed,



Figure 3: Containment caching example. Left: six elements of the power set 2{a,b,c,d,e}. Center: a secondary cache defined by a
random ordering over the five elements, with each of the sets interpreted as a bit string and sorted in descending order. Right: the
result of querying the containment cache for supersets of {c, d}. The query (18) does not exist in the cache directly; the next
largest entry (21) is not a superset (i.e., 01001 does not bitwise logically imply 10101); the cache returns {a, c, d} (22).

Specifically, our approach proceeds as follows. Offline,
we build (1) a traditional cache C indexed by a hash func-
tion and—in the case of feasible problems—storing solu-
tions along with each problem; and (2) a secondary cache Co

containing only a list of station sets that appear in C. This
secondary cache is defined by an ordering o over the stations,
which we choose uniformly at random. We represent each
station set stored in Co as a bit string, with the bit in position
k set to 1 if and only if the k-th station in ordering o belongs
to the given station set. We say that one station set is larger
or smaller than another by interpreting both station set bit
strings as integers under the ordering o and then comparing
the integers. Appealing to this ordering, we sort the entries
of Co in descending order. We give an example in Figure 3:
the left and center diagrams respectively illustrate a set of six
subsets of the power set 2{a,b,c,d,e} and a secondary cache
constructed based on these sets along with a random ordering
over their elements. As the figure suggests, secondary caches
are very compact: a cache of 200,000 entries, each consist-
ing of 2,000 stations/bits, occupies only 50 MB. We can
thus afford to build multiple secondary caches Co1 , . . . ,Co` ,
based on the same set of station sets but ` different random
orderings.

We now explain how to query for a superset, as we do to
test for feasible solutions; the algorithm for subsets is analo-
gous. (A sample execution of this algorithm is illustrated in
Figure 3 (right) and explained in the caption.) Given a query
S, we perform binary search on each of the ` secondary
caches to find the index corresponding to S itself (if it is
actually stored in the cache) or of the smallest entry larger
than S (if not); denote the index returned for cache Cok as
ik. If we find S, we are done: we retrieve its corresponding

our approach may be of independent interest.

solution from the main cache. Otherwise, the first i1 entries
in cache Co1 contain a mix of supersets of S (if any exist)
and non-supersets that contain one or more stations not in
S that appear early in the ordering o1. Likewise, the first i2
entries in Co2 contain the same supersets of S (because Co1
and Co2 contain exactly the same elements) and a different
set of non-supersets based on the ordering o2, and so on. We
have to search through the first ik entries of some cache Cok ;
but it does not matter which Cok we search. We thus choose
the shortest list: k = arg minj ij . This protects us against un-
lucky situations where the secondary cache’s ordering yields
a large ik: this is very unlikely to happen under all ` random
orderings. The superset search itself can be performed ef-
ficiently by testing whether the cached bit string is bitwise
logically implied by the query bit string. If we find a superset,
we query the main cache to retrieve its solution.

Evaluation. To build the cache we used to evaluate our
approach, we ran our 4-solver parallel portfolio with a 24-
hour cutoff time on all instances from both our training and
validation sets,5 along with all of their simplified versions,

5A word of warning: Our experiments may exaggerate cache
performance because of the way we partitioned our training and
test data: related instances from the same auction run can appear in
different sets. We would have preferred to use a test set consisting of
entirely distinct auction simulations; however, the data provided to
us by the FCC did not distinguish the auction runs from which each
instance was taken. We do note that SATFC achieved very strong
performance even without the cache—solving 98% of the instances
in under a minute—meaning that even if we do overestimate cache
performance here, our overall qualitative findings would not change.
Subsequent, informal experimentation on new data (which we are
not yet free to publish) assures us that containment caching contin-
ues to “solve” a large fraction of instances even when entire auction
runs are excluded from training, albeit usually fewer than the 98%



terminating runs when one solver completed. To speed up this
process, we constructed the cache in a bootstrapped fashion:
we made use of a partial cache even as we were working
through the set of instances designed to populate the cache,
thereby solving subsequent instances more quickly. In the
end, we obtained a cache of 185,750 entries at a cost of
roughly one CPU month. The largest feasible problem in our
cache contained 1170 stations, and the smallest infeasible
problem contained 2 stations. We built ` = 5 secondary
caches based on different random station orderings.

We interpret the containment cache as a standalone solver
that behaves as follows: (1) checking whether a full instance
has a superset in the feasible cache; (2) if not, checking
whether a subset of the instance belongs to the infeasible
cache; (3) simplifying the instance and then asking whether
all of its components have supersets in the feasible cache.
This solver’s runtime is equal to the appropriate cache lookup
time(s) plus the time to perform problem simplification, if ini-
tial cache lookup fails; we report its performance in Figure 5.
It far outperformed all other algorithms, solving 98.2% of the
instances on its own; however, this “solver” obviously works
only because we were able to obtain a database of solved
instances via our other algorithms. We also note that its per-
formance would continue to improve if we obtained an even
larger training set and performed more offline computation,
as we intend to do in preparation for the incentive auction.

To investigate more deeply how the cache functioned, Fig-
ure 4 shows a scatter plot relating the frequency with which
different keys were “hit” in the cache and the amount of time
the best set of remaining solvers would have taken to solve
the instances if the cache had not been used. This analysis
shows that only a handful of keys were hit more than ten
times, but that infrequently hit keys contributed significantly
to the total time saved by the cache. Furthermore, many hits
saved more than our one-minute cutoff time, justifying our
investment in very long runs while populating the cache.

5 Conclusions: Putting It All Together
Station repacking is an economically important problem
that initially seemed impractical to solve exactly. We have
shown how to combine state-of-the-art SAT solvers, recent
meta-algorithmic techniques, and further speedups based on
domain-specific insights to yield a solver that meets the per-
formance needs of the real incentive auction. Specifically,
we identified a powerful parallel portfolio6 of four solvers:
a containment cache followed by DCCA-preSAT; DCCA+;
clasp-h1; and clasp-h2. This portfolio, which we named
SATFC 2.0 (for SAT-based Feasibility Checker) achieved
impressive performance (shown in Figure 5) as the SATFC
2.0 line), solving 99.0% of test instances in under 0.2 seconds,
and 99.6% in under a minute. Moreover, the contribution of
one of its main components, the containment cache, will con-
tinue to increase at negligible (online) CPU cost as we base

reported below.
6Our intention is for SATFC to be run in parallel. However, since

our portfolio achieves excellent performance in under a second,
sequential execution would therefore achieve the same performance
in under four seconds.

Figure 4: Time saved per cache hit. Each point represents
a cache hit on a particular key: the x-axis represents the
number of times the corresponding key was hit, while the
y-axis represents the amount of time each individual cache
hit saved. For visualization purposes we count the runtime of
unsolved instances as 10 times the cutoff time and color such
points in red.

Figure 5: ECDF of runtimes of the SAT solvers we include
in our final portfolio. The bars show fraction of SAT and
UNSAT instances binned by their (fastest) runtime.

it on more data.
Finally, we note SATFC 2.0’s significant improvement

over our previous solver SATFC, which was adopted and offi-
cially released by the FCC in November 2014 (FCC 2014b),
albeit never previously discussed in an academic publication.
Most of the new ideas presented in this paper go beyond
SATFC, which is a single-processor sequential portfolio: it
works by carrying out a SAT encoding, performing the “local
augmenting” idea described in Section 4, and then executing
a version of clasp that we identified via algorithm config-
uration. Although SATFC achieved quite good performance
within long cutoff times, it is both dramatically less able to
solve instances within very short timescales and able to solve
considerably fewer instances overall.
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