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Abstract. Since hyperparameter optimization is crucial for achiev-
ing peak performance with many machine learning algorithms, an
active research community has formed around this problem in the
last few years. The evaluation of new hyperparameter optimization
techniques against the state of the art requires a set of benchmarks.
Because such evaluations can be very expensive, early experiments
are often performed using synthetic test functions rather than using
real-world hyperparameter optimization problems. However, there
can be a wide gap between the two kinds of problems. In this work,
we introduce another option: cheap-to-evaluate surrogates of real
hyperparameter optimization benchmarks that share the same hyper-
parameter spaces and feature similar response surfaces. Specifically,
we train regression models on data describing a machine learning
algorithm’s performance under a wide range of hyperparameter con-
figurations, and then cheaply evaluate hyperparameter optimization
methods using the model’s performance predictions in lieu of the real
algorithm. We evaluate the effectiveness for using a wide range of
regression techniques to build these surrogate benchmarks, both in
terms of how well they predict the performance of new configurations
and of how much they affect the overall performance of hyperparame-
ter optimizers. Overall, we found that surrogate benchmarks based on
random forests performed best: for benchmarks with few hyperparam-
eters they yielded almost perfect surrogates, and for benchmarks with
more complex hyperparameter spaces they still yielded surrogates
that were qualitatively similar to the real benchmarks they model.

1 Introduction

The performance of many machine learning methods depends criti-
cally on hyperparameter settings and thus on the method used to set
such hyperparameters. Recently, sequential model-based Bayesian op-
timization methods, such as SMAC[16], TPE[2]], and Spearmint[29]
have been shown to outperform more traditional methods for this prob-
lem (such as grid search and random search [3]) and to rival—and in
some cases surpass—human domain experts in finding good hyperpa-
rameter settings [29} 130, I5]. One obstacle to further progress in this
nascent field is a paucity of reproducible experiments and empirical
studies. Until recently, a study introducing a new hyperparameter
optimizer would typically also introduce a new set of hyperparameter
optimization benchmarks, on which the optimizer would be demon-
strated to achieve state-of-the-art performance (as compared to, e.g.,
human domain experts). The introduction of the hyperparameter opti-
mization library (HPOIlib [8]]), which offers a unified interface to dif-
ferent optimizers and benchmarks, has made it easier to reuse previous
benchmarks and to systematically compare different approaches [4].
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However, a substantial problem remains: performing a hyperpa-
rameter optimization experiment requires running the underlying
machine learning algorithm, often at least hundreds of times. This is
infeasible in many cases. The first (mundane, but often significant)
obstacle is to get someone else’s research code working on one’s own
system—including resolving dependencies and acquiring required
software licenses—and to acquire the appropriate input data. Fur-
thermore, some code requires specialized hardware; most notably,
general-purpose graphics processing units (GPGPUs) have become a
standard requirement for the effective training of modern deep learn-
ing architectures [20,121]. Finally, the computational expense of hyper-
parameter optimization can be prohibitive for research groups lacking
access to large compute clusters. These problems represent a consid-
erable barrier to the evaluation of new hyperparameter optimization
algorithms on the most challenging and interesting hyperparameter
optimization benchmarks, such as deep belief networks [2]], convo-
lutional neural networks [29} 5]}, and combined model selection and
hyperparameter optimization in machine learning frameworks [30].

Given this high overhead for studying complex hyperparameter
optimization benchmarks, most researchers have drawn on simple,
synthetic test functions from the global continuous optimization com-
munity [12]]. While these are simple to use, they are often poorly
representative of the hyperparameter optimization problem: in con-
trast to the response surfaces of actual such problems, these synthetic
test functions are smooth and often have unrealistic shapes. Further-
more, they only involve real-valued parameters and hence do not
incorporate the categorical and conditional parameters typical of ac-
tual hyperparameter optimization benchmarks.

In the special case of small, finite hyperparameter spaces, a much
better alternative is simply to record the performance of every hyper-
parameter configuration, thereby speeding future evaluations via a
table lookup. The result is a perfect surrogate of an algorithm’s true
performance that takes time O(1) to compute (using a hash) and that
can be used in place of actually running the algorithm and evaluating
its performance. This table-based surrogate can trivially be transported
to any new system, without the complicating factors involved in run-
ning the original algorithm (setup, special hardware requirements,
licensing, computational cost, etc.). In fact, several researchers have
already applied this approach to simplifying their experiments: for
example, Bardenet et al. [1] saved the performances of a parameter
grid with 108 points of Adaboost on 29 datasets, and Snoek et al. [29]
saved the performance of parameter grids with 1400 and 288 points
for a structured SVM [31]] and an online LDA [13]], respectively. The
latter two benchmarks are part of HPOIib and are, in fact, HPOIib’s
most frequently used benchmarks, due to their simplicity of setup and
low computational cost.

Of course, the drawback of this table lookup idea is that it is limited



to small, finite hyperparameter spaces. Here, we generalize the idea
of machine learning algorithm surrogates to arbitrary, potentially
high-dimensional hyperparameter spaces (including, e.g., real-valued,
categorical, and conditional hyperparameters). As in the table-lookup
strategy, we first evaluate many hyperparameter configurations during
an expensive offline phase. We then use the resulting performance
data to train a regression model to approximate future evaluations
via model predictions. As before, we obtain a surrogate of algorithm
performance that is cheap to evaluate and trivially portable. However,
model-based surrogates offer only approximate representations of
performance. Thus, a key component of our work presented in the
following is an investigation of the quality of these approximations.

We are not the first to propose the use of learned surrogate models
that stand in for computationally complex functions. In the field of
metalearning [6]], regression models have been extensively used to
predict the performance of algorithms across various datasets based
on dataset features [11} 26]. The statistics literature on the design
and analysis of computer experiments (DACE) (27| 28] uses similar
surrogate models to guide a sequential experimental design strategy
aiming to achieve either an overall strong model fit or to identify the
minimum of a function. Similarly, the SUrrogate MOdeling (SUMO)
Matlab toolkit[10] provides an environment for building regression
models to describe the outputs of expensive computer simulations
based on active learning. Such an approach for finding the minimum
of a blackbox function also underlies the sequential model-based
Bayesian optimization framework [7, [16] (SMBO, the framework
underlying all hyperparameter optimizers we study here). While all
of these lines of work incrementally construct surrogate models of a
function in order to inform an active learning criterion that determines
new inputs to evaluate, our work differs in its goals: We train surro-
gates on a set of data gathered offline (by some arbitrary process—in
our case the combination of many complete runs of several different
SMBO methods plus random search) and use the resulting surro-
gates as stand-in models for the entire hyperparameter optimization
benchmark.

The surrogate benchmarks resulting from our work can be used in
several different ways. Firstly, like synthetic test functions and table
lookups, they can be used for extensive debugging and unit testing.
Since the large computational expense of running hyperparameter
optimizers is typically dominated by the cost of evaluating algorithm
performance under different selected hyperparameters, our bench-
marks can also substantially reduce the time required for running
a hyperparameter optimizer, facilitating whitebox tests of an opti-
mizer using exactly the hyperparameter space of the machine learning
algorithm whose performance is modelled by the surrogate. This func-
tionality is gained even if the surrogate model only fits algorithm
performance quite poorly (e.g., due to a lack of sufficient training
data). Finally, a surrogate benchmark whose model fits algorithm per-
formance very well can also facilitate the evaluation of new features
inside the hyperparameter optimizer, or even the (meta-)optimization
of a hyperparameter optimizer’s own hyperparameters (which can be
useful even without the use of surrogates, but is typically extremely
expensive [17]).

The rest of this paper is laid out as follows. We first provide some
background on hyperparameter optimization (Section[2). Then, we dis-
cuss our methodology for building surrogate benchmarks (Section [3)
using several types of machine learning models. Next, we evaluate the
performance of these surrogates in practice (Section[d). We demon-
strate that random forest models tend to fit the data better than a broad
range of competing models, both in terms of raw predictive model

performance and in terms of the usefulness of the resulting surrogate
benchmark for comparing hyperparameter optimization procedures.

2 Background: Hyperparameter Optimization

The construction of machine learning models typically gives rise to
two optimization problems. The first is internal optimization, such
as selecting a neural network’s likelihood-maximizing weights; the
second is tuning the method’s hyperparameters, such as setting a
neural network’s regularization parameters or number of neurons.
The former problem is closely coupled with the machine learning
algorithm at hand and is very well studied; here, we consider the
latter. Let A1, ..., \,, denote the hyperparameters of a given ma-
chine learning algorithm, and let Ay, ..., A, denote their respective
domains. The algorithm’s hyperparameter space is then defined as
A = Ay X -+ X A,,. When trained with hyperparameters A € A
on data Diyin, the algorithm’s loss (e.g., misclassification rate) on
data Dyaiia 18 L(X, Diain, Dvaiia). Using k-fold cross-validation, the
optimization problem is then to minimize:
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A hyperparameter \,, can have one of several types, such as contin-
uous, integer-valued or categorical. For example, the learning rate for
a neural network is continuous; the random seed given to initialize an
algorithm is integer-valued; and the choice between various prepro-
cessing methods is categorical. Furthermore, there can be conditional
hyperparameters, which are only active if another hyperparameter
takes a certain value; for example, the hyperparameter “number of
principal components” only needs to be instantiated when the hyper-
parameter “preprocessing method” is PCA.

Evaluating f () for a given A € A is computationally costly, and
so many techniques have been developed to find good configurations
A with few function evaluations. The methods most commonly used
in practice are manual search and grid search, but recently, it has
been shown that even simple random search can yield much better
results [3]]. The state of the art in practical optimization of hyperpa-
rameters is defined by Bayesian optimization methods [16, 29| 2],
which have been successfully applied to problems ranging from deep
neural networks to combined model selection and hyperparameter
optimization [2,129,130, 19, 15].

Bayesian optimization methods use a probabilistic model M to
model the relationship between a hyperparameter configuration A and
its performance f(A). They fit this model using previously gathered
data and then use it to select a next point Apey to evaluate, trading off
exploitation and exploration in order to find the minimum of f. They
then evaluate f(Anew), update M with the new data (Anew, f(Anew))
and iterate. Throughout this paper, we will use the following three
instantiations of Bayesian optimization:

SPEARMINT [29] is a prototypical Bayesian optimization method that
models pa(f | A) with Gaussian process (GP) models. It supports
continuous and discrete parameters (by rounding), but no conditional
parameters.

Sequential Model-based Algorithm Configuration (SMAC) [16]
models pa(f | A) with random forests. When performing cross
validation, SMAC only evaluates as many folds as necessary to show
that a configuration is worse than the best one seen so far (or to
replace it). SMAC can handle continuous, categorical, and conditional
parameters.



Tree Parzen Estimator (TPE) [2] models pa((f | A) indirectly. It
models p(f < f*). p(A | f < f*).and p(A | f > f7). where
f* is defined as a fixed quantile of the function values observed so
far, and the latter two probabilities are defined by tree-structured
Parzen density estimators. TPE can handle continuous, categorical,
and conditional parameters.

An empirical evaluation on the three methods on the HPOlib hy-
perparameter optimization benchmarks showed that SPEARMINT per-
formed best on benchmarks with few continuous parameters and
SMAC performed best on benchmarks with many, categorical, and/or
conditional parameters, closely followed by TPE. SMAC also per-
formed best on benchmarks that relied on cross-validation [8].

3 Methodology

We now discuss our approach, including the algorithm performance
data we used, how we preprocessed the data, the types of regression
models we evaluated, and how we used them to construct surrogate
benchmarks.

3.1 Data collection

In principle, we could construct surrogate benchmarks using algorithm
performance data gathered by any means. For example, we could use
existing data from a manual exploration of the hyperparameter space,
or from an automated approach, such as grid search, random search or
one of the more sophisticated hyperparameter optimization methods
discussed in Section[2]

It is more important for surrogate benchmarks to exhibit strong
predictive quality in some parts of the hyperparameter space than in
others. Specifically, our ultimate aim is to ensure that hyperparameter
optimizers perform similarly on the surrogate benchmark as on the
real benchmark. Since most optimizers spend most of their time in
high-performance regions of the hyperparameter space, and since
relative differences between the performance of hyperparameter con-
figurations in such high-performance regions tend to impact which
hyperparameter configuration will ultimately be returned, accuracy
in this part of the space is more important than in regions of poor
performance. The training data should therefore densely sample high-
performance regions. We thus advocate collecting performance data
primarily via runs of existing hyperparameter optimization proce-
dures. As an additional advantage of this strategy, we can obtain this
costly performance data as a by-product of executing hyperparameter
optimization procedures on the original benchmark.

Of course, it is also important to accurately identify poorly per-
forming parts of the space: if we only trained on performance data
for the very best hyperparameter settings, no machine learning model
could be expected to infer that performance in the remaining parts
of the space is poor. This would typically lead to underpredictions
of performance in poor parts of the space. We thus also included
performance data gathered by a random search. (An alternative is grid
search, which can also cover the entire space. We did not adopt this
approach because it cannot deal effectively with large hyperparameter
spaces.) To gather the data for each surrogate benchmark in this paper,
we therefore executed » = 10 runs of each of the three Bayesian
optimization methods described in Section [2] (each time with a dif-
ferent seed), as well as random search, with each run gathering the
performance of a fixed number of configurations.

Table 1.
dom search to optimize hyperparameters, we considered 100 samples over the

Overview of evaluated regression algorithms. When we used ran-

stated hyperparameters (their names refer to the SCIKIT-LEARN implementa-
tion [25]); the model was trained on 50% of the data, and the best configuration
was chosen based on the performance on the other 50% and then trained on all
data.

Model Hyperparameter optimization Impl.
Random Forest None 25
Gradient Boosting None 25
Extra Trees None 25
Gaussian Process MCMC sampling over hyperparameters 29
SVR Random search for C and gamma 25
NuSVR Random search for C, gamma and nu 25
Bayesian Neural Network ~ None 24
k-nearest-neighbours Random search for n_neighbors 25
Linear Regression None 25
Least Angle Regression None 25
Ridge Regression None 25

3.2 Data preprocessing

For each benchmark we studied for this paper, after running the
hyperparameter optimizers and random search, we preprocessed the
data as follows:

1. We extracted all available configuration/performance pairs from
the runs. For benchmarks that used cross-validation, we encoded
the cross-validation fold of each run as an additional categorical
parameter (for benchmarks without cross validation, that parameter
was set to a constant).

2. We removed entries with invalid results caused by algorithm
crashes. Since some regression models used in preliminary experi-
ments could not handle duplicated configurations, we also deleted
these, keeping the first occurrence.

3. For data from benchmarks featuring conditional parameters, we
replaced the values of inactive conditional parameters with a default
value.

4. To code categorical parameters, we used a one-hot (aka 1-in-k)
encoding, which replaces any single categorical parameter \ with
domain A = {ku,...kn} by n binary parameters, only the i-th of
which is true for data points where A is set to k;.

3.3 Choice of Regression Models

We considered a broad range of commonly used regression algorithms
as candidates for our surrogate benchmarks. To keep the results com-
parable, all models were trained on data encoded as detailed in the
previous section. If necessary for the algorithm, we also normalized
the data to have zero mean and unit variance (by subtracting the mean
and dividing by the standard deviation). If not stated otherwise for a
model, we used the default configuration of its implementation.
Table |1| details the regression models and implementations we
used. We evaluated three different tree-based models, because SMAC
uses a random forest (RF), and because RFs have been shown to
yield high-quality predictions of algorithm performance data [18].
As a specialist for low-dimensional hyperparameter spaces, we used
SPEARMINT’s Gaussian process (GP) implementation, which per-
forms MCMC to marginalize over hyperparameters. Since SMAC per-
forms particularly well on high-dimensional hyperparameter spaces
and SPEARMINT on low-dimensional continuous problems [8], we
expected their respective models to mirror that pattern. The remaining
prominent model types we experimented with comprised k-nearest-
neighbours (kNN), linear regression, least angle regression, ridge



Table 2. Properties of our data sets. “Input dim.” is the number of features
of the training data; it is greater than the number of hyperparameters because
categorical hyperparameters and the crossvalidation fold are one-hot-encoded.
For each benchmark, before preprocessing the number of data points was
10 x 4x (#evals. per run).

hyperparameter Input  #evals. #data

#X  cond. cat./cont.  dim. per run
Branin 2 - -/2 3 200 7402
Log. Reg. 5CV 4 - -/4 9 500 18521
HP-NNET convex 14 4 7117 25 200 7750
HP-DBNET mrbi 36 27 19/17 82 200 7466

regression, SVM methods (all as implemented by scikit-learn [25]),
and Bayesian neural networks (BNN) [24].

3.4 Construction and Use of Surrogate Benchmarks

To construct surrogates for a hyperparameter optimization benchmark
X, we trained the previously mentioned models on the performance
data gathered on benchmark X . The surrogate benchmark X, based
on model M is identical to the original benchmark X, except that
evaluations of the machine learning algorithm to be optimized in
benchmark X are replaced by a performance prediction obtained
from model M. In particular, the surrogate’s configuration space
(including all parameter types and domains) and function evaluation
budget are identical to the original benchmark.

Importantly, the wall clock time to run an algorithm on X7}, is
much lower than that required on X, since expensive evaluations
of the machine learning algorithm underlying X are replaced by
cheap model predictions. The model M is simply saved to disk and is
queried when needed. We could implement each evaluation in X},
as loading M from disk and then using it for prediction, but to avoid
the repeated cost of loading M, we also allow for storing M in an
independent process and communicate with it via a local socket.

To evaluate the performance of a surrogate benchmark scenario
X we ran the same optimization experiments as on X, using the
same settings and seeds. In addition to evaluating the raw predictive
performance of model M, we assessed the quality of surrogate bench-
mark X, by measuring the similarity of hyperparameter optimization
performance on X and X ;.

4 Experiments and Results

In this section, we experimentally evaluate the performance of our
surrogates. We describe the data upon which our surrogates are based,
evaluate the raw performance of our regression models on this data,
and then evaluate the quality of the resulting surrogate benchmarks.

4.1 Experimental Setup

We collected data for four benchmarks from the hyperparameter opti-
mization benchmark library, HPOLIB [§]]. For each benchmark, we
executed 10 runs of SMAC, SPEARMINT, TPE and random search
(using the same Hyperopt implementation of random search as for
TPE), yielding the data detailed in Table [2] The four benchmarks
comprised two low-dimensional and two high-dimensional hyperpa-
rameter spaces.

The two low-dimensional benchmarks were the synthetic Branin
test function and a logistic regression [29] on the MNIST dataset [23].
Both of these have been extensively used before to benchmark hy-
perparameter optimization methods. While the 2-dimensional Branin

test function is trivial to evaluate and therefore does not require a
surrogate, we nevertheless included it to study how closely a surro-
gate can approximate the function. The logistic regression is an actual
hyperparameter optimization benchmark with 4 hyperparameters that
includes a 5-fold cross-validation. That means for each configuration
that the optimizers TPE, SPEARMINT and random search evaluated
there were 5 data points that only differ in which fold they corre-
sponded to. Since SMAC saves time by not evaluating all folds for
configurations that appear worse than the optimum, it only evaluated
a subset of folds for most of the configurations. The evaluation of
a single cross-validation fold required roughly 1 minute on a single
core of an Intel Xeon E5-2650 v2 CPU.

The high-dimensional benchmarks comprised a simple and a deep
neural network, HP-NNET and HP-DBNET (both taken from [2]) to
classify the MRBI and convex datasets, respectively [22]. Their di-
mensionalities are 14 and 36, respectively, and many categorical hy-
perparameters further increase the input dimension to the regression
model. Evaluating a single HP-NNET configuration required roughly
12 minutes using 2 cores of an Intel Xeon E5-2650 v2 with OpenBlas.
The HP-DBNET required a GPGPU to run efficiently; on a modern
Geforce GTX780 GPU, it took roughly 15 minutes to evaluate a single
configuration. In contrast, using the surrogate benchmark model we
built, one configuration can be evaluated in less than a second on a
standard CPU.

For some model types, training with all the data from Table [2]
was computationally infeasible, and we had to subsample 2 000 data
points (uniformly at rando for training. This was the case for
nuSVR, SVR, and the Bayesian neural network. For the GP model,
we had to limit the dataset even further to 1 500 data points. On this
reduced training set, the GP model required 255 minutes to train on
the most expensive data set (HP-DBNET MRBI), and the Bayesian
neural networks required 36 minutes; all other models required less
than one minute for training.

We used HPOLIB to run the experiments for all optimizers with
a single format, both for the original hyperparameter optimization
benchmarks and for our surrogates. To make our results reproducible,
we fixed the pseudo-random number seed in each function evaluation
to 1. The version of the SPEARMINT package we used crashed for
about 1% of all runs due to a numerical problem. In evaluations where
we require entire trajectories, for these crashed SPEARMINT runs,
we imputed the best function value found before the crash for all
evaluations after the crash.

4.2 Evaluation of Raw Model Performance

We first studied the raw predictive performance of the models we
considered on our preprocessed data.

4.2.1 Using all data

To evaluate the raw predictive performance of the models listed in
Table[T] we used 5-fold cross-validation performance and computed
the cross-validated root mean squared error (RMSE) and Spearman’s
rank correlation coefficient (CC) between model predictions and the
true responses in the test fold. Here, the responses correspond to
validation error rate in all benchmarks except for the Branin one
(where they correspond to the value of the Branin function).

3 For a given dataset and fold, all models based on the same number of data
points used the same subsampled data set. We note that model performance
sometimes was quite noisy with respect to the pseudorandom number seed
for this subsampling step and we thus used a fixed seed.



Table 3.  Average RMSE and CC for a 5-fold cross validation for different
regression models. For each entry, bold face indicates the best performance on
this dataset, and underlined values are not statistically significantly different
from the best according to a paired ¢-test (with p = 0.05). Models marked

with an * (T) are trained on only a subset of 2000 (1500) data points per fold.

Branin Log.Reg. scv HP-NNET convex ~ HP-DBNET mrbi
Model RMSE  CC RMSE  CC RMSE  CC RMSE  CC

RF 186 1.00] 003 098 004 094 0.06  0.90
GrBoost | 7.10 096 | 007 094 | 005 089 | 006 0.86
ExTrees | 1.10 1.00 | 004 098 | 0.03 095 | 006 0.90
GP+ 003 10 | 013 088 | 004 092 | 010 078
SVR * 006 10 | 013 087 | 006 082 | 008 080
mSVR* | 002 10 | 018 084 | 006 085 | 008 0.82
BNN * 684 091|010 091 | 005 084 | 010 072
kNN 178  1.00] 0.14 088 | 006 085 | 008 078
LinReg. | 4533 028 | 023 078 | 0.08 060 | 0.1 0.70
LeastAngleRee.| 4533 028 | 023 078 | 0.08 060 | 01 07

Ridge Reg, 4601 030 | 026 077 | 009 0.61 0.10 067

Table 3] presents these results, showing that the GP and the SVR
approaches performed best on the smooth low-dimensional synthetic
Branin test function, but that RF-based models are better for pre-
dicting the performance of actual machine learning algorithms. This
strong performance was to be expected for the higher-dimensional
hyperparameter space of the neural networks, since RFs perform au-
tomatic feature selectionﬂ The logistic regression example is rather
low-dimensional, but the categorical cross-validation fold is likely
harder to model for GPs than for RFSE] Extra Trees predicted the
performance of the actual machine learning algorithms nearly as
good as the RF, Gradient boost was slightly worse. Bayesian neu-
ral networks, k-nearest-neighbours and our linear regression models
could not achieve comparable performance. Based on these results,
we decided to focus the remainder of our study on a diverse sub-
set of models: two tree-based approaches (RFs and gradient boost),
Gaussian processes, nuSVR, and, as an example of a popular, yet
poorly-performing model, k-nearest-neighbours. We paid special at-
tention to RFs and Gaussian processes, since these have been used
most prominently in Bayesian hyperparameter optimization methods.

4.2.2 Leave one optimizer out

In practice, we will want to use our surrogate models to predict the
performance of a machine learning algorithm with hyperparameter
configurations selected by some new optimization method. The config-
urations it evaluates might be quite different from those considered by
the optimizers whose data we trained on. Next to the standard cross-
validation setting from above, we therefore evaluated our models in
the leave-one-optimizer-out setting, which means that the regression
model learns from data drawn from all but one optimizer, and its
performance is measured on the held out data.

Table[]reports RMSE and CC analogous to those of Table[3] but for
the leave-one-optimizer-out setting. This setting is more difficult and,
consequently, the results were slightly worse, but the best-performing
models stayed the same: nuSVR and GP for low dimensional and RFs
for higher dimensional datasets.

Figure[T]studies the predictive performance in more detail for the
HP-DBNET mrbi benchmark, demonstrating that tree-based models
also performed best in a qualitative sense. The figure also shows

4 We note that RFs could also handle the categorical hyperparameters in
these benchmarks natively. We used the one-hot encoding for comparability
with other methods. It is remarkable that even with this encoding, they
outperformed all other methods.

5 As we will see later (Figure , the RF-based optimizer SMAC also per-
formed better on this benchmark than the GP-based optimizer SPEARMINT.

Table 4. Average RMSE and CC of 5 regression algorithms in the leave-one-
optimizer-out setting. Bold face indicates the best value across all regression
models on this dataset.

Branin Log.Reg. scv HP-NNET convex ~ HP-DBNET mrbi
Model RMSE  CC RMSE  CC RMSE ~ CC RMSE ~ CC
RF 2.04 095 | 0.10 093 | 0.04 0.82 0.07 0.85
Gr.Boost | 6.96 0.85 | 0.12 0.84 0.05 0.81 0.07 0.83
GP 0.12 0.99 | 0.16 0.76 0.05 0.84 0.10 0.64
nuSVR 0.03 0.98 | 0.16 0.74 0.10 0.61 0.10 0.73
KNN | 208 096 | 0.19 072 | 007 073 | 009 067
RF GB GP NuSVR kNN
SMAC | A , |
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Figure 1. True performance (x-axis) vs. regression model predictions (y-

axis) for the HP-DBNET mrbi dataset. All plots have the same axes, showing
error rates ranging from 0.4 to 1.1. Each marker represents the performance
of one configuration; green and red crosses indicate 1/3 best and worst true
performance, respectively. Configurations on the diagonal are predicted per-
fectly, error predictions above the diagonal are too high, and predictions for
configurations below the diagonal are better than the configuration’s actual
performance. The first column shows which data was left out for training and
used for testing.

that the models tended to make the largest mistakes for the worst
configurations; especially the non-tree-based models predicted some
of these to be better than some of the best configurations. The same
patterns also held for the logistic regression SCV and the HP-NNET
convex data (not shown). The models did not well in identifying which
neural network configurations failed to converge within the given time
budget [FH: how large was that budget?] and thus received an error
rate of 1.0. Interestingly, on the high-dimensional HP-DBNET MRBI
benchmark the GP performed quite poorly in two cases, predicting
many data points around the data mean.

4.3 Evaluation of Surrogate Benchmarks

We now study the performance of the surrogate benchmarks X,
obtained for random forest (RF) and Gaussian process (GP) models
M. We assess the quality of X}, by comparing the performance of
various hyperparameter optimizers on X, and the real benchmark
X.

4.3.1 Using all data

We first analyzed the performance of surrogate benchmarks based
on models trained on the entire data we have available. We note
that in this first experiment, a surrogate that perfectly remembers the
training data would achieve perfect performance, because we used the
same hyperparameter optimizers for evaluation as we did to gather



the training data. However, after the first imperfect prediction, the
trajectories of the optimizers will diverge. Thus, since none of our
models is perfect on training data, this initial experiment serves as an
evaluation of surrogate benchmarks based on training data gathered
through the same mechanism as at test time.

We performed experiments for our three actual hyperparameter
optimization benchmarks, logistic regression, a simple and a deep
neural network. For each of them, we repeated the 10 runs for TPE,
SMAC and SPEARMINT we previously conducted on the real bench-
marks, but now used surrogate benchmarks based on RFs and GPs,
respectively.

Figure[2]shows that the surrogate benchmarks based on Gaussian
process models differed substantially from the true benchmarks. The
figures show the best function values found by the various optimizers
over time. Visually comparing the first column (real benchmark)
to the third (surrogate benchmark based on GP model), the most
obvious difference is that the surrogate benchmark fails completely
on HP-DBNET MRBI: since the GP model is unable to properly fit
the high-dimensional data (predicting all configurations to perform
roughly equally, around the data mean) all optimizers basically stay
at the same performance level (the data mean). Note in the plot for
the true benchmark that the GP-based optimizer SPEARMINT also
performed very poorly on this benchmark.

In the other two cases (logistic regression SCV and HP-NNET con-
vex), the performance of the optimizers appears visually similar to the
true benchmark at first glance. However, for the logistic regression
5CV the GP model predicts some parts of the hyperparameter space
to be better than the actual best part of the space, leading to the final
optimization results on the surrogate benchmark to appear better than
optimization results on the true benchmark. Another difference is a
zig-zag pattern in the trajectories for logistic regression surrogates:
these are also (mildly) present in the real benchmark (mild enough
to only be detectable when zooming into the figure) and are due to
the slightly different performance in the 5 folds of cross validation;
the impact of the folds is very small, but the GP model predicts it to
be large, causing the zig-zag. Interestingly, for the GP model trained
on the HP-NNET convex dataset, regions with “better” performance
appear hard to find: only SMAC and TPE identified them, causing a
larger gap between SPEARMINT and SMAC/TPE than on the real
benchmark.

Conversely, the RF surrogates yielded results much closer to those
obtained on the real benchmark. Visually, the first column (true bench-
mark) and second column appear very similar, indicating that the RF
captured the overall pattern well. There are some differences in the
details. For example, on HP-NNET convex, the surrogate does not
capture that TPE finds very good configurations before SMAC and
yields the overall best performance. Nevertheless, overall, our results
for the RF surrogates qualitatively resemble those for the true bench-
marks, and for the logistic regression example, the correspondence is
almost perfect.

4.3.2 Leave one optimizer out

Next, we studied the use of a surrogate benchmark to evaluate a new
optimizer. For each optimizer o and each of the three hyperparame-
ter optimization benchmarks X, we trained RF and GP models M
on the respective leave-one-optimizer-out training data discussed in
Section and compared the performance of optimizer o0 on X
and X};. Figurereports the results of this experiment, showing that
surrogate benchmarks based on RF models qualitatively resembled
the real benchmarks.

The results for the logistic regression SCV benchmark (top row
of Figure 3) show that surrogate benchmarks based on RF models
mirrored the performance of each optimizer o on the real benchmark
well, even when the training data did not include data gathered with
optimizer o. In contrast, surrogates based on Gaussian process models
performed poorly: the Gaussian process again underestimated the
error, predicting better performance in some regions than possible on
the real benchmarkE] Again, these regions with “better” performance
appear hard to find: only SMAC and SPEARMINT found them, caus-
ing their performances on the GP-based surrogate benchmark to differ
substantially from their performance on the true benchmark.

Results for HP-NNET convex were also better for the surrogate
benchmark based on RFs (especially for SPEARMINT), but not as
much better as for the logistic regression SCV case. As was already
the case when the surrogate was based on all training data, the RF-
based surrogate benchmarks only approximately captured the strong
performance TPE showed on the real benchmark.

Results on HP-DBNET MRBI show a fairly close correspondence
between the real benchmark and the RF-based surrogate benchmarks.
In contrast, the GP-based surrogate was dismal, once again due to the
GP’s near-constant predictions (close to the data mean).

After this qualitative evaluation of the surrogate benchmarks, Ta-
ble[5] offers a quantitative evaluation. We judge the quality of a surro-
gate benchmark X}, by how closely it resembles the real benchmark
X it was derived from, in terms of the absolute error between the best
found values for our four optimizers (SMAC, TPE, SPEARMINT,
and random search) after evaluating ¢ configurations. For logistic
regression SCV, in line with our qualitative results we obtained a very
small error for the RF-based surrogate. The GP-based surrogate un-
derestimated the achievable error rates, resulting in larger differences
between performances on the true and the surrogate runs.

The results for the HP-NNET convex look quite similar, with a some-
what smaller difference between RF-based and GP-based surrogates.
Indeed, SMAC and TPE behaved similarly on both RF-based and
GP-based surrogates as on the real benchmark; only SPEARMINT be-
haved very differently on the GP-based surrogate, causing an overall
higher error than for the RF-based surrogates.

On the high dimensional HP-NNET mrbi the surrogates performed
differently. Whereas the RF-based surrogate could still reproduce sim-
ilar optimizer behavior as on the real benchmark, the GP completely
failed to do so. Remarkably, overall quantitative performance was
similar for surrogate benchmarks trained on all data and those trained
on leave-one-optimizer-out datasets.

Overall, these results confirmed our expectation from previous
findings in Section [3.3] and the raw regression model performance
results in Table 3} good regression models facilitate good surrogate
benchmarks. In our case, RFs performed best for both tasks. We note
that using the surrogate benchmarks reduced the time requirements
substantially; for example, evaluating a surrogate 100 times instead
of the HP-NNET convex or HP-DBNET MRBI took less than 1 minute
on a single CPU, compared to roughly 10 hours on two CPUs (HP-
NNET convex) and over a day on a modern GPU (HP-DBNET MRBI)E]

6 We noticed similar behavior for the nuSVR, which even returned negative
values for configurations and caused the optimizer to search completely
different areas of the configuration space (data not shown here).

7 Of course, the overhead due to the used hyperparameter optimizer comes on
top of this; e.g., SPEARMINT’s overhead for a run with 200 evaluations was
roughly one hour, whereas SMAC’s overhead was less than one minute.



Results on True Benchmark

Results on RF Surrogate Benchmark

Results on GP Surrogate Benchmark

1.0, 1.0, 1.0,
— SMAC_REAL - — SMAC_ - — SMAC_gp
—— SPEARMINT_REAL g SPEARMINT _rf g —— SPEARMINT_gp
— TPE_REAL 2 0.8 TPE_f 2 0.8 — TPE_gp
= =
Log.Reg. 5CV S 8
go06 gos6
) 153
§ §
z 0.4 2 0.4]
k<] he]
g E
= 0.2] = 0.2]
] @
3 3
] ]
0.0 0.0 0.0!
10° 10" 10 10° 10° 10’ 10
#Function evaluations #Function evaluations
0.50, 0.50, 0.50,
o — SMAC_REAL o SMAC_rf o — SMAC_gp
© 0.45] — SPEARMINT_REAL © 0.45] SPEARMINT_rf © 0.45 — SPEARMINT_gp
2 — TPE_REAL 2 TPE_f 2 — TPEgp
=

HP-NNET convex | §%4 — §040 L £ 040
5035 \h\ 5 0.3sﬁ_¥ 5035

g 0.30 20.30 g 0.30) — H‘T
5 0.25] ———=——— 4 5 0.25] g 0.25] - H
€ 0.20 - € 0.20 $ 0.20 — -
3 3 D
30.15 $0.15 $0'15
0.10! 0.10! 0.10
10° 10 10 10° 10 10 10° 10’ 107
#Function evaluations #Function evaluations #Function evaluations
0.90, 0.90, 0.90
- — SMAC_REAL - SMAC_rf - — SMAC_gp
@ 0.85 —  SPEARMINT_REAL @ 0.85 —  SPEARMINT f © 085 —  SPEARMINT gp
MRBI %0.80 — TPE_REAL %0.80 — TPEA % 0.80 — TPE_gp
HP-DBNET S 0.75 8 0.75 S 0.75
g e a <
£ 0.70 £ 0.70) £0.70
5065 5065 5065
8060 8060 8060
Sos5 £ 055 £ o055
3 3 3
8050 8050 8050

0.45

0.45

0.45

10° 107 107 10°

#Function evaluations

10° 10' 10
#Function evaluations

107 10
#Function evaluations

Figure 2. Median and quartile of best performance over time on the real benchmark (left column) and on surrogates (middle: based on RF models; right: based
on GP models). Both types of surrogate benchmarks were trained on all available data. For logistic regression SCV each fold is plotted as a separate function

evaluation.

Table 5. Quantitative evaluation of surrogate benchmarks at three different
time steps each. We show the mean difference between the best found values
for corresponding runs (having the same seed) of the four optimizers (SMAC,
TPE, SPEARMINT, and random search) after 7 function evaluations on the real
and surrogate benchmark. For each experiment and optimizer we conducted 10
runs and report the mean error averaged over 4 x 10 = 40 comparisons. We
evaluated RF-based and GP-based surrogates. For each problem we measured
the error for surrogates trained on al// and the leave-one-optimizer-out (leave-
000) data; e.g., the TPE trajectories are from optimizing on a surrogate that is
trained on all training data except that gathered using TPE. Bold face indicates
the best performance for this dataset and ¢ function evaluations. Results are
underlined when the one-sigma confidence intervals of the best and this result

overlaps.
#Function evaluations 50 200 500
Surrogate | RF GP | RF GP | RF GP
Log.Reg. scv all 0.02 0.06 0.00 0.04 0.00 0.05
Log.Reg. scv leave-000 0.02 0.07 0.01 0.03 0.00 0.03
#Function evaluations 50 100 200
Surrogate | RF GP | RF GP | RF GP
HP-NNET convex all 0.01 0.03 0.01 0.03 0.01 0.02
HP-NNET convex leave-000 0.02 0.03 0.02 0.04 0.02 0.03
HP-DBNET wmrsi all 0.05 0.13 0.05 0.16 0.05 0.17
HP-DBNET wmrsi leave-000 | 0.04 0.13 0.04 0.16 0.05 0.17

5 Conclusion and Future Work

To tackle the high computational cost and overhead of performing
hyperparameter optimization benchmarking, we proposed surrogate

benchmarks that behave similarly to the actual benchmarks they are
derived from, but are far cheaper and simpler to use. The key idea is
to collect (configuration, performance) pairs from the actual bench-
mark and to learn a regression model that can predict the performance
of a new configuration and therefore stand in for the expensive-to-
evaluate algorithm. These surrogates reduce the algorithm overhead
to a minimum, which allows extensive runs and analyses of new hy-
perparameter optimization techniques. We empirically demonstrated
that we can obtain surrogate benchmarks that closely resemble the
real benchmarks they were derived from.

In future work, we intend to study the use of surrogates for general
algorithm configuration. In particular, we plan to support optimization
across a set of problem instances, each of which can be described
by a fixed-length vector of characteristics, and to assess the result-
ing surrogates for several problems that algorithm configuration has
tackled successfully, such as propositional satisfiability [14]], mixed
integer programming [15]], and Al planning [9]]. Finally, good surro-
gate benchmarks should enable us to explore the configuration options
of the optimizers themselves, and we plan to use surrogate bench-
marks to enable efficient meta-optimization of the hyperparameter
optimization and algorithm configuration methods themselves.
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