Towards an Empirical Foundation for
Assessing Bayesian Optimization of Hyperparameters

Katharina Eggensperger, Matthias Feurer, Frank Hutter
Freiburg University
{eggenspk, feurerm, fh}@informatik.uni-freiburg.de

James Bergstra Jasper Snoek
University of Waterloo Harvard University
james.bergstra@uwaterloo.ca jsnoek@seas.harvard.edu

Holger H. Hoos and Kevin Leyton-Brown
University of British Columbia
{hoos, kevinlb}@cs.ubc.ca

Abstract

Progress in practical Bayesian optimization (BO) is hampered by the fact that the
only available standard benchmarks are artificial test functions that are not repre-
sentative of practical applications. To alleviate this problem, we introduce a library
of benchmarks from the prominent application of hyperparameter optimization
and use it to compare Spearmint, TPE, and SMAC, three recent BO methods for
hyperparameter optimization.

1 Introduction

The performance of many machine learning (ML) methods depends crucially on hyperparameter
settings and thus on the method used to set hyperparameters. Recently, Bayesian optimization (BO)
methods have been shown to outperform established methods for this problem (such as grid search
and random search [1]) and to rival—and in some cases surpass—human domain experts in finding
good hyperparameter settings [2, 3, 4]. As a result, hyperparameter optimization has become an
active research area within BO, with characteristics such as low effective dimensionality [1, 5, 6] and
problem variants, such as optimization across different data sets [7] being explored.

One obstacle to further progress in this nascent field is a dearth of hyperparameter optimization
benchmarks and comparative empirical studies. To date, a typical paper introducing a new hyperpa-
rameter optimizer also introduces a new set of hyperparameter optimization benchmarks, on which
the optimizer is demonstrated to achieve state-of-the-art performance as compared to, e.g., human
domain experts. It can be difficult to evaluate a new optimizer on benchmarks used in previous
papers because (1) optimizers are written in different programming languages and use different
search space representations and file formats; (2) hyperparameter optimization benchmarks that have
been developed jointly with an optimizer are not typically packaged as black boxes (including the
respective machine learning algorithm and its input data) that can be used with other optimizers.
These problems represent a considerable barrier to anyone aiming to develop a new hyperparameter
optimization algorithm and objectively measure its performance. As a result, so far it has been
unknown how recent hyperparameter optimizers compare across benchmarks.

To alleviate these problems, we have collected and made available a library of hyperparameter
optimization benchmarks from the recent literature and used it to empirically evaluate the respec-
tive strengths and weaknesses of three prominent BO methods for hyperparameter optimization:
Spearmint [2], TPE [8], and SMAC [9]. We thereby hope to provide an empirical foundation to
facilitate the development and evaluation of future methods for this problem.

2 Bayesian Optimization Methods for Hyperparameter Optimization

Given a machine learning algorithm A having hyperparameters A1, . .., A,, with respective domains
Ay, ..., A, we define its hyperparameter space A = A; x --- x A,,. Hyperparameters can be
continuous, integer-valued, or categorical. Following [10] and [8], we say that a hyperparameter \;
is conditional on another hyperparameter A; if A; is only active if hyperparameter \; takes values
from a given set V;(j) C A;. Let L(A, Dyain, Dvaiia) denote the validation loss (e.g., misclassification
rate) that A achieves on data D,,j;q When trained on Dy,;,. The hyperparameter optimization problem
under k-fold cross-validation is then to minimize the blackbox function

k
1 i i
F(A) = % Z L(Ax, Dt(ra)im,D\(/al)id)' (D
i=1

Bayesian optimization (see [11] for a detailed tutorial) constructs a probabilistic model M of f
based on point evaluations of f and any available prior information, and uses that model to select
subsequent configurations A to evaluate. In order to select its next hyperparameter configuration
A using model M, BO uses an acquisition function anq : A — R, which uses the predictive
distribution of model M at arbitrary hyperparameter configurations A € A to quantify how useful
knowledge about A would be. This function is then maximized over A to select the most useful
configuration A to evaluate next. Several well-studied acquisition functions exist [12, 13, 14]; all
aim to trade off exploitation (locally optimizing hyperparameters in regions known to perform well)
versus exploration (trying hyperparameters in a relatively unexplored region of the space). The
most popular acquisition function is the expected improvement (EI(A)) [13] over an existing given
error rate f,,;, attainable at a hyperparameter configuration A, where expectations are taken over
predictions with the current model M:

fmin
Ellf,... ()] = / mas{ frumn — £.0} - paa(f | A) df. @)

— 00

One main difference between existing BO algorithms lies in the model classes they employ. In this
paper, we empirically compare three popular BO algorithms for hyperparameter optimization that are
based on different model types.

Spearmint [2, 15]. Spearmint uses Gaussian process (GP) models and performs slice sampling
over the GP’s hyperparameters for a fully Bayesian treatment. Spearmint supports both continuous
and discrete parameters (by rounding). It does not exploit knowledge about the conditionality of
parameters. It draws new points by calculating expected improvement over a Sobol grid. Due to
limitations in the Sobol library, it does not support more than 40 hyperparameters.

Sequential Model-based Algorithm Configuration (SMAC) [9, 16]. SMAC is based on random
forest models. Uncertainty estimates are obtained as the empirical variance over the predictions
of the trees in the given forest. For hyperparameter optimization problems with cross-validation,
SMAC evaluates the loss of configurations at single folds at a time in order to save time. Different
hyperparameter configurations are compared based only on the folds evaluated for both. SMAC
supports continuous, categorical, and conditional parameters. It was the best-performing optimizer for
Auto-WEKA [3] and has also been used to configure many combinatorial optimization algorithms.

Tree Parzen Estimator (TPE) [8, 17]. TPE is a non-standard BO algorithm. While Spearmint and
SMAC model p(f | A) directly, TPE models p(f < fx*),p(A| f < fx),and p(A | f > fx), where
f*is defined as a fixed quantile of the losses observed so far, and the latter two probabilities are defined
by tree-structured Parzen density estimators. With these distributions defined, a term proportional
to the expected improvement from Equation (2) can be computed in closed form [8]. TPE supports
continuous, categorical, and conditional parameters, as well as priors for each hyperparameter over
which values are expected to perform best. TPE has been used succesfully in several papers beyond
the one in which it was introduced [4, 18, 3].

3 Hyperparameter Optimization Benchmarks

Table 1 summarizes all of the benchmarks we collected. These include simple test functions (used for
convenience in many papers) as well as benchmarks collected from recent work on hyperparameter
optimization using the optimizers we aim to evaluate [8, 2, 3]. We make these benchmarks available
at www.automl.org/benchmarks.html in various formats.

www.automl.org/benchmarks.html

Table 1: Hyperparameter optimization benchmarks used. The loss function is misclassification rate for all but
LDA, where it is perplexity.

Algorithm #hyp.params(conditional) continuous/discrete Dataset Size (Train/Valid/Test) Citation runtime
Branin 2(-) 2/- - - [19] < 1s
Hartmann 6d 6(-) 6/- - - [19] < 1s
Log. Reg. 4(-) 4/- MNIST 50k/10k/10k [2.20] < 5m
Log. Reg. 4(-) 4/- MNIST 5 fold cv, 60k Train, 10k Test [2,20] < 25m
LDA ongrid 3(-) -3 Wikipedia articles 200k/24560/25k [2,21] < 1s
SVM ongrid 3(-) -3 UniPROBE =~ 20k/-/~ 20k [2,22] < 1s
HP-NNET 14(4) 7117 MRBI 10k/2k/50k [8,23] ~ 6m
HP-NNET 14(4) 711 MRBI 5 fold cv, 12k Train, 50k Test [8,23] ~ 25m
HP-NNET 14(4) 711 convex 6.5k/1.5k/50k [8,23] =~ Tm
HP-NNET 14(4) 77 convex 5 fold cv, 8k Train, 50k Test [8,23] ~ 25m
HP-DBNET 38(29) 19/17 convex 6.5k/1.5k/50k [8, 23] ~ 10m
Auto-WEKA 786(784) 296/490 convex 6.5k/1.5k/50k [3,23] ~ 15m

Low-dimensional benchmarks. We collected three hyperparameter optimization benchmarks with
small numbers of parameters from [2]: simple LOGISTIC REGRESSION to classify the popular
MNIST dataset; ONLINE LATENT DIRICHLET ALLOCATION (LDA) for Wikipedia articles, and
STRUCTURED SUPPORT VECTOR MACHINES (SVM). The latter two benchmarks are defined on a
grid of hyperparameter values: for each of the grid points (288 for LDA; 1400 for SVM), algorithm
performance data (on a validation set; no cross-validation) has been precomputed by [2] to allow for
very rapid experiments. Another advantage of such precomputed data is that anyone can use these
benchmarks without having to compile and run the respective ML algorithms.

Medium-dimensional benchmarks. We collected two types of hyperparameter optimization bench-
marks of intermediate dimensionality from [8]. HP-NNET and HP-DBNET are implementations of a
simple neural network and a deep neural network, respectively. Both run dramatically faster on GPUs
than CPUs. Both include continuous and categorical parameters, some of which are conditional.
Both use preprocessing methods that (at least for HP-NNET) need to be set carefully to achieve high
performance. For each hyperparameter in these benchmarks, an expert-defined prior over good values
is defined. Since these priors cannot be expressed in SMAC’s and Spearmint’s formats, they get lost
in translation, as does conditionality information in the case of Spearmint.

High-dimensional benchmarks. To test the limits of current optimizers, we also investigated
the AUTO-WEKA framework [3], which encodes combined model selection and hyperparameter
optimization into an enormous hierarchical space with 768 hyperparameters.

Cross-validation is essential to avoid overfitting, especially as hyperparameter optimization methods
improve. Nevertheless, out of the methods above, only Auto-WEKA used cross-validation. To study
the impact of cross-validation, we considered additional versions of the LOGISTIC REGRESSION and
HP-NNET benchmarks with 5-fold cross-validation.

4 Results

We ran each optimizer with its default settings 10 times on each benchmark for the number of
function evaluations used in the paper introducing the benchmark. Individual runs (if cross-validation
is used, individual folds) of all machine learning methods were subjected to a timeout of one hour,
but this only took effect for a few runs on the HP-DBNET. The HP-NNET and HP-DBNET experiments
required GPUs (we used NVIDIA Tesla M2070s for HP-NNET and a NVIDIA GeForce GTX 780 for
HP-DBNET). For benchmarks including cross-validation, it is possible to evaluate one fold at a time;
SMAC took advantage of this while the other methods do not support it yet and thus evaluated all 5
cross-validation folds for a selected configuration at once.

Table 2 summarizes the results. Overall, Spearmint performed best for the low-dimensional con-
tinuous problems, followed by SMAC and then TPE (which does not model interactions between
parameters). SMAC showed solid all-round performance, likely owing to its robust random forest
models. Finally, TPE performed well on the discrete low-dimensional benchmarks and best for
HP-DBNET, likely due to its ability to exploit the expert-defined priors about good parameter values
available for this benchmark.

We also encountered a few surprises. Firstly, Spearmint had some robustness problems, e.g., crashing
on 3 of 10 runs for the HARTMANN-6 function because of a singular covariance matrix. It also had
some problems with discrete parameter values: by maximizing EI over a dense sobol grid instead
of the discrete input grid, in some cases it repeatedly chose values that were rounded to the same

Table 2: Losses obtained for all optimizers and benchmarks. We report means and standard deviation across
up to 10 runs of each optimizer (except for the entries with superscripts, which show the number of runs
completedl). For each benchmark, bold face indicates the best mean value, and underlined values are not
statistically significantly different from the best according to a Mann-Whitney-U test (with p=0.05). The absolute
values with and without cross-validation are incomparable as they are based on different data set splits.

SMAC Spearmint TPE

Experiment #evals Valid.Error Best Value Valid.Error Best Value Valid.Error Best Value
branin (0.398) 200 0.42740.019 0.400 0.398--0.000 0.398 0.510+ 0.077 0.406
har6 (-3.32237) 200 -2.960+0.200 -3.165 2.6234+1.026 3322 -2.92040.164 3.115
Log Regression 100 0.086:0.006 0.077 0.073-£0.001 0.070 0.082:£0.003 075
Log Regression 5CV 100 0.081-0.003 0.078 0.083-£0.001 0.080 0.089£0.007 0.081
LDA ongrid 50 1269.61+2.9 1266.2 1272.64+10.2 1266.2 12715435 1266.2
SVM ongrid 100 0.241+0.001 0.241 0.24640.009 0.241 0.241+0.000 0.241
HP-NNET convex 100 0.1940.014(3) 0.175 | 0.20940.003(6) 0.020 | 0.20240.011(9) 0.179
HP-NNET convex 5CV 50 | 0.208+0.010(4) 0.198 | 0.230-40.015(2) 0215 | 0.21040.012(4) 0.189
HP-NNET MRBI 100 | 0.527+0.019(8) 0504 | 0.50140.032(5) 0.467 0.5034-0.021 0.478
HP-NNET MRBI 5CV 50 | 051240.032(4) 0478 | 0.49740.020(3) 0.476 | 0.518-40.000(1) 0518
HP-DBNET convex 200 0.159(1) 0.138(1) 0.135(1)

Auto-WEKA? 30h 0.221 N/A 0.255

e smac
= tpe
*— spearmint

o
e smac
s tpe

oes|l *— spearmint

sl |
1340 - * |

| v

| n - (e

| |
|- . - |t -
1300| \ \ as S A

1280 75:: . -

0
#Function evaluations

Minfuncton value

Figure 1: Response values obtained ’ B #Foncton evakations « o #hancton svaluations
& incumbent over time for one run of Figure 2: Mean + stddev of best Figure 3: Mean =+ stddev of best
each optimizer on LDA ONGRID. loss over time, HP-NNET convex loss over time, HP-NNET MRBI

discrete values for evaluation (leading to repetitions in the samples). This problem is demonstrated in
Figure 1.

Secondly, performance did not only depend on the algorithm but also on the dataset: SMAC performed
best for the HP-NNET on one dataset (convex, see Figure 2) and worst on the other (MRBI, see Figure
3), and exactly the opposite held for Spearmint. A more detailed analysis of the data shows that it
was crucial to switch on PCA preprocessing with its conditional strength parameter set to around 0.7.
SMAC and Spearmint consistently failed to do so for the datasets they performed poorly on. It was
surprising to see this, but further investigation is necessary to find out why it occurred. We pause here
to note that these potential problems in SMAC and Spearmint could not have been identified without
a competitive comparison against other methods; otherwise, one would have simply assumed that a
good configuration was found.

We also studied the CPU time required by the optimizers. SMAC’S and TPE’S overhead was
negligible (< 1 second), but Spearmint required > 42 seconds to select the next data point after 200
evaluations. This is of course due to the cubic scaling behaviour of Spearmint’s GPs, which would
prohibit its use for the optimization of cheap functions. However, in our setting this overhead was
dominated by the expensive function evalations.

5 Conclusion and future work

This work provides the first extensive comparison of three hyperparameter optimizers, showing
that each has their advantages and disadvantages (mostly in terms of robustness and search space
definitions supported). To support further research, our software package and benchmarks are
publicly available at www.automl.org/benchmarks.html. It offers a common interface for the
three optimization packages utilized in this paper and allows the easy integration of new ones. Our
benchmark library is only a first step, but we are committed to making it easy for other researchers to
use it and to contribute their own benchmarks and optimization packages.

"Unfortunately, not all of our 10 x 3 optimizer runs for the GPU experiments have finished, due to an
unscheduled 2-week outage of the GPU cluster we used. We will update the results for the final version.

2Spearmint does not apply for Auto-WEKA (since it has more than 40 hyperparameters). Since these runs
are computationally expensive, we reuse results from [3], which already compared SMAC and TPE.

www.automl.org/benchmarks.html

References
[1] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13:281-305,
2012.

[2] J. Snoek, H. Larochelle, and R.P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Proc. of NIPS’12,2012.

[3] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection
and hyperparameter optimization of classification algorithms. In Proc. of KDD’13, 2013.

[4] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proc. of ICML’12, 2013.

[5] B. Chen, R.M. Castro, and A. Krause. Joint optimization and variable selection of high-
dimensional Gaussian processes. In Proc. of ICML’12, 2012.

[6] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization in high
dimensions via random embeddings. In Proc. of IJCAI’13, 2013.

[7] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In
Proc. of ICML’13, 2013.

[8] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for Hyper-Parameter Optimization.
In Proc. of NIPS’11, 2011.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Proc. of LION-5, 2011.

[10] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stiitzle. ParamILS: an automatic algorithm
configuration framework. JAIR, 36(1):267-306, 2009.

[11] E. Brochu, V.M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
eprint arXiv:1012.2599, arXiv.org, December 2010.

[12] D.R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black
box functions. Journal of Global Optimization, 13:455-492, 1998.

[13] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained opti-

mization of computer models. In New Developments and Applications in Experimental Design,
volume 34, pages 11-25. 1998.

[14] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In Proc. of ICML’10, 2010.

[15] J. Snoek. Spearmint source code. Version from September 1, 2013.

[16] S. Ramage and F. Hutter. SMAC source code, java version v2.06.01.

[17] J Bergstra. TPE source code, part of hyperopt implementation, github version from 08/30/2013.
[

18] J. Bergstra and D.D. Cox. Hyperparameter optimization and boosting for classifying facial
expressions: How good can a “null” model be? CoRR, abs/1306.3476, 2013.

[19] A. Hedar. Test functions for unconstrained global optimization. http://www-optima.
amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_
files/Page364.htm. Last accessed on Oct 16, 2013.

[20] Y. Lecun, 1. Bottou, Y. Bengio, and P.Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, volume 86, pages 2278-2324, 1998.

[21] M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for latent dirichlet allocation. In
Proc. of NIPS’10, 2010.

[22] K. Miller, M. P. Kumer, B. Packer, D. Goodman, and D. Koller. Max-margin min-entropy
models. In Proc. of AISTATS’ 12, 2012.

[23] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of
deep architectures on problems with many factors of variation. In Proc. of ICML’07, 2007.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

	Introduction
	Bayesian Optimization Methods for Hyperparameter Optimization
	Hyperparameter Optimization Benchmarks
	Results
	Conclusion and future work

