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Abstract

In many real-world auctions, a bidder does not know her exact
value for an item, but can perform a costly deliberation to
reduce her uncertainty. Relatively little is known about such
deliberative environments, which are fundamentally differ-
ent from classical auction environments. In this paper, we
propose a new approach that allows us to leverage classical
revenue-maximization results in deliberative environments. In
particular, we use Myerson (1981) to construct the first non-
trivial (i.e., dependent on deliberation costs) upper bound on
revenue in deliberative auctions. This bound allows us to apply
existing results in the classical environment to a deliberative
environment. In addition, we show that in many deliberative
environments the only optimal dominant-strategy mechanisms
take the form of sequential posted-price auctions.

Introduction
Consider the following example:

An agent is considering buying a used car for $8, 000.
The value of the car to her depends on her needs and
preferences. She initially believes the value is uniformly
between $5, 000 and $10, 000. However, she can “de-
liberate”: that is, she can act to reduce her uncertainty
about this value. For example, she can hire a mechanic
to examine the car, or take it for a test drive. Each de-
liberation has a different cost (in money or time), and
reveals different information. As a rational agent, she
evaluates the cost and value of information for each
deliberation, and chooses the best one. She then decides
whether or not to purchase the car, based on what she
learned.

This example introduces a deliberative agent, who is un-
certain about her preferences, but can take actions to reduce
the uncertainty. Judging the value of a good is difficult since
it depends on many parameters. Additionally, there may be
computational constraints that prevent an agent from achiev-
ing certainty about her valuation.

Previous work shows that auction design for deliberative
agents is fundamentally different from classical auction de-
sign due to the greater flexibility in the agents’ strategies. In
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classical mechanism design, an agent only has to decide how
much information to reveal. In deliberative-agent mechanism
design, an agent first has to decide how much information
to acquire and then how much to reveal. This affects equi-
librium behavior. For example, in second-price auctions,
deliberative agents do not have dominant strategies (Larson
and Sandholm 2004) and must coordinate their information
gathering (Thompson and Leyton-Brown 2007). Further-
more, the standard revelation principle, which asserts that
every multi-stage auction is equivalent to some sealed-bid
auction, no longer holds. For example, in a Japanese auction,
bidders can condition their information gathering on infor-
mation revealed at earlier stages, coordinating in ways that
are not possible in sealed-bid auctions (Compte and Jehiel
2005).

There has been considerable interest in designing novel
auctions for deliberative agents. This research has mostly
focused on maximizing social welfare subject to various con-
straints (Bergemann and Valimaki 2002; Cavallo and Parkes
2008; Larson 2006), with some research on revenue maxi-
mization in Bayes-Nash equilibrium (Cramer, Spiegel, and
Zheng 2003; Bikhchandani 2009). More recently, Thomp-
son and Leyton-Brown (2011) demonstrated that dominant
strategy auctions are also possible. However, they proved
that, for single-item auctions with binary-valued agents, the
space of dominant strategy mechanisms is limited, in that it
is equivalent to a sequence of posted-price offers.

In this paper, we study the design of revenue-maximizing
auctions with dominant strategies in deliberative settings, and
make two contributions. First, we show that posted-price-
based auctions characterize the space of dominant strategy
auctions in significantly more general deliberative settings.
Second, we show how to design auctions that obtain revenue
that is within a small constant factor of the maximum possible
revenue in these settings.

Background
In this paper, we consider a simple model of deliberative
agents, for whom deliberation is an all-or-nothing decision.

Definition 1 (Simple Deliberative Agent). A simple deliber-
ative agent i is represented by a tuple (vi;Fi; ci), where

• vi is the true value of an agent (this value is unknown, even
to the agent herself).



• Fi is the publicly known distribution from which vi is
drawn. (Values are independent and private, and Fi has
bounded expectation.)

• ci is the cost of deliberating, i.e., the price agent i must
pay to learn the value vi.

We consider “single-parameter” settings where an auction-
eer is offering goods or a service, and based on the outcome
of a mechanism, chooses a subset of the agents to be served
(we call them “winners”) and a price pi for each winning
agent i. Depending on the particular setting, only certain
subsets of agents can be feasibly served.1 The utility of agent
i for the outcome of a mechanism is vi − pi − ci if the agent
deliberates and wins, −ci if the agent deliberates and loses,
E(vi) − pi if the agent doesn’t deliberate and wins, and 0
otherwise.

Definition 2 (Deliberative environment). A deliberative en-
vironment is a tuple (N ;S;F) where

• N is a set of deliberative agents, (each with her own value
distribution and deliberation cost),

• S is a collection of subsets of N . Each set S ∈ S repre-
sents a set of agents that can be served at the same time.

• F is the joint distribution of agents’ values.

Throughout, we will assume that the environment is com-
mon knowledge to the agents and to the auctioneer. We
consider only deterministic mechanisms. Also, we stipulate
that mechanisms never allocate to any agent who is indif-
ferent between winning and losing given the price. (That
is, we assume that if there exists a threshold t for agent i
(given the reported values of the other agents) where if vi > t
then i is served and if vi < t then i is not served, then i
is not served when vi = t.) Without this technical assump-
tion, the characterization of dominant strategy mechanisms
is more complicated, in uninteresting ways. We discuss
this point in more detail in an online appendix available at
http://www.cs.ubc.ca/research/deliberation/.

As in the classical analysis of auctions, mechanisms can be
complicated multi-stage processes (e.g., Japanese auctions).
Thus a pure strategy can be a complex policy conditioning
on information revealed over time, and a dominant strategy
is a policy that maximizes the agent’s expected utility re-
gardless of the other agents’ policies. However, deliberative
environments differ from classical environments in that the
revelation principle cannot reduce every mechanism down
to a strategically equivalent single-stage mechanism. This
is because a deliberative agent might want to defer her de-
liberation until she learns something about her competitors
(e.g., how many bidders are still standing in a Japanese auc-
tion). Nevertheless, Thompson and Leyton-Brown (2011)
provide a revelation principle for deliberative agents, show-
ing that any dominant-strategy mechanism is equivalent to a

1For example, in a single-item auction only one agent can be
served. In a k-unit auction, any subset of k agents can be served. In
a single-minded combinatorial auction, any subset of agents whose
desired item sets do not overlap can be served. See Hartline and
Karlin (2007) for a discussion of single-parameter settings.

dominant-strategy truthful “dynamically direct mechanism”
(DDM).2

Definition 3 (Dynamically Direct Mechanism (DDM) for
simple deliberative agents). A dynamically direct mechanism
is a multi-stage mechanism where at each stage a single agent
is asked to deliberate and report her true value.

Although DDMs “request” that bidders report true values,
the bidders can respond by bidding in any way they like. This
is analogous to direct mechanisms in the classical setting;
e.g., note that first-price and second-price auctions are both
direct mechanisms, but only the latter is truthful. Truthful
DDMs, used in later parts of the paper, are DDMs for which
truthful reporting is a dominant strategy.

In this paper, we consider DDMs under two communica-
tion models, the private-communication model, where no
agent observes the interaction between the mechanism and
any other agent, and the public-communication model, where
all agents observe all such interactions. Of course, in either
case, the mechanism itself is common knowledge.

Sequential posted-price mechanisms (SPPs) play an im-
portant role in what follows.
Definition 4 (Sequential Posted Price mechanism). A sequen-
tial posted-price mechanism offers posted prices to agents,
one at a time. If an agent accepts an offer, then the mecha-
nism must serve her and charge her exactly the offered price.
An agent who rejects an offer will not be served. (No agent
gets a second offer.) The mechanism is forbidden from mak-
ing offers to agents it can no longer feasibly serve given the
offers that have already been accepted.

Characterization
In this section, we prove that SPPs characterize dominant
strategy mechanisms for two classes of deliberative envi-
ronments. The if direction (i.e., that SPPs have dominant
strategies in any deliberative setting) follows trivially from
Thompson and Leyton-Brown (2011). Thus, we focus our
attention on proving that only mechanisms that are equivalent
to SPPs have dominant strategies.
Theorem 5 (Characterization: only-if direction).
1. In any single-item deliberative environment with private

or public communication, every dominant strategy mecha-
nismM is equivalent to an SPP N .

2. In any single-parameter deliberative environment with pub-
lic communication, every revenue-maximizing dominant
strategy mechanismM is equivalent to an SPP N .
In the online appendix, we provide complete proofs, as

well as discussion and examples showing why various as-
sumptions we have made are necessary. Here, we sketch the
proof of Theorem 5 and the lemmas that lead up it.

From the revelation principle for deliberative agents, which
characterizes the set of dominant strategy mechanisms, it suf-
fices to characterize the class of truthful DDMs. As in classi-
cal settings, any truthful mechanism must satisfy a standard
monotonicity condition.

2We refer the reader to Thompson and Leyton-Brown (2011)
for details on dominant strategy mechanisms and other aspects of
deliberative agents in the single-item setting.



Lemma 6 (Monotonicity). In any truthful DDM, for any
agent i who is asked to deliberate (given whatever values
are reported by other agents, v̂−i) there exists a “critical
value” ti(v̂−i) where if v̂i > ti(v̂−i) then i is served and
pays exactly ti(v̂−i), and where otherwise she is not served
and pays nothing.

The proof is straightforward and follows the proof of the
equivalent lemma in the classical setting (Myerson 1981).

The monotonicity lemma implies that if an agent deliber-
ates and wins, the price she is charged depends only on values
reported by other agents. For characterization via SPPs, we
need a slightly stronger result: that the price of an agent
depends only on the values of the agents which deliberated
before her, i.e., the information the mechanism has when
she is asked to deliberate. Thompson and Leyton-Brown
(2011) proved such a result for binary-valued agents using
an “Influence Lemma,” which states that if an agent with two
possible values deliberates, then she must be served when
she reports the higher value and not served when she reports
the lower. We generalize that lemma to show that there is
a range of values (strictly inside the support of Fi) that are
potential critical values if an agent is asked to deliberate in a
truthful DDM. For simplicity, we present the lemma here for
the case of atomless distributions.

Lemma 7 (Generalized Influence Lemma). Every delibera-
tive agent i has low and high deliberation thresholds `i and
hi, where `i ≤ hi, both in the interior of the support of Fi,
such that: In any truthful DDM, if i is asked to deliberate
given v−i, then her critical value is between those thresholds:
ti(v−i) ∈ [`i, hi].

Proof. Given the reported values of other agents v̂−i and
by monotonicity, agent i is effectively faced with a posted
price offer of p = ti(v̂−i). Faced with this offer, she has
three possible strategies: she can accept the offer without
deliberation, reject it without deliberation, or deliberate and
only accept when her value is greater than p. Denote the
expected utility of these three strategies ua

i (p), u
r
i (p) and

ud
i (p) respectively. (See Figure 1.) It is easy to see that:

ua
i (p) = E [vi]− p =

∫ ∞
0

vfi(v)dv − p;

ud
i (p) = E [vi − p|vi ≥ p]Pr [vi ≥ p]− ci

=

∫ ∞
p

vfi(v)dv − p(1− F (p))− ci;

ur
i (p) = 0.

Intuitively, given the cost ci of deliberating, `i denotes the
price where i is indifferent between accepting and delib-
erating, and hi denotes the price where she is indifferent
between rejecting and deliberating. Thus, we have only to
show that `i ≤ hi. To see this, observe that if E [vi] ≤ ci
then ud

i (p) ≤ 0 for any p, hence i never deliberates, and
`i = hi = E [vi]. On the other hand, if E [vi] > ci.
we can easily check that ua

i (p) − ud
i (p) is a strictly de-

creasing function, and ur
i (p) − ud

i (p) is a strictly increas-
ing function. Hence, there are unique points t1 and t2
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Figure 1: The relationships between ua
i , u

d
i and ur

i in
Lemma 7. (a) t1 > t2; (b) t1 ≤ t2.

such that ua
i (p) − ud

i (p) ≥ 0 if and only if p ≤ t1, and
ur
i (p)− ud

i (p) ≥ 0 if and only if p ≥ t2.
If t1 ≤ t2 then it is easy to check that `i = t1 and hi = t2

satisfy the lemma’s conditions. Otherwise, we must have
t2 ≤ E [vi] since ua

i (t2) ≥ ud
i (t2) = ur

i (t2), and t1 ≥ E [vi]
since ua

i (t1) = ud
i (t1) ≤ ur

i (t1). In this case, `i = hi =
E [vi] satisfy the lemma’s conditions.

We now use the generalized influence lemma to prove that
for our settings, the price offered to an agent depends only
on the values of the agents that deliberated before her.

Lemma 8. LetM
1. be a truthful DDM for a single-item auction, or
2. a revenue maximizing truthful DDM for a public-

information single-parameter setting

where all agents have bounded expected values. IfM asks
i to deliberate and decides to sell to i, the price it charges
i depends only on the values reported by agents asked to
deliberate before i.

Proof. Let vb
−i be the values reported by the agents asked to

deliberate before i, and va
−i be the values of the remaining

agents, except for i.
Let us first prove (1). By Lemma 7, if vi > hi thenM

has to sell to i. In this case, M cannot ask anyone else
to deliberate after i does. Otherwise, another agent j may
report that vj > hj , forcingM to sell to both i and j, which
is impossible becauseM has only one item to sell. SinceM
cannot ask anyone else to deliberate, the price pi at which
it sells to i if vi > hi does not depend on va

−i. For i to
report truthfully, it cannot depend on vi either. Hence, pi
only depends on vb

−i.
Next, suppose vi ∈ [`i, hi]. If there is no va

−i such that
M sells to i then the lemma holds. Otherwise, fix some va

−i
such that M sells to i at price p′i. We argue that p′i = pi.
Indeed, if p′i > pi then i has incentive to lie that her value
is more than hi to win at a lower price. On the other hand,
suppose p′i < pi. Then in the case where i’s valuation is
v′i > hi (and other agents report according to v−i if asked
to), i has incentive to lie that her valuation is vi to still win
at a better price. We conclude that to incentivize i to report
truthfully, the mechanism must set p′i = pi.



Let us now prove (2). Since the agents have full informa-
tion, the agents in va

−i can condition their strategies on vi;
this is the primary difference between the two models. First,
assume there is some va

−i such that when vi ∈ (`i, hi],M
sells to i at price p′i. By Lemma 7, recall that if a mechanism
asks agent i to deliberate and vi > hi thenM must sell to
agent i. Now, consider va

−i such that conditioned on vi > hi,
i is charged price pi.3

Thus, a strategy exists where the agents in va
−i reach an

outcome that allocates to i at price p′i if i reports vi ∈ (`i, hi],
and reaches the outcome that allocates to i at price pi if i
reports vi > hi. Fix this strategy for va

−i. We will now show
that p′i = pi. First, if p′i > pi, then i has incentive to lie
that her value is greater than hi to win at a lower price. On
the other hand, suppose p′i < pi. Then in the case where i’s
valuation is v′i > hi i has incentive to lie that her valuation
is vi to again win at a better price. Thus, to incentivize i
to report truthfully, the mechanism must set p′i = pi. Note
that this is true of any price pi which can be reached when
vi > hi. Therefore, if vi > hi she is always charged p′i.
Similarly, for any situation in which i wins after reporting
vi ∈ (`i, hi] we have p′i = pi. Hence, the price i is charged
does not depend on va

−i.
Now assume there is no va

−i such thatM sells to i when
vi ∈ (`i, hi], thus we cannot use the argument above. In-
stead, we assume for sake of contradiction that there are two
different outcomes for vi ≥ hi that charge pi and p′i respec-
tively. Without loss of generality assume pi < p′i. Note that
if either price was not acceptable to vi, then she would have
incentive to lie and report vi < `i to avoid being overcharged.
Thus, we can define a mechanism N that is identical toM
except that it charges p′i instead of pi. SinceN attains strictly
more revenue, this contradicts the optimality of M. This
completes the proof for both settings.

With these lemmas, we can now prove Theorem 5.

Proof. GivenM, we will construct N .
Consider the valuation profile where vi > hi for all agents

i. If the item is not sold inM for this case, then no agent
is asked to deliberate; henceM is equivalent to the vacuous
SPP N that does not make any offer.

Now, assume M is not vacuous. For any given set of
agents and priors, sinceM is deterministic, there is some
agent whomM will address first. Without loss of generality,
let us refer to her as agent 1. Recall from Lemma 7 that if
v1 > h1 thenM must sell to agent 1, and let the price of this
sale be p1.

From Lemma 8 we know that whenever the item is sold
to agent 1, it must be sold this same price p1. Let N offer a
fixed price p1 to agent 1. IfM sells to 1 at price p1 without
asking her to deliberate, then, p1 is clearly a price that agent
1 prefers to accept without deliberating. Hence, she will also
accept N ’s offer.

3Note that, contrary to the single-item case,M may continue
asking agents to deliberate as long as the addition of the agent would
not invalidate the feasibility of the winning set. Thus, we have not
yet ruled out the possibility of multiple outcomes with different pi.
We will address this shortly.

Instead, assumeM asks 1 to deliberate. Then, sinceM is
truthful, it is in the agent’s interest to deliberate and learn her
value v1. Similarly, when N offers her price p1 it will be in
her interest to deliberate. Then, from Lemma 7,M awards
her the item if and only if p1 is less than v1. This exactly
matches the scenario under which she accepts N ’s offer.

Thus, the behavior ofM and N is the same after agent 1.
The theorem then follows by induction on the next agentM
addresses.

Approximate Revenue Maximization
We now turn to the question of designing mechanisms to max-
imize expected profit in deliberative environments. Mecha-
nisms that do this are called optimal mechanisms. In some
cases, optimal SPPs can be computed directly and efficiently.
However, since our characterization via SPPs does not hold
for private communication single-parameter auctions, we
pursue an alternative approach that is more broadly appli-
cable: we present a transformation from a deliberative en-
vironment to a related classical environment and then show
that the expected revenue of the optimal mechanism in this
classical environment is an upper bound on the optimal rev-
enue in the deliberative setting. This allows us to use near-
optimal SPPs known for classical environments to obtain
near-optimal mechanisms in the deliberative setting.

Upper Bound in Classical Environment
For the ease of presentation, we assume the agents’ distribu-
tions are continuous, and that for each distribution Fi, the
probability density function fi exists.

In truthful DDMs, by Lemma 7, no agent has a critical
value (or pays a price) outside of [`i, hi]. This motivates the
following definition of the effective value of a deliberative
agent, the value she would have if she were a classical agent.
Definition 9. Consider an agent i with value vi and low
and high deliberation thresholds `i and hi respectively. The
effective value of i is v′i, defined by

v′i =

{
`i if vi ≤ `i
vi if vi ∈ (`i, hi)
hi if vi ≥ hi.

The classical agent with value v′i is the representative of agent
i. We will use i′ to denote the representative of i, and use v′i
to denote the effective value of i, i.e., the value of i′.

It is clear that v′i is drawn from i’s effective distribution.
Definition 10. Let i be a deliberative agent with values
drawn from a distribution Fi with low and high delibera-
tion thresholds `i and hi. Then the effective distribution of
i is defined over the interval [`i, hi] by Gi(x) = Fi(x) for
all `i ≤ x < hi and Gi(hi) = 1. Hence, Gi has a point
mass of Fi(`i) at (`i) and a point mass of 1− Fi(hi) at hi.
Furthermore, if `i = hi then the support of Gi contains a
single value.

We say that E′ = (N ′,S ′,G) is the representative en-
vironment of E = (N,S,F) if E′ is obtained from E by
replacing each agent i with value vi drawn from Fi by an
agent i′ with value v′i drawn from Gi (which induces the



corresponding set of agents N ′ and feasible subsets S ′). The
following theorem relates the expected revenue of truthful
mechanisms in the two environments.

Theorem 11. For any truthful DDMM in E, there is mech-
anism N where:

1. N is a truthful (in expectation) mechanism in E′, and
2. the expected revenue ofM is at most the expected revenue

of N , i.e., Ev∼F [revME,v] ≤ Eu∼G [revNE′,u].

Before proving Theorem 11, we introduce some notation
and definitions. For a deliberative agent i whose value comes
from a distribution Fi and whose low and high deliberation
thresholds are `i and hi respectively, we denote by F `

i the
distribution over [0, `] defined by Fi(0) = 0 and F `

i (x) =
Fi(x)/Fi(`i) for all x ∈ (0, `]. Similarly, Fh

i denote the
distribution over [h,∞) defined by Fh

i (h) = 0 and Fh
i (x) =

(Fi(x)− Fi(h))/(1− Fi(h)).

Definition 12. Let v′ ∈ Support (G) be a valuation pro-
file of the representative agents in E′. We say that v is an
originator of v′ if

• v′i = `i implies vi ≤ `i,
• v′i = hi implies vi ≥ hi, and
• v′i ∈ (`i, hi) implies vi = v′i.

Given a valuation profile v′ of the representative agents,
we can construct a random originator v of v′ by setting
(i) vi = v′i if v′i ∈ (`i, hi), (ii) vi equal to a random number
drawn from F `

i if v′i = `i, and (iii) vi equal to a random
number drawn from Fh

i if v′i = hi. A random originator
constructed this way is called a sampled originator of v′.

Proof of Theorem 11. Given a truthful DDMM on E, we
construct the following mechanism N on E′:

1. Solicit a bid vector b from the agents.
2. Construct a sampled originator u of b.
3. RunM on (E,u).

First, we show that N is truthful in expectation. Consider
a representative i′ ∈ N ′ with value vi′ . We show that sub-
mitting bi′ = vi′ yields the best expected utility for i′. To
this end, we show that this is the case for any fixed u−i.
Once u−i is fixed, there are three cases regarding whether i
is served.

1. M does not ask i to deliberate and does not serve her. In
this case, i′ is not served byN and her bid does not matter,
therefore she is truthful.

2. M asks i to deliberate. Then by Lemma 6, there is a
threshold t(u−i) that does not depend on bi such that i is
served if and only if ui ≥ t(u−i). Moreover, t(u−i) is
the price of i, hence i′, if she is served. By Lemma 7, we
have t(u−i) ∈ (`i, hi). If vi′ ≥ t(u−i) then i′ prefers to
buy at this price, and bidding truthfully makes sure that
this happens. On the other hand, if vi′ < t(u−i) then i′

prefers not to buy, and bidding truthfully also ensures that
this outcome is chosen.

3. M does not ask i to deliberate but serves i and charges
her some price pi, which is independent of i’s value. Since
M is a truthful DDM, by Lemma 7, we must have pi ≤
`i ≤ vi′ , therefore i′ prefers buying to withdrawing from
the mechanism, and hence bids truthfully.

The second part of the theorem follows from the fact that if
b is randomly drawn from G then u is a random draw from
F.

As an immediate corollary of Theorem 11, we get an upper
bound on the revenue of all truthful DDMs on E.

Corollary 13. For any truthful DDMsM, the expected rev-
enue ofM in E is at most the expected revenue of the optimal
revenue-maximizing auction in E′.

Approximation
Corollary 13 suggests that in order to approximate the ex-
pected revenue of the optimal mechanism in a deliberative
environment, we can design a truthful DDM that approxi-
mates the optimal auction in their representative environment.

For this we apply the following theorem of Chawla et
al. (2010), which shows how, in classical single parameter
environments, to obtain a constant factor approximation of
the optimal auction (Myerson 1981) with an SPP.

Theorem 14 (Chawla et al. 2010). There are SPPs that
approximate the expected revenue of the optimal mechanism
in various classical environments. In particular,

• For any general matroid environment, there is an SPP
whose expected revenue is at least 1/2 of the optimal ex-
pected revenue;

• For any uniform matroid or partition matroid environment,
there is a SPP whose expected revenue is at least (e−1)/e
times the optimal expected revenue;

• For any environment whose feasible set system is the in-
tersection of two matroids, there is a SPP whose expected
revenue is at least 1/3 times the optimal expected revenue.

Moreover, it is immediate that any SPP outputs the same
outcome on a instance (E,v) of a deliberative environment
E and its representative instance (E′,v′). This gives us the
following approximation result.

Corollary 15. There are SPPs that approximate the expected
revenue of the optimal truthful DDMs in the single-parameter
settings of Theorem 14. These settings include multi-unit
auctions, single-minded combinatorial auctions, and many
other natural settings.

Tightness of the upper bound and approximation ratio
Unfortunately, the upper bound given by Corollary 13 is
sometimes unachievable. Example 16 shows a case where the
optimal mechanism, an SPP, gets strictly less revenue than the
bound from the representative environment. Note that the gap
example in Blumrosen and Holenstein (2008), demonstrating
that SPPs are not optimal, does not apply. They stipulate that
the value distribution cannot have an atom at its lower bound,
which is not true of representative environments. However
for auctions with two or more units, not only do truthful
DDMs other than SPPs exist, but they can also get strictly



greater revenue (as demonstrated by an example in the online
appendix).

Example 16. Consider a single-item auction with two bid-
ders whose values are drawn from the uniform distribution
over [0, 1] and whose costs of deliberation are both 0.01. The
optimal mechanism for this environment is an SPP (offering
the first bidder a price of 0.625, and the second a price of
0.5) which gets a revenue of ∼ 0.391. In the representative
environment, the optimal auction gets ∼ 0.416.

Future Work
There is much more work to be done to understand delib-
erative environments. While the characterization of DDMs
by SPPs shows that deliberative settings are fundamentally
different than their classical counterparts, our approximation
results show that they are related, at least in this simple delib-
erative setting. The future is wide open for mechanism design
in deliberative environments with many different directions
to follow.

There are still numerous open problems concerning rev-
enue maximization in dominant strategies. As the exam-
ples in our online appendix show, there are other dominant-
strategy-truthful mechanisms (for private communication,
single parameter environments) that get strictly more rev-
enue than the optimal SPP. Characterizing these mechanisms
remains open. Also, there is still a gap between public and
private communication settings. It may be that even revealing
a small amount of information (e.g., how many goods have al-
ready been allocated) is enough to violate dominant-strategy
truthfulness in non-SPP mechanisms.

Another direction is to consider alternate solution concepts,
such as Bayes-Nash equilibria, implementation by iterative
removal of dominated strategies, or randomized truthful (in
expectation) mechanisms. Either of these relaxations allows
for mechanisms that get strictly more revenue than the op-
timal SPP. In fact, such mechanisms can get more revenue
than is possible in any dominant-strategy-truthful mecha-
nism. Note that most of our results, including the revenue
upper bound, only apply to deterministic dominant-strategy
mechanisms. Hence, to study approximation for these looser
solution concepts, we would need to derive a different upper
bound.

Additionally, although there exist social-welfare optimiz-
ing mechanisms (Bergemann and Valimaki 2002; Cavallo
and Parkes 2008) they rely on restricted environments (e.g.,
single-good auctions or models in which all deliberations
must happen simultaneously) and are only Bayes–Nash in-
centive compatible, not dominant-strategy truthful. It may
be possible to use existing SPP results in classical settings
(Blumrosen and Holenstein 2008) to get approximate SPPs
for deliberative environments, but not using the proof tech-
niques we used here.

Lastly, more general (i.e., not single-step) deliberative
models are still untouched. Here, the question of defining a
meaningful class of deliberations is an important one. One
potential model allows for agents to choose from a vari-
ety of noisy deliberations, trading off accuracy against cost.
Another model allows for agents to do multiple stages of

deliberation, for example, getting tighter and tighter bounds
on their true value. Still another allows for the possibility
of one agent deliberating about another agent’s value (so
called “strategic-deliberation”). Almost nothing is known
about dominant-strategy mechanism design in these settings.
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