
Algorithm Configuration
for Portfolio-based Parallel SAT-Solving

Holger Hoos and Kevin Leyton-Brown and Torsten Schaub? and Marius Schneider? 1

Abstract. Since 2004, the increases in processing power enabled by
Moore’s law have been primarily achieved by means of multi-core
processor architectures. To make effective use of modern hardware
when solving hard computational problems, it is therefore necessary to
employ parallel solution strategies. In this work, we demonstrate how
very effective parallel solvers for SAT, one of the most widely studied
NP-complete problems, can be produced automatically from any
existing sequential, highly parametric SAT solver. Our approach uses
an automatic algorithm configurator to produce a set of configurations
to be executed in parallel. Applied to the state-of-the-art SAT solver
lingeling, our fully automated procedure produced 4-core solvers with
speedups of up to 2.79-fold on a diverse set of instances from the
application category of the 2003–2011 SAT Competitions. Our best
automatically generated parallel portfolio of lingeling configurations
outperforms plingeling, the gold medal winner of the application
track (wallclock time) of the 2011 SAT Competition, and ManySAT,
the winner of the special prize for parallel solvers for application
instances of the 2009 SAT Competition. We furthermore demonstrate
that, when applied to the state-of-the-art multi-threaded SAT and ASP
solver clasp, our automated approach yields parallelization speedups
matching those achieved through the considerable efforts of a human
expert with extensive knowledge of the solver.

1 Introduction
Over most of the last decade, additional computational power has
come mostly in the form of increased parallelism. As a consequence,
effective parallel solvers are increasingly key to solving computation-
ally challenging problems. Unfortunately, the manual construction
of parallel solvers is nontrivial, often requiring fundamental redesign
of existing, sequential approaches. It is thus very appealing to iden-
tify generic methods for the construction of parallel solvers from
inherently sequential sources. Indeed, the prospect of a substantial
reduction in human development cost means that such approaches
can be impactful even if their results are less efficient than special-
purpose parallel designs—just as high-level programming languages
are useful even though compiled software tends to fall short of the
performance that can be obtained from expert-level programming in
assembly language. One promising approach for parallelizing sequen-
tial algorithms is the design of parallel algorithm portfolios [14, 8].

In this work, we study generic methods for generating parallel port-
folios from a single, highly-parametric sequential solver design for
a given problem. As such, it can be understood as an instance of the
programming by optimization paradigm [13], providing concrete soft-
ware tools that leverage algorithm configurators and a user-specified
design space to substitute for human development effort. In particular,

1 University of British Columbia, Canada and ?University of Potsdam, Ger-
many

unlike other approaches (further discussed in Section 2), our methods
do not depend on the availability of complementary solver designs.
We evaluate our methods in the SAT domain, which we chose because
it is widely studied and very relevant to academia and industry. We
thus have access to well-known state-of-the-art highly parametric
solvers, and are assured that the bar for demonstrating efficacy of
parallelization strategies is appropriately high.

We consider two scenarios. In the first, there is no communica-
tion between component solvers, and the parallel portfolio can be
generated fully automatically from a single, sequential parametric
solver. In this case, the design space for a parallel portfolio of size
k corresponds to the kth Cartesian power of the design space of the
given sequential solver. To evaluate our methods in this setting, we
chose Lingeling, a prominent, highly parametric state-of-the-art SAT
solver underlying the parallel solver that won gold in the application
(wall-clock) track of the 2011 SAT Competition.

Our second scenario allows for communication between compo-
nent solvers in a parallel portfolio. Here, component solvers are copies
of a single, parametric sequential solver that communicate through
a simple mechanism; for example, in SAT, they might share learned
clauses (see, e.g., [10].) The communication mechanism is problem-
specific and designed by a human expert, resulting in the same design
space as in our first scenario, augmented to further include design
choices that span the component solvers (the communication mecha-
nism itself, preprocessing strategies, etc). To evaluate our methods in
this setting, we chose to study the state-of-the-art, highly parametric,
multi-threaded SAT and ASP solver clasp.

The key idea underlying our approach for handling both scenarios
lies in the use of automated algorithm configurators, which are now
quite mature and have been demonstrated to achieve impressive per-
formance improvements for different solvers on many problems (see,
e.g., [17, 1, 27, 20, 15, 16]). The configuration spaces arising in the
context considered here are very large and therefore present a consid-
erable challenge even to the best configurators. Therefore, in addition
to a rather straightforward approach in which all components of a
given parallel portfolio are configured simultaneously, we introduce a
greedy approach that adds one component solver at a time. Our results
demonstrate that this second approach works particularly well and
produces parallel portfolios whose performance on standard 4-core
CPUs compares favourably with that of well-known, hand-crafted
parallel SAT solvers.

2 Related Work

Well before the advent of the current trend towards multi-core com-
puting, the potential benefits of parallel algorithm portfolios were
identified in seminal work by Huberman et al. [14]. Gomes & Sel-
man [8] further investigated conditions under which such portfolios



outperform their constituent solvers. Both lines of work considered
prominent constraint programming problems (graph colouring and
quasigroup completion), but neither presented methods for automat-
ically constructing portfolio solvers. More recently, such methods
have been introduced for parallel portfolios both when the allocation
of computational resources to algorithms in the portfolio is static
[22, 28] and when it can change over time [6]. All of these methods
build a portfolio from a relatively small candidate set of distinct algo-
rithms. While in principle these methods could also be applied given
a set of algorithms expressed implicitly as the configurations of one
parametric solver, in practice they are useful only when the set of
candidates is relatively small. The same limitation applies to existing
approaches that combine algorithm selection and scheduling, notably
CPHydra [21], which also rely on cheaply computable features of the
problem instances to be solved and selects multiple solvers to be run
in parallel.

In contrast, our work is concerned with building parallel portfolios
from very large sets of candidate algorithms which are expressed as
parameter settings of high-performance solvers such as Lingeling and
clasp. Our approach critically relies on the availability of an effec-
tive algorithm configurator such as ParamILS [18, 17], GGA [1], or
SMAC [16, 19]. It is conceptually related to the Hydra and ISAC pro-
cedures for constructing portfolio-based algorithm selectors [27, 20].
Like both methods, our approach uses an algorithm configurator to
determine a set of configurations that complement each other well.
Furthermore, like Hydra, our GREEDY portfolio construction proce-
dure relies on the idea of determining such configurations one at a
time to achieve a maximum incremental performance improvement in
each iteration. However, both Hydra and ISAC construct per-instance
algorithm selectors: they do not run multiple solvers in parallel, but
instead select a single solver based on instance features. To our knowl-
edge, our paper is the first to show how to automatically construct
effective parallel portfolios from single, highly parametric solvers.

Parallel SAT solvers have received increasing attention in recent
years. ManySAT [10, 11, 9] was one of the first parallel SAT solvers.
It is a static portfolio solver that uses clause sharing between its com-
ponents, each of which is a manually configured, DPLL-type SAT
solver based on MiniSat [5]. Plingeling [3, 4] is based on a similar
design; its recent version 587, which won a gold medal in the appli-
cation track of the 2011 SAT Competition (wrt. wall clock time on
SAT+UNSAT instances), shares unit clauses as well as equivalences
between its component solvers. Similarly, CryptoMiniSat [25], which
won silver in the application track of the 2011 SAT Competition,
shares unit and binary clauses. clasp [7] is a state-of-the-art solver for
SAT and ASP [2] that supports parallel multithreading (since version
2.0.0) for search space splitting and/or competing strategies, both
combinable with a portfolio approach. clasp shares unary, binary, and
ternary clauses and (optionally) offers a parameterized mechanism for
distributing and integrating (longer) clauses. Finally, ppfolio [23] is a
simple, static parallel portfolio solver for SAT without clause sharing
that uses CryptoMiniSat, Lingeling, clasp, TNM [26] and march hi
[12] in their default configurations as component solvers and won
numerous medals in the 2011 SAT Competition. Like the previously
mentioned portfolio solvers for SAT, ppfolio was constructed man-
ually, but uses a very diverse set of high-performance solvers as its
components. Overall, our approach can be understood as an auto-
matic method for replicating the (hand-tuned) success of solvers like
ManySAT , Plingeling, CryptoMiniSat or clasp, which are inherently
based on different configurations of a single parametric solver.

Algorithm 1: Portfolio Configuration Procedure GLOBAL

Input :parametric solver A with configuration space C;
configuration space Cg for communication mechanism
between component solvers; desired number k of
component solvers; instance set I; performance metric
m; configurator AC; number n of independent
configurator runs; total configuration time t

Output :parallel portfolio solver Ak

1 for j := 1..n do
2 obtain configuration cj by running AC on Ak with

configuration space Ck × Cg on I using m for time t/n

3 choose ĉ ∈ {c1, . . . , cn} for which Ak gives optimal
performance on I according to m return ĉ

3 Parallel Portfolio Configuration
We now describe two new methods for generating a parallel solver
portfolio from a single parametric solver, A, with configuration space
C. We call the given set of problem instances I; our goal is to
obtain optimized performance according to a given metric m. (In
our experiments, we minimize penalized average runtime.) We use
Ak = [A1, . . . , Ak] to denote a parallel portfolio with k component
solvers, each of which is a configuration of A. The configuration space
of Ak is Ck =

∏k
i=1 C in the case where there is no communication

between the component solvers (apart from coordinated launch and
termination), and Ck ×Cg in the case where A1, . . . , Ak share infor-
mation throughout a run, where Cg is the set of all possible settings of
the parameters of the communication mechanism and any other global
logic. Let AC denote a generic algorithm configuration procedure (in
our experiments, we used ParamILS[18, 17]). Following our standard
practice (see e.g., [19]) we perform multiple independent runs of AC,
keeping the configuration with the best performance on I . We model
the case of non-communicating component solvers as Cg := {∅}.
Simultaneous configuration of all component solvers
(GLOBAL). Our first portfolio configuration method is the
straightforward extension of standard algorithm configuration to the
construction of a parallel portfolio (see Algorithm 1). Specifically, if
A has ` parameters, we treat the portfolio Ak as a single algorithm
with `k parameters and configure it directly. As noted above, we
perform n parallel runs of AC. These runs can be performed in
parallel, meaning that this procedure requires wall clock time of t/n
if n cores are available. Nevertheless, the practicality of this approach
is limited by the fact that the global configuration space Ck × Cg to
which AC is applied grows exponentially with k. However, given a
powerful configurator, a moderate value of k and a reasonably sized
C (and Cg), this simple approach could be quite effective, especially
when compared to the manual construction of a parallel portfolio.

Iterative configuration of component solvers (GREEDY) For use
in what we expect to be the typical case where Ck × Cg is too large
to be effectively searched by AC, we introduce an iterative procedure
that adds and configures component solvers one at a time (see Algo-
rithm 2). The key idea is to use AC only to configure the component
solver added in the given iteration (and the communication mech-
anism, as applicable and once there are two or more components),
leaving all other components clamped to the configurations that were
determined for them in previous iterations. The procedure is greedy in
the sense that in each iteration i, it attempts to add a component solver
to the given portfolio Ai−1 in a way that myopically maximizes the
performance of the new portfolio Ai (Line 4). Obviously, for k > 1,



Algorithm 2: Portfolio Configuration Procedure GREEDY

Input :parametric solver A with configuration space C;
configuration space Cg for communication mechanism
between component solvers; desired number k of
component solvers; instance set I; performance metric
m; configurator AC; number n of independent
configurator runs; total configuration time t

Output :parallel portfolio solver Ak

1 A0 := [empty portfolio]
2 for i := 1..k do
3 for j := 1..n do
4 obtain configuration cij by running AC on

Ai := Ai−1 +A with configuration space∏i−1
l=1{ĉ

l} × C × Cg on I using m for time t/(k · n),
where Ai−1 +A denotes the portfolio obtained by
extending Ai−1 with algorithm A

5 let ĉi ∈ {ci1, . . . , cin} be the configuration for which Ai

achieved best performance on I according to m, and let ĉi be
the configuration of the component solver most recently
added to Ai

6 return ĉk

even if we assume that AC finds optimal configurations in each it-
eration, this greedy procedure is not guaranteed to find a globally
optimal configuration of the entire portfolio. However, the configu-
ration tasks in each iteration are much easier than those performed
by GLOBAL for even moderately sized portfolio, giving us reason to
hope that under realistic conditions, GREEDY might perform better
than GLOBAL, especially for large configuration spaces C and Cg ,
and for comparatively modest time budgets t. Finally, notice that this
procedure only runs portfolios of size i in each iteration i; therefore, if
there is a cost to computing cycles for each parallel CPU or CPU core,
there are savings in earlier iterations i < k. (However, note that unlike
Hydra, which GREEDY resembles, we do run entire portfolios in each
iteration rather than individual solvers.) Observe that while the sets of
n independent configurator runs in Line 4 can be performed in parallel
(as in GLOBAL), the choice of the best-performing configuration ĉi

has to be made after each iteration i, introducing a modest sequential
overhead compared to the cost of the actual configuration runs.

4 Experiments

To empirically evaluate our approach for creating and optimizing
parallel algorithm portfolios, we applied our GLOBAL and GREEDY

methods to two state-of-the-art SAT solvers: Lingeling and clasp.
Specifically, we compared performance-optimized sequential and
parallel versions of both solvers to our GREEDY method, running
on four cores. Finally, we assessed the performance of the parallel
solvers obtained using our approach relative to other parallel SAT
solvers. A more detailed description of our experimental findings is
available at http://www.cs.uni-potsdam.de/parfolio.

Scenarios We compared six experimental scenarios for each solver.
We use the terminology Default-ST to denote a single-threaded
solver’s default configuration, and analogously Default-MT4 for an
out-of-the-box four-threaded version. We contrasted these solver ver-
sions with three versions obtained using automated configuration:
Configured-STdenotes the best (single-threaded) configuration ob-
tained from 40 independent configurator runs on a training set, while

Global-MT4 and Greedy-MT4 represent the portfolios obtained using
our methods from Section 3 for n = 10 and k = 4.

Solvers We applied our approach to the two highly parameter-
ized, state-of-the-art SAT solvers Lingeling version 276 [3] and clasp
version 2.0.2 [7]. Lingeling has 58 parameters, which (after discretiza-
tion) gave rise to a configuration space of size about 1045. Our parallel
portfolio version of Lingeling was implemented based on a simple
script that runs a given number of Lingeling instances independently
in parallel and without communication. We did not apply our meth-
ods to Plingeling, the ‘official’ parallel version of Plingeling, be-
cause it lacks configurable parameters. However, we did compare our
methods to Plingeling. (Single-threaded) clasp has 25 parameters,
which—discretized by the developer—induce a space of about 1013

configurations. clasp comes with a native multi-threaded architecture,
in which each parallel thread can be configured nearly as flexibly
as the sequential solver. Preprocessing is controlled globally for all
threads. We did not consider active clause sharing in our experiments,
but multi-threaded clasp passively shares unary, binary, and ternary
clauses. Overall, four-threaded clasp can be configured in about 1053

distinct ways. clasp’s default configurations were determined by its
main developer with considerable manual effort; the default parallel
portfolio version of clasp, Default-MT4, was entered in the 2011 SAT
Competition.

Instance Sets We conducted our experiments on instances from
the application (industrial) categories of the 2003–2011 SAT Compe-
titions. Our configuration experiments distinguish a training and a test
set. We used the same training set as [24], consisting of 276 instances
from the 2003–2009 SAT Competitions. Our test set was comprised
of all application (industrial) instances used in the 2003 and 2011 SAT
Competitions with the exception instances already included in our
training set: 679 instances overall. We chose a captime of 600 seconds
for solver runs on training instances performed during configuration,
and a captime of 5000 seconds (as in the 2011 SAT Competition)
when evaluating solvers on the test set.

Evaluation Criteria All solvers were configured and evaluated
based on PAR10 scores [17], which treat timed-out runs as having
taken 10 times the captime. We compared solvers using three mea-
sures. First, overall speedup measures the speedup in terms of total
PAR10 scores, disregarding instances from each table in what fol-
lows that were not solved by any solver. Second, (arithmetic) aver-
age speedup takes the average over the set of the compared solver’s
speedups, considering only instances that could be solved by both
compared solvers. (We note that this measure was previously used
both in the 2008 SAT Race and in [11].) Finally, geometric average
speedup takes the nth root of the product of the elements of the set of
the compared solvers’ speedups over the default, again considering
only instances that could be solved by both compared solvers.

We now compare the three measures. The overall speedup assesses
the speedup obtained in a situation where a stream of problem in-
stances has to be solved and our test set is representative of that
stream. This is the measure that we favor, because performance on
hard instances is often the most important, because this measure is
much less sensitive to outliers, and because it does not require drop-
ping instances that are solved only by the single, best-performing
solver. Thus, while we include the other measures in our tables, we
do not discuss them in the text in what follows. Average and geo-
metric average speedups are nevertheless also useful for considering
situations where there is substantial uncertainty over the difficulty of



PAR10 Overall Speedup Overall Speedup Avg. Speedup Geo. Avg. Speedup
vs Default-ST vs Configured-ST vs Configured-ST vs Configured-ST

Default-ST 3747 1.00 0.93 1.44 0.98
Configured-ST 3499 1.07 1.00 1.00 1.00
Plingeling 3066 1.22 1.14 7.39 1.46
Global-MT4 2734 1.37 1.27 10.47 1.36
Greedy-MT4 1341 2.79 2.61 3.52 1.60

Table 1: PAR10 scores and speedups on application/industrial SAT instances achieved by different versions of Lingeling, both single-threaded
(ST) and 4-threaded (MT4).

PAR10 Overall Speedup Overall Speedup Avg. Speedup Geo. Avg. Speedup
vs Default-ST vs Configured-ST vs Configured-ST vs Configured-ST

Default-ST 7560 1.00 0.82 4.46 1.04
Configured-ST 6170 1.23 1.00 1.00 1.00
Default-MT4 2324 3.25 2.65 7.58 2.15
Global-MT4 3604 2.10 1.71 6.36 1.44
Greedy-MT4 2277 3.32 2.71 9.47 2.14

Table 2: PAR10 scores and speedups on application/industrial SAT instances achieved by different versions of clasp, both single-threaded (ST)
and 4-threaded (MT4).

instances that will ultimately be faced, and so consistent speedups
across the entire training set (rather than just hard instances in that
set) is important. We note that, unlike geometric average speedup,
average speedup can give rise to situations where algorithms A and B
have speedups > 1 of A against B and B against A simultaneously.
(To see this, consider running times 1, 2 for A and 2, 1 for B on two
given instances.)

We performed all solver and configurator runs on Dell PowerEdge
R610 systems with an Intel Xeon E5520 (2.26GHz), 48GB RAM
running 64-bit Scientific Linux.

Configuration Experiments We used the FocusedILS variant of
ParamILS (version 2.3.5) [17], one of the best algorithm configurators
currently available. To enable fair performance comparisons, in the
case of Configured-STand Global-MT4 we allowed 8 CPU days of
configuration time and 1 CPU day for validation runs per configurator
run, which amounted to a total of 360 CPU days. (Validation runs
were used to choose the best among a set of configurations; they relied
on the same training set as the configuration runs. The test set was
used only for evaluating the different methods.) For Greedy-MT4, we
allowed for 2 CPU days of configuration time and 1 CPU days of
validation time per configurator run, which amounted to a total of
about 300 CPU days for k = 4. When using a cluster of dedicated
machines with 4-core CPUs, each of those solver versions could be
produced within 9 days of wall-clock time.

Parallelization speedups Table 1 presents the results of our experi-
ments with Lingeling in the communication-free scenario. We observe
that single-threaded configuration offered very little benefit here, re-
ducing PAR10 score only slightly. Plingeling did a bit better, but
despite access to four cores only achieved an overall speedup of 1.22
as compared to the Lingeling default. Our Global-MT4 method out-
performed Plingeling, but only slightly, achieving an overall speedup
of 1.37 times the default. Our Greedy-MT4 method made the best use
of its four cores, achieving a speedup of 2.79 times. We performed a
permutation test (10 000 iterations, p = 0.05), which confirmed that
Greedy-MT4’s performance significantly exceeded that of the other
methods.

Table 2 describes the results of our experiments with clasp. Here

PAR1 PAR10 Timeouts
Virtual Best Solver 1334 10480 138
ppfolio 1646 13310 176
Greedy-MT4(Lingeling) 1717 13712 181
Plingeling (587) 1684 13812 183
Greedy-MT4(clasp) 1856 15310 203
clasp (MT) 1837 15357 204
Plingeling (276) 1850 15437 205
ManySAT(1.1) 1887 16003 213
ManySAT(2.0) 1998 17373 232

Table 3: Comparison of our best parallelization approach, GREEDY,
with other parallel SAT solvers from the 2011 SAT Competition in
the four-threaded setting. (The performance of the Virtual Best Solver
is the minimal runtime of each instance given a portfolio of solvers. )

again we observe small gains from configuring the single-threaded
solver, and Greedy-MT4 outperforming Global-MT4. Overall, Greedy-
MT4 did even better in this domain, achieving a total speedup of 3.32
over the single-threaded default, approaching the theoretical maxi-
mum of 4. Greedy-MT4 achieved slightly (but not significantly) better
performance as compared to clasp’s multi-threaded default. However,
this default was developed through extensive human effort and (as a
SAT Competition entrant) had previously targeted the same data we
used to evaluate it. Thus, we see our automated methods’ ability to
match Default-MT4’s performance as an encouraging finding.

Comparison to other parallel solvers Finally, Table 3 presents a
comparison of our methods’ performance relative to other 4-thread
parallel solvers. We note a few interesting points here. First, Plin-
geling, the 2011 SAT Competition gold medal winner in the industrial
multi-core track, appears only in 3rd place; however, we also note that
the competition used 8 cores. Second, our Greedy-MT4 (Lingeling),
which is based on version 276 from 2010, performed as well as the
new Plingeling(587). Third, although the ASP-solver clasp was de-
signed for SAT instances more similar to those from the competition’s
crafted (rather than industrial) track, clasp (in both its default and
our Greedy-MT4 variants) solved more instances than both ManySAT
versions and slightly more than Plingeling (276). Fourth, we note that



ManySAT’s performance was weaker than one might expect given
the speedups described in [11]; however, these results were based
on (arithmetic average) speedups over the single-threaded variant
of ManySAT , rather than MiniSat 2.1 (confirmed through personal
communication with the authors). Finally, ppfolio’s strong perfor-
mance indicates that portfolios of complementary solvers can yield
even stronger performance than parallel portfolios constructed from
single parameterized solvers. We aim to consider automatically con-
structed parallel portfolios that span multiple parametric solvers in
future work.

REFERENCES

[1] C. Ansótegui, M. Sellmann, and K. Tierney, ‘A gender-based genetic
algorithm for the automatic configuration of algorithms’, in Proceedings
of the Fifteenth International Conference on Principles and Practice
of Constraint Programming (CP’09), volume 5732 of Lecture Notes in
Computer Science, pp. 142–157. Springer-Verlag, (2009).

[2] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving, Cambridge University Press, 2003.

[3] A. Biere, ‘Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010’, FMV Reports Series 10/1, Institute for Formal Models and Veri-
fication. Johannes Kepler University, (2010).

[4] A. Biere, ‘Lingeling and friends at the SAT competition 2011’, Tech-
nical Report FMV 11/1, Institute for Formal Models and Verification,
Johannes Kepler University, (2011).

[5] N. Eén and N. Sörensson, ‘An extensible SAT-solver’, in Proceedings of
the Sixth International Conference on Theory and Applications of Satis-
fiability Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pp. 502–518. Springer-Verlag, (2004).

[6] M. Gagliolo and J. Schmidhuber, ‘Learning dynamic algorithm portfo-
lios’, Annals of Mathematics and Artificial Intelligence, 47(3-4), 295–
328, (2006).

[7] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, ‘Conflict-driven
answer set solving’, in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), pp. 386–392. AAAI
Press/The MIT Press, (2007).

[8] C. Gomes and B. Selman, ‘Algorithm portfolios’, Artificial Intelligence,
126(1-2), 43–62, (2001).

[9] L. Guo, Y. Hamadi, S. Jabbour, and L. Sais, ‘Diversification and in-
tensification in parallel SAT solving’, in Proceedings of the Sixteenth
International Conference on Principles and Practice of Constraint Pro-
gramming (CP’10), volume 6308 of Lecture Notes in Computer Science,
pp. 252–265. Springer-Verlag, (2010).

[10] Y. Hamadi, S. Jabbour, and L. Sais, ‘Control-based clause sharing in
parallel SAT solving’, in Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI’09), pp. 499–504.
AAAI Press/The MIT Press, (2009).

[11] Y. Hamadi, S. Jabbour, and L. Sais, ‘ManySAT: a parallel SAT solver’,
Journal on Satisfiability, Boolean Modeling and Computation, 6, 245–
262, (2009).

[12] M. Heule, M. Dufour, J. van Zwieten, and H. van Maaren, ‘March eq:
Implementing additional reasoning into an efficient look-ahead SAT
solver’, in Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT’04), volume 3542
of Lecture Notes in Computer Science, pp. 345–359. Springer-Verlag,
(2004).

[13] H. Hoos, ‘Programming by optimisation’, Communications of the ACM,
55, 70–80, (2012).

[14] B. Huberman, R. Lukose, and T. Hogg, ‘An economic approach to hard
computational problems’, Science, 27, 51–54, (1997).

[15] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Automated configuration
of mixed integer programming solvers’, in Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2010), volume 6140 of Lecture Notes in Computer
Science, pp. 186–202. Springer, (2010).

[16] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proceedings of the
Fifth International Conference on Learning and Intelligent Optimization
(LION’11), volume 6683 of Lecture Notes in Computer Science, pp.
507–523. Springer-Verlag, (2011).

[17] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, ‘ParamILS: An

automatic algorithm configuration framework’, Journal of Artificial
Intelligence Research, 36, 267–306, (2009).

[18] F. Hutter, H. Hoos, and T. Stützle, ‘Automatic algorithm configuration
based on local search’, in Proceedings of the Twenty-second National
Conference on Artificial Intelligence (AAAI’07). AAAI Press, (2007).

[19] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Parallel algorithm con-
figuration’, in Proceedings of the Sixth International Conference on
Learning and Intelligent Optimization (LION’12), Lecture Notes in Com-
puter Science. Springer-Verlag, (2012). To appear.

[20] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘ISAC – instance-
specific algorithm configuration’, in Proceedings of the Nineteenth Eu-
ropean Conference on Artificial Intelligence (ECAI’10), pp. 751–756.
IOS Press, (2010).

[21] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,
‘Using case-based reasoning in an algorithm portfolio for constraint
solving’, in Proceedings of the Nineteenth Irish Conference on Artificial
Intelligence and Cognitive Science (AICS’08), (2008).

[22] M. Petrik and S. Zilberstein, ‘Learning static parallel portfolios of al-
gorithms’, in Proceedings of the International Symposium on Artificial
Intelligence and Mathematics (ISAIM 2006), (2006).

[23] O. Roussel. Description of ppfolio, 2011. Available at http://www.
cril.univ-artois.fr/˜roussel/ppfolio/solver1.pdf.

[24] M. Schneider and H. Hoos, ‘Quantifying homogeneity of instance sets
for algorithm configuration’, in Proceedings of the Sixth International
Conference Learning and Intelligent Optimization (LION’12), Lecture
Notes in Computer Science. Springer-Verlag, (2012). To appear.

[25] M. Soos, K. Nohl, and C. Castelluccia, ‘Extending SAT solvers to cryp-
tographic problems’, in Proceedings of the Twelfth International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT’09), vol-
ume 5584 of Lecture Notes in Computer Science, pp. 244–257. Springer-
Verlag, (2009).

[26] W. Wei and C. Li. Switching between two adaptive noise mecha-
nism in local search for SAT, 2009. Available at http://home.mis.
u-picardie.fr/˜cli/EnglishPage.html.

[27] L. Xu, H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically config-
uring algorithms for portfolio-based selection’, in Proceedings of the
Twenty-fourth National Conference on Artificial Intelligence (AAAI’10),
pp. 210–216. AAAI Press, (2010).

[28] X. Yun and S. Epstein, ‘Learning algorithm portfolios for parallel execu-
tion’, in Proceedings of the Sixth International Conference Learning and
Intelligent Optimization (LION’12), Lecture Notes in Computer Science.
Springer-Verlag, (2012).


