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1 Proof of Lemma 4

Proof. Given an arbitrary Bayesian game (N, {Ai}i∈N ,Θ, P, {ui}i∈N ) repre-
sented in Bayesian normal form, we construct the BAGG (N,Θ, P, {A′i,θi

}i∈N,θi∈Θi
,

G, {uα}α∈A) as follows. The Bayesian normal form’s tabular representation of
type profile distribution P can be straightforwardly represented as a BN, e.g.
by creating a random variable representing θ as the only parent of the random
variables θ1, . . . , θn. To represent utility functions, we create an action graph
G with

∑
i |Θi||Ai| action nodes; in other words, all type-action sets A′i,θi

are
disjoint. Each action ai ∈ Ai of the Bayesian normal form corresponds to |Θi|
action nodes in the BAGG, one for each type instantiation θi. For each player
i and each type θi ∈ Θi, each action node α ∈ A′i,θi

has incoming edges from
all action nodes from type-action sets A′j,θj

for all j 6= i, θj ∈ Θj , i.e. all action
nodes of the other players. For each action node α ∈ A′i,θi

corresponding to
ai ∈ Ai, the utility function uα is defined as follows: given configuration c(α)

we can infer the action profile a′−i ∈ A′−i of the BAGG, which then tells us
the corresponding a−i and θ−i of the Bayesian normal form, which gives us the
utility ui(a, θ). The number of utility values stored in this BAGG is the same
as the Bayesian normal form.

2 Proof of Theorem 9

Proof. We reduce the problem of computing expected utility ui(σθi→ai |θi) for
BAGGs with independent type distributions to the problem of computing ex-
pected utility for AGGs.

Given a BAGG (N,G, {uα}α∈A), we consider the AGG Γ specified by (N,
{A∪i }i∈N , G, {uα}α∈A), i.e. an AGG with the same set of players, the same ac-
tion graph and the same utility functions, but with action sets corresponding to
total action sets of the BAGG. The representation size of the AGG Γ is propor-
tional to the size of the BAGG. Furthermore, since the BAGG is contribution-
independent, all function nodes in the AGG Γ is contribution-independent.

Given i, θi and σθi→ai , for each player j 6= i we can calculate Pr(Dj) by
summing out θj : Pr(Dj = aj) =

∑
θj
σj(aj |θj). Observe that this distribution of
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the strategy variable Dj can be interpreted as a (complete-information) mixed
strategy σ′j of the AGG Γ’s player j. Similarly for player i, the distribution
Pr(Di|θi) can be interpreted as a mixed strategy σ′i of Γ’s player i. Furthermore
these distributions are independent, so they induce the same distribution over
configurations of the BAGG as the distribution over configurations of the AGG
Γ induced by the mixed-strategy profile σ′ = (σ′1, . . . , σ

′
n).

Therefore the expected utility ui(σθi→ai |θi) for the BAGG is equal to the
expected utility of i in the AGG Γ under the mixed strategy profile σ′. Expected
utility for contribution-independent AGGs can be computed in polynomial time
by running the algorithm of Jiang and Leyton-Brown [1].

An alternative approach for proving Theorem 9 is to work on the TBN of
the BAGG, which can be shown to have treewidth as most |ν(ai)|. Although
|ν(ai)| is not necessarily a constant so Theorem 8 cannot be directly applied, it
can be shown that a variable elimination algorithm need to store at most |C(ai)|
numbers in each of its tables, which is polynomial in the size of the BAGG.
These two proof approaches can be thought of as two interpretations of the
same expected utility algorithm.
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