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Abstract

We briefly survey the rise of game theory as a topic of study in artifi-
cial intelligence, and explain the term algorithmic game theory. We then
describe three broad areas of current inquiry by AI researchers in algo-
rithmic game theory: game playing, social choice, and mechanism design.
Finally, we give short summaries of each of the six articles appearing in
this issue.

1 Algorithmic Game Theory and Artificial Intelligence

Game theory is a branch of mathematics devoted to studying interaction among
rational and self-interested agents. The field took on its modern form in the
1940s and 1950s (von Neumann and Morgenstern, 1947; Nash, 1950; Kuhn,
1953), with even earlier antecedents (e.g., Zermelo, 1913; von Neumann, 1928).
Although it has had occasional and significant overlap with computer science
over the years, game theory received most of its early study by economists.
Indeed, game theory now serves as perhaps the main analytical framework in
microeconomic theory, as evidenced by its prominent role in economics text-
books (e.g., Mas-Colell, Whinston, and Green, 1995) and by the many Nobel
prizes in Economic Sciences awarded to prominent game theorists.

Artificial intelligence got its start shortly after game theory (McCarthy et
al., 1955), and indeed pioneers such as von Neumann and Simon made early
contributions to both fields (see, e.g., Findler, 1988; Simon, 1981). Both game
theory and AI draw (non-exclusively) on decision theory (von Neumann and
Morgenstern, 1947); e.g., one prominent view defines artificial intelligence as
“the study and construction of rational agents” (Russell and Norvig, 2003),
and hence takes a decision-theoretic approach when the world is stochastic.
However, artificial intelligence spent most of its first forty years focused on the
design and analysis of agents that act in isolation, and hence had little need for
game-theoretic analysis.

Starting in the mid to late 1990s, game theory became a major topic of
study for computer scientists, for at least two main reasons. First, economists
began to be interested in systems whose computational properties posed serious
barriers to practical use, and hence reached out to computer scientists; notably,
this occurred around the study of combinatorial auctions (see, e.g., Cramton,
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Shoham, and Steinberg, 2006). Second, the rise of distributed computing in gen-
eral and the Internet in particular made it increasingly necessary for computer
scientists to study settings in which intelligent agents reason about and inter-
act with other agents. Game theory generalizes the decision-theoretic approach
which was already widely adopted by computer scientists, and so was a natu-
ral choice. The resulting research area, fusing a computational approach with
game theoretic models, has come to be called Algorithmic Game Theory (Nisan
et al., 2007). This field has grown considerably in the last few years. It has a
significant and growing presence in major AI conferences such as the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), the Conference of the
Association for the Advancement of Artificial Intelligence (AAAI), and Interna-
tional Conference on Autonomous Agents and Multiagent System (AAMAS),
and in journals such as Artificial Intelligence (AIJ), the Journal of Artificial
Intelligence Research (JAIR) and Autonomous Agents and Multi-Agent Sys-
tems (JAAMAS). It also has three dedicated archival conferences of its own:
the ACM Conference on Electronic Commerce (ACM-EC), the Workshop on
Internet and Network Economics (WINE) and the Symposium on Algorithmic
Game Theory (SAGT).

It is necessary to distinguish algorithmic game theory from a somewhat older
and considerably broader research area within AI: multiagent systems (Weiss,
1999; Vlassis, 2007; Wooldridge, 2009; Shoham and Leyton-Brown, 2009; Vidal,
2010). While multiagent systems indeed encompasses most game-theoretic work
within AI, it has a much wider ambit, also including non-game-theoretic topics
such as software engineering paradigms, distributed constraint satisfaction and
optimization, logical reasoning about other agents’ beliefs and intentions, task
sharing, argumentation, distributed sensing, and multi-robot coordination.

Algorithmic game theory has received considerable recent study outside arti-
ficial intelligence. The term first gained currency among computer science theo-
rists, and is now used beyond that community in networking, security, learning,
and operating systems. In fact, the term has been comparatively slow to catch
on in AI, and to date the moniker “multiagent systems” is more broadly used.
We argue, however, that there are advantages to designating some AI research
as “algorithmic game theory.” First, the use of this label stresses commonalities
between AI research and work by computer scientists in other areas, particu-
larly theorists. It is important to ensure that AI research remains connected
to this quickly growing body of work, for the benefit of researchers both inside
and outside of AI. Second, at this point multiagent systems is a huge research
area, and only some of this research is game theoretic. It is thus sensible to
have a coherent name for multiagent systems work that takes a game-theoretic
approach.

At this point the reader might wonder what characterizes AI work within
algorithmic game theory, as distinct e.g., from work in the theory community.
While it is difficult to draw sharp distinctions between these literatures, we
note two key differences in the sorts of questions emphasized. First, algorithmic
game theory researchers in AI are often interested in reasoning about practical
multiagent systems. AI work has thus tended to emphasize elaborating theo-
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retical models to make them more realistic, scaling up to larger problems, using
computational techniques in settings too complex for analysis, and addressing
prescriptive questions about how agents should behave in the face of compe-
tition (e.g., through competitions; see, e.g., (Wellman, Greenwald, and Stone,
2007)). Second, AI has long studied practical techniques for solving computa-
tionally hard problems, and many of these techniques have found application
to problems in game theory. Algorithmic game theory work in AI thus often
emphasizes methods for solving practical problems under resource constraints,
rather than considering computational hardness results to be insurmountable
roadblocks.

2 This Special Issue

This special issue aims to highlight cutting-edge artificial intelligence research
in algorithmic game theory, and contains articles written by some of the most
prominent researchers in the field. Our goal was to provide a broad sampling of
state-of-the-art AI work in algorithmic game theory, emphasizing exciting ap-
plications and written in an accessible manner. Specifically, we aimed to achieve
balance between three key topics in current research. The first, game playing,
considers the design of automated methods for playing competitive games pop-
ular among humans. It focuses on scaling up classical game-theoretic ideas to
the huge domains necessary to model these settings; extending these ideas to
deal with the approximations introduced by this scaling; and addressing the
prescriptive problem of how an agent should act when it is not sure that its op-
ponent is perfectly rational. The second topic is social choice, the aggregation
of preferences across agents, either through an explicit voting scheme or implic-
itly through a prediction market. The final topic is mechanism design, which
can be understood as the design of protocols for decision making among non-
cooperative clients. Here much AI research focuses on elaborations to existing
models, with the goal of making them more applicable to anonymous, dynamic
environments such as the Internet.

In what follows, we describe this issue’s six papers in more detail, grouping
them according to our three thematic areas.

2.1 Game Playing

Game playing is a traditional AI problem. Recent work in algorithmic game
theory has extended the competence of AI systems to new domains, such as
poker and billiards.

In our first article, Sandholm addresses the issue of computing equilibrium
strategies in large games with incomplete information, with a particular fo-
cus on poker. This work has produced top-performing poker-playing computer
programs, and is based on the state-of-the-art techniques in linear and integer
programming. Sandholm first outlines several approaches to abstracting away
some of the features of the game in order to reduce search space. He then
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describes two classes of algorithms for computing the (approximate) equilib-
ria of the simplified game, namely, smoothing and gradient descent algorithms
and counterfactual regret minimization algorithms. Sandholm also discusses
extensions of his methods to non-zero sum and multi-player games, as well as
non-equilibrium-based approaches to designing good poker agents. Some of the
work surveyed in this paper was the basis of Andrew Gilpin’s PhD thesis, which
won the 2009 IFAAMAS Victor Lesser Distinguished Dissertation Award.

Second, Archibald, Altman, Greenspan and Shoham describe their recent
work on computational pool. Unlike in poker, in a game of pool the player’s
success depends not only on his strategic reasoning, but also on his skills. More-
over, the agent’s action space is continuous rather than discrete. This introduces
new modeling and design challenges, and the authors describe both theoretical
and experimental work that went into the design of a winning computational
pool player. The paper also explores the impact of different noise levels and
bounds on execution time on the agents’ performance; interestingly, it turns
out that an agent may prefer to have weaker execution skills.

2.2 Social Choice

Social choice theory studies rules for aggregating agents’ beliefs and preferences.
Two active research directions in this field that are represented in this special
issue are using markets to induce experts to aid in belief fusion, and assess-
ing the extent to which computational complexity serves as a barrier to the
manipulation of voting schemes.

In our third article, Chen and Pennock survey the literature on prediction
mechanisms, i.e., systems that use “the wisdom of crowds” to predict the prob-
ability of an uncertain event, such as an election outcome, the score of a football
game, or the completion date of a construction project. They distinguish be-
tween prediction markets, where the events have a clear objective outcome, and
peer prediction systems, where there is no objective outcome to be measured
and the players are evaluated against other agents’ predictions. The authors
suggest a number of desirable properties for such mechanisms, such as liquid-
ity, expressiveness, computational tractability and truthfulness, and evaluate
existing mechanisms with respect to these criteria.

The fourth paper, by Faliszewski and Procaccia, overviews the state of the
art in another area of computational social choice: voting manipulation. This
is the problem of voters misrepresenting their preferences in order to obtain
a more desirable outcome. This issue is known to be unavoidable in voting,
but it has been suggested that computational complexity can be used as a
barrier against manipulation, by identifying voting rules for which manipulation
is computationally hard. The authors present the existing worst-case hardness
results for manipulation and related problems, as well as the recent attacks on
the worst-case complexity approach.
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2.3 Mechanism Design

Mechanism design is an important tool for reasoning about the allocation of
scarce resources in multiagent systems, and about noncooperative protocol de-
sign more generally. Recent directions in this literature focus on resistance to
manipulations enabled by anonymous internet communication and the design
of mechanisms for settings in which agents’ preferences evolve over time.

In our fifth article, Conitzer and Yokoo observe that in electronically-mediated
mechanisms, it is often possible for an agent to benefit by pretending to be mul-
tiple agents. For example, the agent can place shill bids in eBay-like auctions,
or can vote multiple times in an online poll. Such behavior is very hard to avoid
in anonymous environments such as the Internet, and therefore it is desirable to
design multiagent systems in a way that is resilient to false-name manipulation.
While this task is often challenging, the paper describes several results in this
vein for a wide variety of settings such as voting, auctions and coalitional games.
It also considers practical ways of preventing agents from creating multiple iden-
tifiers, such as making the participation costly, verifying some of the identifiers,
or using the social network structure to prevent agents from cheating.

In the final article, Parkes, Cavallo, Constantin and Singh discuss the prob-
lems that arise when one tries to incentivize truthful behavior in a dynamically
changing environment. Such environments are typical for many AI settings,
where the actions may have uncertain effects, and agents may have to learn
about the costs and values of different actions along the way. They consider
two types of uncertainty. First, external uncertainty is associated with agents’
arrival and departure, as well as other changes to the environment. Second,
internal uncertainly models the dynamics caused by learning and information
acquisition. The paper describes a number of mechanisms for dynamic settings
that combine game-theoretic ideas with AI-style heuristic approaches.
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