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Abstract. We analyze the complexity of computing pure strategy Nash equilibria (PSNE) in sym-
metric games with a fixed number of actions. We restrict ourselves to “compact” representations,
meaning that the number of players can be exponential in the representation size. We show that in
the general case, where utility functions are represented as arbitrary circuits, the problem of decid-
ing the existence of PSNE is NP-complete. For the special case of games with two actions, we show
that there always exist a PSNE and give a polynomial-time algorithm for finding one. We then
focus on a specific compact representation: piecewise-linear functions. We give polynomial-time
algorithms for finding a sample PSNE and for counting the number of PSNE. Our approach makes
use of Barvinok and Wood’s rational generating function method [3], which enables us to encode
the set of PSNE as a generating function of polynomial size.

1. Introduction

In the last decade, there has been much research at the interface of computer science and game
theory (see e.g. [27, 31]). One fundamental class of computational problems in game theory is the
computation of solution concepts of a finite game. Much recent effort in the literature has concerned
the complexity of computing mixed-strategy Nash [7, 9–11] and correlated equilibria [22, 28].

In this paper we focus on the problem of computing pure strategy Nash equilibria (PSNE).
Unlike mixed-strategy Nash equilibria, which are guaranteed to exist for finite games [26], in general
PSNE are not guaranteed to exist. Nevertheless, in many ways PSNE is a more attractive solution
concept than mixed-strategy Nash equilibrium. First, PSNE can be easier to justify because it does
not require the players to randomize. Second, it can be easier to analyze because of its discrete
nature (see, e.g., [6]). There are several versions of the problem of computing PSNE: deciding if
a PSNE exists, finding one, counting the number of PSNEs, enumerating them, and finding the
optimal equilibrium according to some objective (e.g., social welfare). The latter problems are
game-theoretically more useful, but often computationally harder.

The complexity of each of these problems very much depends on the representation used. Normal
form is the traditional choice. In this representation, each player’s utilities are specified explicitly for
each pure strategy profile. Questions about PSNE can be answered in polynomial time in the input
size, by checking every pure strategy profile. However, the size of the normal form representation
grows exponentially in the number of players. This is problematic in practice, especially since many
games of interest involve large numbers of players.

Fortunately, most large games of practical interest have highly-structured payoff functions, and
thus it is possible to represent them compactly. A line of research thus exists looking for compact
game representations that are able to succinctly describe structured games, and efficient algorithms
for finding equilibria that run in time polynomial in the size of the representation. The problem is
hard in the most general case, when utility functions are arbitrary efficiently computable functions
represented as circuits [30] or Turing Machines [1]. Researchers have also studied compact game
representations that exploit various types of structure in utility functions. These include graphical
games [23], congestion games [29] and action-graph games [5]. Computing PSNE for these repre-
sentations is hard in general, but polynomial time for certain subclasses of games [12, 14, 19–21].
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One important type of structure is symmetry. A game is symmetric when all players are identical
and interchangeable. Symmetric games have been studied since the beginning of noncooperative
game theory. For example, Nash proved that symmetric games always have symmetric mixed Nash
equilibria [26]. In a symmetric game, a player’s utility depends only on the player’s chosen action
and the configuration, which is the vector of integers specifying the numbers of players choosing
each of the actions. As a result, symmetric games can be represented more compactly than games
in normal form: we only need to specify a utility value for each action and each configuration. For a
symmetric game with n players and m actions per player, the number of configurations is

(
n+m−1
m−1

)
.

For fixed m, this grows like nm−1, in which case Θ(nm) numbers are required to specify the game.
Questions about PSNE can be computed straightforwardly by checking all configurations, which
requires polynomial time in the size of the representation, and polynomial time in n when the
number of actions is fixed. Indeed, [6] proved that the existence problem for PSNE of symmetric
games with constant number of actions is in AC0. There has also been research on a generalization
of symmetric games called anonymous games, in which a given player’s utility depends on his
identity as well as the action chosen and the configuration [6, 13].

Existing work on symmetry in games focuses on utility functions that explicitly enumerate util-
ity values for each configuration. However, more concise representations are possible when the
utility functions have additional structure. In symmetric games, the set of players can be specified
implicitly by the number n, requiring only log n bits to represent. If the utility functions can be
represented in size polynomial in the number of bits needed to represent the configuration vector,
the game can be represented in size polynomial in log n. Thus, such a “compact” representation is
able to specify games with a number of players exponential in the input size.

In this paper, we consider the complexity of computing PSNE for symmetric games with compactly-
represented utility functions. We first look at the most general setting, where the utility functions
are represented as circuits whose inputs are binary representations of the configuration vector. We
show that even with a fixed number of actions, the problem of deciding the existence of PSNE is
NP complete. The only exception is the case of two actions, for which we show that there always
exists a PSNE and present an algorithm that identifies such an equilibrium in polynomial time.

Our main positive result is the identification of a compact representation of utility with nice
computational properties—piecewise linear functions of the configuration vector. Piecewise linear
functions are a natural and convenient way of representing utilities. For this setting, we present
novel algorithms for finding a sample PSNE and for counting the number of PSNEs. When the
number of actions is fixed, these algorithms run in polynomial time. In particular, if the total
number of pieces is bounded by a polynomial of log n then we achieve an exponential improvement
over the algorithm of Brandt et. al. [6], which scales polynomially with n. Our techniques also yield
a polynomial-space polynomial-delay output-sensitive algorithm for enumerating the set of PSNE.

The main challenge in constructing such polynomial-time algorithms is that the set of configu-
rations and the set of PSNE configurations can be exponential in the input size. Thus, approaches
based on enumerating all configurations require exponential time. Instead, our approach encodes
the set of PSNE in a compact representation that has appealing computational properties. Specifi-
cally, we make use of the rational generating function method due to Barvinok and Woods [3]. (We
give a brief overview of the rational generating function techniques that we use in Section 4.) We
formulate the set of equilibrium configurations via operations on lattice points in polyehdra; the
resulting set of points can be encoded as a rational generating function of polynomial size.

The current paper relates to some recent work by one of the authors [24]. This work introduced
rational generating function methods to the algorithmic study of games, showing that they can be
used to compute pure-strategy Nash equilibria of games in which the action sets are represented
by fixed-dimensional polyhedra and the utilities are given by piecewise linear functions. These
results assumed a fixed number of players and made restrictions on the piecewise linear functions.
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By contrast, the current paper allows for a non-fixed number of players and instead restricts the
number of actions; it also allows a much more general family of piecewise linear functions.

2. Symmetric games and configurations

Symmetric games are a class of strategic games in which each player has an identical set of
actions A and utility function u. We consider n-player symmetric games in which the number of
actions m is a fixed constant.

The outcomes of the game are sufficiently described by configurations of players; that is, a record
of how many players play each action. A configuration is an m-dimensional vector x = (xa : a ∈ A),
where xa is the number of players playing action a. Let D denote the set of configurations:

D =

{
x ∈ Zm :

∑
a∈A

xa = n, xa ≥ 0 for all a ∈ A

}
. (2.1)

Since each player has the same utility function, the utility of a given player depends only on
the action played and the overall configuration. For each action a ∈ A, we have a utility function
defined on all the configurations where at least one player plays actions a. In particular, ua(x) is
the utility of playing action a in configuration x provided xa ≥ 1.

A configuration x ∈ D is a pure strategy Nash equilibrium configuration (or simply a PSNE) if
for all actions a and a′ either no player plays action a or the utility of a player playing action a
exceeds the utility he would receive from unilaterally deviating to action a′. Symbolically, let N
denote the set of PSNE in a symmetric game. Then

x ∈ N ⇐⇒ (∀a ∈ A : xa = 0) OR (∀a′ ∈ A, ua(x) ≥ ua′(x + ea′ − ea)), (2.2)

where ea is the ath unit vector with components eaa = 1 and eaa′ = 0 for a′ 6= a. Note that
x + ea′ − ea is the same configuration as x except that one player has deviated from playing action
a to action a′.

3. Symmetric games with utilities as circuits

In this section, we consider circuit symmetric games, a representation in which each utility
function ua is represented as a circuit whose input is a binary representation of the configuration
vector x. The representation size can thus be as small as O(log n).

We first consider the case with two actions, A = {1, 2}. Cheng et. al. [8] proved that a symmetric
game with two actions always has at least one PSNE. This also follows from the fact that such
a game can be formulated as a congestion game,1 which implies the existence of a PSNE [29].
However, even when a PSNE provably exists (or when a game is a congestion game), PSNEs can
still be difficulty to find. We give an alternative proof of the existence of PSNE that illustrates the
structure of the strategy space for these games, and then show how this structure can be exploited
for efficient computation.

Lemma 3.1. Any symmetric game with two actions has a PSNE.

Proof. Given such a symmetric game, we construct the deviation graph, whose vertices are the
configurations x ∈ D. There is an directed edge from x to x′ if and only if a deviation by a single
player from x results in x′. Since each x = (x1, n− x1), where x1 is the number of agents playing
action 1, we can identify each configuration by its first component. Under this mapping, the set
of configurations corresponds to the set of integers {0, . . . , n}. It is straightforward to see that
the only edges in the deviation graph are between adjacent integers: i, j ∈ {0, . . . , n} such that
|i− j| = 1.

1To see this, observe that u1(x) = u1(x1, n − x1) is a function of only x1; similarly u2(x) = u2(n − x2, x2) is a
function of only x2.
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We then consider the profitable deviation graph (PDG), whose vertices are the same configura-
tions and directed edges represent strictly profitable deviations. For example, if a deviation by one
player in configuration x from action a to action 3− a results in configuration x′, and furthermore
if u3−a(x′) > ua(x), then the PDG has an edge from x to x′. Observe that the PDG is a subgraph
of the deviation graph, and that if there is an edge from x to x′ in the PDG, then there cannot be
an edge from x′ to x.

A sink of the PDG has no profitable deviations, which means that it is a PSNE. We claim that
the PDG must have a sink. To see this, we can start at vertex 0 and follow the directed edges.
Because the PDG is a subgraph of the deviation graph, each edge on this path must increase the
vertex’s index (in fact, by exactly one). Thus, the path must eventually stop at a sink. �

The above proof suggests a straightforward algorithm for finding a PSNE: start at configuration
0 and follow the edges in the PDG. In fact by a similar argument any starting configuration would
lead to a sink. Unfortunately this approach can take Ω(n) steps before reaching a sink, which can
be exponential in the representation size. Instead, we present a divide-and-conquer approach that
exploits the structure of the PDG.

Theorem 3.2. For circuit symmetric games with two actions, a PSNE can be found in polynomial
time.

Proof. Given such a game with n players, consider the configurations bn2 c and bn2 c+ 1. There are
three cases:

(1) If there is an edge from bn2 c to bn2 c + 1 in the PDG, then there must exist a PSNE in
the subset {bn2 c + 1, . . . , n}. This is because a path from bn2 c + 1 must be increasing and
eventually stop at a sink.

(2) Likewise, if there is an edge from bn2 c + 1 to bn2 c, there must exist a PSNE in the subset
{0, . . . , bn2 c}, since a path from bn2 c must be decreasing and stop at a sink.

(3) If there is no edge between the two configurations, then there must exist a PSNE in each
of the subsets {0, . . . , bn2 c} and {bn2 c+ 1, . . . , n}).

Our algorithm picks a subset that contains a PSNE, and then recursively bisects that subset. This
process terminates at a PSNE after O(log n) iterations. For each iteration, checking the existence
of edges between two configurations requires evaluation of utility at the two configurations, which
can be done in linear time for utility functions represented as circuits. Therefore the running time
of this algorithm is O(|Γ| log n), where |Γ| is the size of the circuits. �

Our next result shows that the problem of finding a PSNE in a circuit symmetric game becomes
intractable once we go beyond two actions.

Theorem 3.3. For circuit symmetric games in which the number of actions is a fixed constant of
at least three, the problem of determining the existence of PSNE is NP complete.

Proof. The problem is in NP because to determine whether a configuration x is a PSNE, there are
only O(m2) possible deviations to check.

We show NP-hardness by reduction from CIRCUITSAT. Given a CIRUITSAT problem instance
C(y1, . . . , ym), we construct a circuit symmetric game with n = 2m−1 players and 3 actions {1, 2, 3}
such that the game has a PSNE if and only if there exists an satisfying assignment of y1, . . . , ym.

Given a configuration x = (x1, x2, x3), the utility functions u1(x),u2(x) and u3(x) are defined as
follows:

(1) If the binary representation of x1 correspond to a satisfying assignment for C, i.e. C(x0
1, . . . , x

m
1 ) =

1 where xi1 is the ith bit of x1, then u1(x) = u2(x) = u3(x) = 2.
(2) Otherwise:

(a) if x1 > 0, x2 > 0, x3 > 0, then u1(x) = u2(x) = 1, u3(x) = −2;
(b) if x1 > 0, x2 > 0, x3 = 0, then u1(x) = −1, u2(x) = 1;
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(c) if x1 = 0, x2 > 0, x3 > 0, then u2(x) = −1, u3(x) = 1;
(d) if x1 > 0, x2 = 0, x3 > 0, then u1(x) = 1, u3(x) = −1;
(e) if xa = n for some action a, i.e. all players are playing a, then ua(x) = 0.

If there exists a satisfying assignment for C, then any configuration with the corresponding x1

is a PSNE because each player receives the maximum utility of the game. If there does not exist
a satisfying assignment, then the game’s utilities are defined by condition 2. We claim that this
subgame under condition 2 does not have a PSNE. Intuitively, the game can be thought of as a
generalization of the 2-player Rock-Paper-Scissors game. Formally, given a configuration of case 2a,
a deviation from action 3 (with utility -2) to 1 or 2 is profitable. Given a configuration of case 2b,
a profitable deviation is from action 1 (utility -1) to 2 (utility 1 if the resulting configuration is of
case 2b, utility 0 if the resulting configuration is of case 2e). Similarly, given a configuration of case
2c, a profitable deviation is from action 2 to 3; and given a configuration of case 2d, a profitable
deviation is from action 3 to 1. Given a configuration of case 2e with e.g. x1 = n, a profitable
deviation is to action 2, resulting in a configuration of case 2b. Therefore all configurations have
profitable deviations, thus the subgame does not have a PSNE.

Finally, we observe that the utility functions described above can be formulated as circuits of
the binary representation of x. The size of the circuit symmetric game is linear in the size of the
given CIRCUITSAT problem instance, and these utility functions can be constructed in polynomial
time. This concludes the reduction proof. �

4. Rational generating functions

In Section 5 we will describe a class of utility functions that yield efficient computation of PSNE.
This result relies heavily on results from the literature on rational generating functions and in
particular on the method of Barvinok and Woods [3]. Generating functions have been applied in an
analogous fashion in a variety of other contexts, including discrete optimization [17], combinatorics
[15], social choice theory [25] and compiler optimization [32]. We here provide a brief and selective
overview of this theory for two reasons: to introduce some machinery that is used in proving our
main theorem, and to invite other researchers to use these methods in future work. Readers familiar
with these methods can skip ahead to Section 5.

The main impetus for considering generating functions comes from our desire to compactly
represent exponential-cardinality sets of integer points, and to efficiently support the computational
operations of counting and enumerating points in the set. We demonstrate the essence of the
approach in the following simple example. Consider the set of integers on the line between 0 and
n. We can represent these points as follows: with every integer x ∈ [0, n], we associate an exponent
of real variable ξ. Using this encoding we can represent the integers in the interval [0, n] as the
exponents in the polynomial expression

n∑
x=0

ξx, (4.1)

called a generating function representation. So far we have not gained much: there are exponentially
many terms in (4.1) (in terms of the binary encoding size of n), just like an explicit listing of the
numbers 0, 1, . . . , n. However, we can also write the expression as

n∑
x=0

ξx
1− ξn+1

1− ξ
=

1
1− ξ

− ξn+1

1− ξ
. (4.2)

Thus, we have written the long sum (4.1) as a short sum of two rational functions, called a
rational generating function representation. The encoding length of this new representation is now
polynomial in the encoding length of n. Not only does this representation appeal because of its
compact size, but also when we input different values for ξ in the exponential-sized sum (4.1), we
need only do a small number of calculations in its rational representation in order to evaluate the
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sum. For instance, if we substitute ξ = 1 in (4.1) we compute the cardinality of [0, n] ∩ Z, albeit
with an exponential number of arithmetic operations; however, the same substitution (letting ξ → 1
and using L’Hôpital’s rule) can be done in (4.2) with exponentially fewer arithmetic operations.

We are often interested in sets arising from unions, intersections and differences of simpler sets
of integers. A basic illustration is as follows: suppose we have the set {0, . . . , n} represented by the
rational generating function 1−ξn+1

1−ξ , as well as the set {n + 1, . . . , 2n} represented by the rational

generating function ξn+1−ξ2n+1

1−ξ . A rational generating function representing the union of these two
disjoint sets can by found by summing the representations of {0, . . . , n} and {n+ 1, . . . , 2n}:

1− ξn+1

1− ξ
+
ξn+1 − ξ2n+1

1− ξ
=

1− ξ2n+1

1− ξ
.

It is straightforward to verify that 1−ξ2n+1

1−ξ is a rational generating function encoding of the union
{0, . . . , 2n}. A more general result obtains when combining sets that are not disjoint (Theorem 4.2).

Operating on rational generating functions may seem unnecessary in the simple setting we have
discussed so far, but it becomes useful when extended to deal with more general sets of integer
points in higher dimensions. We do not detail the full progression of this theory but instead refer
the reader to the excellent textbook by Beck and Robbins [4].

Our starting point is the work of Barvinok [2], who introduced a polynomial-time algorithm to
represent as a rational generating function the integer points inside of a rational polytope P ⊆ Rm

given by an inequality system {x ∈ Rm : Mx ≤ b}, provided the dimension m is fixed. Note that
representing the integer set P ∩ Zm by the inequality description of P gives little hint as to its
exact cardinality. We shall see below that a generating function representation allows us to count
the number of integer points in P exactly in polynomial time (Theorem 4.4).

Now we briefly describe Barvinok’s algorithm and its useful extensions and applications. Consider
the generating function of the lattice point set P ∩ Zm, which is defined as

g(P ∩ Zm; ξ) =
∑

x∈P∩Zm

ξx =
∑

x∈P∩Zm

ξx1
1 · · · ξ

xm
n ∈ Z[ξ±1

1 , . . . , ξ±1
m ]. (4.3)

Note that each lattice point x in P is mapped to the exponent of a monomial ξx in g(P ∩ Zm; ξ).

Theorem 4.1 (Barvinok’s Theorem [2]). Let P be a polytope in Rm with generating function
g(P∩Zm, ξ) given by (4.3) which encodes the lattice points inside P . Then, there exists an algorithm
which computes an equivalent representation of the form:

g(P ∩ Zm; ξ) =
∑
i∈I

γi
ξci

(1− ξdi1)(1− ξdi2) . . . (1− ξdim)
, (4.4)

where I is a polynomial-size index set and all data are integer. A formula of the type (4.4) is called
a short rational generating function. The algorithm runs in polynomial time when the dimension
m is fixed.

Note that the number of binomial terms in the denominator of each rational term is (4.4) is m
and thus fixed when the dimension is fixed. When a lattice point set S is expressed in the form
(4.4) we refer to g(S; ξ) as its Barvinok encoding. In the algorithms that follow, when a set S is
given as input or output by its Barvinok encoding g(S, ξ), the encoding size is the binary encoding
of the integer vectors γ, ci,di1, . . . ,dim for i ∈ I.

It is important to note that Theorem 4.1 only encodes sets of integer points inside of polytopes.
The key result that makes this theory useful in our setting is that some more general lattice point
sets arising from simple operations on polytopal lattice point sets admit short rational generating
function encodings. Barvinok and Woods [3] developed powerful algorithms that apply to these
more general settings. For our purposes the most important algorithm concerns constant-length
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Boolean combinations of polyhedra. A Boolean combination of the sets S1, . . . , Sk is any combi-
nation of unions, intersections and set differences of those sets. For instance, (S1 ∩ S2) \ S3 is a
Boolean combination of the sets S1, S2 and S3.

Theorem 4.2 (Boolean Operations Theorem). (Corollary 3.7 in [3]) Given fixed integers k
and ` there exists a constant s and a polynomial-time algorithm for the following problem. Given
as input, in binary encoding,

(I1) the dimension m and
(I2) Barvinok encodings of k finite sets Sp ⊆ Zm, g(Sp; ξ) such that for each rational term the

number of binomials in the denominator is at most `,
output, in binary encoding,

(O1) rational numbers γi, integer vectors ci, dij for i ∈ I, j = 1, . . . , si, where si ≤ s, such that

g(S; ξ) =
∑
i∈I

γi
ξci

(1− ξdi1) . . . (1− ξdisi )

is a rational generating function of the finite set S that is the Boolean combination of the
sets S1, . . . , Sk, and where each rational term in the expression has at most s terms in its
denominator and where I is a polynomial-sized index set.

We remark that if k were allowed to vary, the number of binomials in the denominators would
become exponential (essentially doubling with each Boolean operation); this explains the require-
ment that k be fixed in order to achieve a polynomial run time. (For a more precise statement see
the statement of Lemma 3.4 and the proof of Corollary 3.7 in [3].) We also note that if the input
sets Sp ⊆ Zm are integer points inside of polyhedra whose Barvinok encodings g(S; ξ) arise from
applying Barvinok’s Theorem (Theorem 4.1) then the condition that the number of binomials ` in
the denominators are fixed follows under the assumption that the dimension m is fixed.

Disjoint unions are a special case of combining sets.

Lemma 4.3 (Disjoint Unions). If two lattice point sets S and T are disjoint then the generating
function for S ∪ T is the sum of generating functions for S and T . More generally, for disjoint
lattice point sets S1, . . . , Sk:

g

(
k⊎
i=1

Si, ξ

)
=

k∑
i=1

g(Si, ξ),

where
⊎

denotes disjoint union.

Note that to compute disjoint unions of sets we do not appeal to the Boolean Operations Theo-
rem, and thus the number of sets k in the union may be polynomial in the input size instead of a
fixed number.

Once a rational generating function of a set S has been computed, various pieces of information
can be extracted from it. As in our example, a useful operation is to compute the cardinality of S:

Theorem 4.4 (Counting Theorem). [2] Let the dimension m be a fixed constant. Given a lattice
point set S ∈ Zm input as its Barvinok encoding g(S, ξ), there exists a polynomial time algorithm
for computing |S|.

The idea behind the proof of this theorem is analogous to the basic example at the beginning of
this section. Given a Barvinok encoding of a lattice point set S as in (4.4), each of the basic rational
functions has poles (the point ξ = 1 in particular is a pole of all the basic rational functions), but
after summing up only removable singularities remain. Obtaining the exact number of lattice points
of lattice point set S is easy in (4.3), since clearly |S| = g(S; 1). Since (4.4) is a formula for the
same function (except for removable singularities), we also have |S| = limξ→1 g(S; ξ), which can be
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evaluated in polynomial time by performing a residue calculation with each basic rational function
in the sum (4.4).

Finally, we can explicitly enumerate all elements of S. We note that the cardinality of S can be
exponential in the encoding length. Nevertheless there exists a polynomial-space polynomial-delay
enumeration algorithm. The following result is a version of Theorem 7 of [16].

Theorem 4.5 (Enumeration Theorem). Let the dimension m and the maximum number `
of binomials in the denominators be fixed. Then there exists a polynomial-space polynomial-delay
enumeration algorithm for the following enumeration problem. Given as input, in binary encoding,
a bound M and the Barvinok encoding g(S, ξ) of a lattice point set S ∈ [−M,M ]m ∩ Zn, output,
in binary encoding, all points in S in lexicographic order.

5. Symmetric games with piecewise linear utilities

Now we present our key positive result. Specifically, we show that when each utility function
is a piecewise linear function of the configuration, the PSNE of compact, symmetric games with
fixed numbers of actions can be computed in polynomial time. Piecewise-linear functions have been
widely used as an approximation of arbitrary continuous functions. A recent example of their use
is [18], which considered piecewise-linear utilities in the computation of market equilibria in the
Arrow-Debreu model, and presented a polynomial-time algorithm when utilities are piecewise-linear
concave functions and the number of goods is constant.

Piecewise linear functions are normally defined over a continuous domain, in which case it is
sufficient to specify a polytopal subdivision of the domain and an affine function for each cell. The
domain for our utility functions is the set of configurations D, a discrete set. Nevertheless we
observe that D is the set of integer points in a rational polytope. Thus the definition of piecewise
linear functions can be naturally extended to this setting. In particular, we specify a set of rational
polytopes that induces a partition of the integer points D, and an affine function for each cell .

Formally, for each action a ∈ A, the piecewise linear utility function ua(x) is given as follows.
There is a finite set of rational polytopes {Paj}j∈Ja where each Paj = {x ∈ Rm : Majx ≤ baj} is
given by an integer matrix Maj and integer right-hand side vector baj , and whose integer points
partition the set of configurations D; that is, D =

⊎
j∈Ja

(Paj ∩Zm). Over each cell Paj ∩Zm in the
partition of D there is an affine function faj(x) = αaj ·x + βaj , where αaj ∈ Zm and βaj ∈ Z, such
that

ua(x) = faj(x) for x ∈ Paj ∩ Zm. (5.1)
The piecewise linear utility function ua(x) is input as the binary encoding of Maj , baj , αaj and
βaj for each j ∈ Ja.

We observe that a piecewise linear utility function can be represented as a circuit.2 Also, given
an arbitrary utility function, it can be described exactly by a piecewise linear function, although
the number of pieces required may be Θ(nm) in general, in which case it is no longer compact in
the sense we defined at the beginning of the paper.

The main positive result of the paper follows.

Theorem 5.1. Consider a symmetric game with piecewise linear utilities given by the following
input:

(I1) the binary encoding of the number n of players;
(I2) for each a ∈ A, the utility function ua(x) represented as the binary encoding of Maj, baj,

αaj and βaj for each j ∈ Ja.
Then, when the number of actions m is fixed, there exists

2Additions and multiplications can be carried out by circuits. To determine which piece a configuration is in, we
can go through each piece and test the inequalities. The size of the resulting circuit is polynomial in the number of
bits needed to describe the piecewise linear function.
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(i) a polynomial time algorithm to compute the number of pure Nash equilibrium configurations;
(ii) a polynomial time algorithm to find a sample pure strategy Nash equilibrium, when at least

one exists; and
(iii) a polynomial-space polynomial-delay enumeration algorithm to enumerate all the pure Nash

equilibrium configurations of the game.

Proof. All three results follow from an argument that N , the set of PSNE, can be encoded as a
short rational generating function. We defined N in (2.2), but for convenience repeat it here:

N =
{
x ∈ D : ∀a ∈ A : (xa = 0) OR (xa ≥ 1, ∀a′ ∈ A : ua(x) ≥ ua′(x + ea′ − ea))

}
.

The major difficulty in applying generating functions to encoding N is the nonlinearity of the
objectives ua. However, since these objectives are piecewise linear we simply consider the partitions
of D into regions in which the objectives are linear. We use these partitions of D (and hence of N)
to express N as a Boolean combination of polytopal lattice point sets, and thus will ultimately be
able to apply Theorem 4.2. The overall idea is to define subsets of configurations that have strictly
profitable deviations, then remove these subsets from D, leaving only the set of PSNE.

Define the deviation set Dev(a, a′, j, j′) as the set of configurations x in which a player currently
playing action a lying in region Paj has a strictly profitable deviation to playing action a′, thereby
yielding a new configuration x′ ∈ Pa′j′ . Such a profitable deviation will exist whenever faj(x) <
fa′j′(x′). Since the affine functions have integer coefficients, we can rewrite this condition as
faj(x) ≤ fa′j′(x′) − 1 and thereby avoid strict inequalities. Putting this all together, we define
the deviation set as

Dev(a, a′, j, j′) =
{
x ∈ D : xa ≥ 1,x ∈ Paj ,

x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x′)− 1}

}
. (5.2)

Now we can use (5.2) to rewrite (2.2). We obtain

N = D \
⋃
a,a′

⊎
j

⊎
j′

Dev(a, a′, j, j′), (5.3)

where the first union is over all a, a′ ∈ A, the second union is over j ∈ Ja, and the third union
is over j′ ∈ Ja′ . This identity (ignoring for now why the second two unions are disjoint) can be
verified as follows. Suppose configuration x ∈ D does not lie in the right-hand side of (5.3). This
implies that x lies in some deviation set D(a, a′, j, j′) for some a, a′ ∈ A and (j, j′) ∈ Ja × Ja′ and
hence there is a profitable unilateral deviation away from x implying x is not in N . Conversely,
suppose x ∈ D is not in N . This implies that there exists a profitable unilateral deviation, say
from playing action a to a′. This implies ua(x) < ua′(x + ea′ − ea). Now, x and x + ea′ − ea lie
in cells Paj for some j ∈ Ja and Pa′j′ for some j′ ∈ Ja′ respectively. The condition on the utilities
then implies that faj(x) ≤ fa′j′(x′)− 1. It follows that x is in the deviation set Dev(a, a′, j, j′) and
thus not contained in the righthand side of (5.3).

The union indexed by j is disjoint because the sets {Paj}j∈Ja form a partition of D, and
Dev(a, a′, j, j′) ⊆ Paj . To show that the union indexed by j′ is disjoint, we consider an arbi-
trary element x of Dev(a, a′, j, j′). This implies that x′ = x+ea′−ea ∈ Pa′j′ . Because {Pa′j′}j′∈Ja′

are disjoint sets, for all j′′ ∈ Ja′ \ {j} we have x′ 6∈ Pa′j′′ and thus x 6∈ Dev(a, a′, j, j′′). Therefore
Dev(a, a′, j, j′) is disjoint from Dev(a, a′, j, j′′) for any j′, j′′ ∈ Ja′ , j′ 6= j′′.

We took particular care in describing which unions in our expression for N are disjoint and which
are not. This is because the second and third unions are not of fixed length as would be required for
the application of Theorem 4.2. However, since the unions are disjoint we can use simple addition
of generating functions to handle this part of the overall expression of N . To make this precise,
note that each of the Dev(a, a′, j, j′) terms are polytopal lattice point sets and thus admit Barvinok
encodings g(Dev(a, a′, j, j′), ξ) that can be computed in polynomial time by Theorem 4.1.
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For each a, a′ ∈ A define

Dev(a, a′) =
⊎
j

⊎
j′

Dev(a, a′, j, j′). (5.4)

Dev(a, a′) is a disjoint union, and so by Lemma 4.3 also admits a Barvinok encoding

g(Dev(a, a′), ξ) =
∑
j

∑
j′

g(Dev(a, a′, j, j′), ξ).

We can use 5.4 to rewrite 5.3 as N = D \
⋃
a,a′∈ADev(a, a′). Since D and each of the sets

Dev(a, a′) have Barvinok encodings, Theorem 4.2 tells us that we can also derive such an encoding
for N . This Boolean combination of sets describing N is of constant length since m is fixed.

Now that we have shown thatN can be encoded as a short rational generating function, our PSNE
computation results follow by applying Theorems 4.4 and 4.5. Given that we can compute g(N, ξ)
in polynomial time, we can compute its cardinality in polynomial time by applying Theorem 4.4.
This establishes (i). Applying Theorem 4.5 (noting the bound N ⊆ [0, n]m) we need only wait
polynomial time to output the first element of N , establishing (ii). The enumeration scheme (iii)
derives from Theorem 4.5 directly. �

6. Conclusions

In this paper we explored the computational complexity of computing PSNE of symmetric games
with succinctly represented utilities and a fixed number of actions, detailing the problem’s hardness
in general and presenting a promising form of compactly represented utilities as piecewise linear
functions. The methods explored here allow us to compute PSNE of such games with algorithms
that scale polynomially with the representation size of the number of players logn and the binary
encoding size of the linear pieces which define the utilities. This result can also be understood
as a statement about the relation between structure in a game’s utility functions and structure
in the set of PSNE: if the utility functions have a certain type of structure (can be represented
as piecewise linear functions with a polynomial number of pieces), then the set of PSNE of the
game has a corresponding type of structure (can be encoded as a rational generating function of
polynomial size).

In the full version of this paper,3 we consider two main extensions of our approach. First, the
power of the rational generating function representation of PSNE allows us to go beyond basic
questions such as existence and enumeration, and provide a more informative picture of the set
of PSNE. One quantity of interest is social welfare. The social welfare is not a piecewise-linear
function of the configuration; instead it can be formulated as a piecewise-polynomial function. We
give a FPTAS for finding a PSNE with the best (or worst) social welfare. We also give a polynomial-
time algorithm for computing the mean and variance of the social welfare over all PSNE of the
game. Second, we are able to consider a family of games parameterized by a fixed number of
parameters, and answer interesting questions about the family of games without having to solve
each individual game in the family. This has interesting applications, such as estimating parameters
so that PSNE match observed player behavior, or setting the parameters so that the resulting set
of PSNE satisfies some objective. Our overall approach is to augment the configuration vector with
a fixed number of integer parameters. We then construct a generating function for a set of points
in this configuration space, with the property that if we fix the parameters, it gives the set of PSNE
for the game with that particular instantiation of parameters. In other words, it is the graph of
the parameters-equilibria correspondence.

3A draft of the full paper is available at http://www.cs.ubc.ca/~jiang/papers/symmetric.pdf.
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