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Abstract Quite a lot of work in the literature is concerned with the de-

In combinatorial auctions that use VCG, a seller can sorfii@in of strategyproof mechanisms for combinatorial autio
times increase revenue by dropping bidders (see e.g. f5])[4: 3. 6, 7, 17, 19, 25, 31, 32]. Another important class of
our previous work [26], we showed that such failures of ‘reRIOPerties concerns an auction’s revenue. An auction mech-
enue monotonicity” occur under an extremely broad ran%@iSm is calledptimalif it maximizes the expected revenue.
of deterministic strategyproof combinatorial auction imac Optimal auctions were originally studied in the context of
nisms, even when bidders have “known single-minded” vaingle-good auctions [16, 23, 28]. More recent work has ex-
uations. In this work we consider the question of whethi&nded these ideas to design multi-unit or multi-good auc-
revenue monotonic, strategyproof mechanisms for such $@0s that offer strong revenue guarantees, usually actgev
ders can be found in the broader class of randomized métfonstant fraction of the optimal revenue [1, 8, 14, 20, 29].
anisms. We demonstrate that—surprisingly—such mecha- e are concerned with describing the way an auction’s
nisms do exist, show how they can be constructed, and d&¥enue changes with the number of participating bidders.
sider algorithmic techniques for implementing them in pol{ptuitively, one might expect that revenue weakly increase
nomial time. as the number of bidders grows, as competition also in-
More formally, we characterize a class of randomizé&d€ases. We say that an auction mechanisevsnue mono-
mechanisms defined for known single-minded bidders tA@hic when this intuition is correct: the seller's revenue is
are strategyproof and revenue monotonic, and furthermgk@ram?ed to weakly increase as .b|dder-s are added.Qroves
satisfy some other desirable properties, namely particif¥chanisms in general and VCG in particular have gained
tion, consumer sovereignty and maximality, representieg tsubstant_|al attention because th_e_y are the only strategf/pr
mechanism as a solution to a quadratically constraineddinB'chanisms that guarantee efficient allocations [15]. How-
program (QCLP). We prove that the QCLP is always feasitff¥er, VCG has also received numerous criticisms ([5, 30]).
(i.e., for all bidder valuations) and give its solution grial One of these problems is that VCG is not revenue monotonic
cally. Furthermore, we give an algorithm for running suchf@r bidders (unless bidders’ valuations are restricted). [4
mechanism in time polynomial in the number of bidders af@!lowing an example due to [5], consider an auction with
goods; this is interesting because constructing an instahcthree bidders and two goods for sale. Suppose that bitider
such mechanisms from our QCLP formulation in a naive w¥{nts both goods for the price of $2 billion whereas bidder

the second good respectively. The VCG mechanism awards
1 Introduction the goods to bidders and3 for the price of zero, yielding

. . . . . the seller zero revenue. However, in the absence of either
In combinatorial auctions, multiple goods are sold swnulta

. . idder1 or bidder3, the revenue of the auction would be $2
neously and bidders are allowed to place bids on bunde ; .

; S . ilMlion. In our previous work [26, 27] we showed that this
rather than just on individual goods. These auctions have

been widely studied in the last decade, with the ultim éoblem is not restricted to VCG. Instead, we proved that no

) : revenue monotonic mechanism exists in a very broad class
goal of better allocating scarce resources among biddess w o . . )
. of deterministic, strategyproof combinatorial auctioncime-

value th_em n(_)n-add|t_|vely (see €.9. [9)). When des_|gn|n ms. We define this setting and class of mechanisms in Sec-
a combinatorial auction mechanism, one may desire tha

it satisfy various different properties. One importantp}rotlon 2, and also state our impossibility result. Here, weenot

. . . ) : wo lines of research that are closely related to our own past
erty is that it be a dominant strategy for selfish bidders to ; : -
o i 4 .~ work. First, Day and Milgrom [10, 21] used coalitional game
truthfully reveal their private information to the mechsmi. : . SO
theory to investigate revenue monotonicity in the contéxt o

o N _ efficient mechanisms. Second, Yokoo et al. [31, 32] inves-
_Dept. of CS, University of British Columbia. baharak@cs.ct. tigated false-name bidding; however, their proof can akso b
Dept. of CS, University of British Columbia. condon@cs.ulac derstood howina that tonicity failsin ef
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ficient strategyproof mechanisms. In contrast, we do not ¥&v ¢ denote the set of all valuation profiles given a set of
strict ourselves to efficient mechanisms. participating biddersv and a set of goods for sale that is,
There are many cases ([11, 12, 13, 18]) in which rahe set of all valuation profiless for which v; = @ if and
domized mechanisms are able to achieve desirable propely if i ¢ N.
ties that cannot be obtained by deterministic mechanisms. | If asked to reveal her valuation, a bidder may not tell
Section 3 we define randomized mechanisms and some ddsir-truth. Denote the declared valuation function of a
able properties for our setting. In Section 4 we show tha{jitarticipating) biddef as®;. Let v be the declared valuation
is possible to circumvent our impossibility result, at ifas  profile. Use the same notation to describe declared valuatio
known single-minded bidders, by proposing a class of commiefiles as valuation profiles (e.g., all declared valuation
natorial auction mechanisms that we call “stepwise” randopnofiles aren-tuples), and furthermore writév;,v_;) to
ized combinatorial auction mechanisms. We also show hdenote(?1, ..., 0;-1,vi, Dit1,- -+, Un ).
to construct such revenue-monotonic mechanisms, though In a particular auction, bidders’ valuation functions may
this construction can sometimes require exponential tifire.be drawn from some restricted set. For example, we will
nally, in Section 5 we give a polynomial-time algorithm foneed to make such an assumption to model known single-

constructing our mechanism. minded bidders. LeVx ¢ € V¢ denote a subspace of the
universal set of valuation profiles for the set of participgt
2 Deterministic Mechanisms biddersN and the set of goods for sate. (For example,

To prove results about revenue monotonicity, we needefu_) valugtions cqnsistent with each bidder having a single-
reason about the behaviour of combinatorial auction meBHnded interest in one known bundle.) Dék ¢ denote the
anisms when bidders are added or dropped. We also neBlyersal set of valuation profile subspaces, thatis: =
to reason about mechanisms whose behavior can depend'onc | N € IN.G € G,Vn,g € Vi,g}. Let) denote a
bidder preferences—for example, each bidder may hav&€ of valuation profile subspaces with at least one member
“single-minded” interest in one particular bundle. Forgie corresponding any ¢ N andG < G. Thatis,V € Ve
reasons, we provide a set of general definitions in which t@d3Vv.c € V, VN € N,G ¢ G. (For example, subspaces
allocation of goods and the payments imposed may dep&Réresponding to all the possible sets of known bundles for
on which bidders participate and which goods are for sale dierent bidders.) Note that there could be more than one
well as on bidders’ declared preferences. subspace corresponding to a fix¥dand a fixed= in V.

LetIN = {1,...,n} be the universal set of bidders—

VO o DEFINITION 2.1. (CA MECHANISM) Let set of valuation
all the potential bidders who exist in the world. Lgtc IN ( )

profile subspace¥ be given. Adeterministic direct Combi-

denote the set of bidders participating in a particularianct natorial Auction (CA) mechanist (CA mechanism) maps

Let G be the finite universe of goods for sale. l@&tc G :
. ; i eachV/; , N cIN andG c G, to a pair (a, here
denote the set of goods for sale in a particular auction. Let NGeV pair (a, p) W

both N andG be common knowledge among all bidders and ¢ «a, the allocation scheme, maps eathe Vy o to

the auctioneer. an allocation tuplea = (a1(9),...,a,(0)) of goods,
A valuation functiondescribes the values that a bidder ~ whereu;a;(9) ¢ G, a;(?) na;(?) = @ if i # j, and
holds for subsets of the set of goodsGh Let valuation a;(0)=aif ;=@

function vg ; for bidderi ¢ IN map 2% to the nonnegative R
reals. For everyG c G let valuation functionvg ; be the * p, the payment sche[ne, mapsAeacfE V.G EO a
projection ofu; into G. WheneverG is understood, we ~ Payment tple = (p1(0), ... pn(0)), wherep;(v) is
drop it from the subscript. We assume that bidders have theApaym_er]t from bidderto the auctioneer such that
quasilinear utility functions; that is, biddeis utility for pi(0) =0if 0; = &

bundlea; is vi(a;) - pi, wherev; is her valuation ang; We refer toa; andp; as bidderi’s allocation and pay-
is any payment she is required to make. ment functions respectively. Whenevecan be understood
A valuation profileis an n-tuple v = (v1,...,vn), from the context, we refer to;(¢) andp; () by a; andp;,

where, for every participating bidder v; is a valuation regpectively. If;(a;) > 0, we say that bidder “wins”. We
function. LetV denote the universal set of all possiblgengte byA . the set of all possible partitions @f into n
valuation profiles. Observe tha_t va_luation profiles alwaysitions: i.e. the set of all possible ways of distribgtin
have one entry for every potential bidder, regardless of §ods among participating bidders. For any given allocatio
number of bidders who participate in the auction. We uge A, we denote by, the set of goods that are allocated
the symbolg in such tuples as a placeholder for each nog-pigderi undera.

participating bidder (i.e., each bidder¢ N). Whenw is Mechanisms that give rise to dominant strategies are
an n-dimensional tuple, the("_)h ey 0im1,D, Vi, -5 Un) especially desirable, as bidders are spared having tomeaso
is denoted byv_;. Note that ifi ¢ N, thenv = v_;. Let apout each others’ behavior. A direct CA mechanism is



said to betruthful if in equilibrium bidders declare their The valuation of a known single-minded bidder can be
true valuations to the mechanism. A direct CA mechanistharacterized by the single parameter representing’s
is said to bestrategyproofor dominant strategy truthfilif valuation for any superset of bundlg Thus in this case
every bidder has the dominant strategy of revealing her tiie usev to denote single-minded bidders’ valuation profile,
preferences. 7; to denote the declared valuation of a participating bidder
The revenue of an auction is the sum of payments mageand v to denote a tuple consisting of declared valuations
to the auctioneer. Informally, an auction mechanism fier each participating bidder and symbols for each non-
revenue monotonic if the auctioneer could never incregsaticipating bidder.
revenue by dropping a bidder. Roughly speaking, a mechanism defined for known
single-minded bidders satisfie®snsumer sovereignty by
; : o _ bidding high enough, any bidder can win the bundle she
CA mechanisn/ is revenue monotonidf and or_lly if fqr values—more formally, given any biddéand the declared
al NcN,G € G, Vg €V, v eV, and for all biddersy, values of the other biddergy_;, there exists some finite
Zpi(v) > Z pi(v_j). qmountki ¢ R, k; > 0, such that ifi reportsz; = k; then
PN ieN~ {5} 1 is allocated at leag;.
) _ In our past work [26, 27], we proved an impossibility
It is natural, and commonly assumed, that a biddgfqt. there is no deterministic combinatorial auctiorchre
should make no payment to the mechanism unless she Wi, that satisfies our desirable properties. To obtain as
We call this assumptioparticipation A ‘rr.wechamsm IS strong a result as possible, we proved that the result is true
yveakly maximalwith re;pect to a biddetf |f,_ whenever o o \when the bidders are known single-minded.
1 values any goog sufficiently, the mechanism does not
withhold that good or give it away to a bidder who does n@tHEOREM2.1. Let |G| > 2 and|IN| > 3. Let M be a CA
value it. (For formal definitions see [27].) mechanism defined for known single-minded bidders that of-
Our main results refer to a restricted class of valuatifgrs dominant strategies to bidders and satisfies participa
spaces: known single-minded bidders. Our definition §i6n, consumer sovereignty, and weak maximality with re-
this class follows Mu’alem and Nisan [22] and Nisan [243pect to at least two bidders. Théi is not revenue mono-
Informally, a participating bidder is single-minded if she tonic.
only values bundles that contain a particular burideand
she values all these bundles equally. This,valuation 3 Randomized Mechanisms

functionv; maps supersets 6f to some positive value; |, this work, we study the consequences of relaxing the as-
and maps all other bundles to 0. A mechanism is definggntion that mechanisms are deterministic. More specifi-
for known single-minded bidders if all bidders are smglga”y we ask whether there are revenue monoteasiclom-

minded and furthermore, the mechanism *knows” the bungllg,§ e chanisms that satisfy our desired properties. (As
b; that is valued by each participating biddeiThus, bidder \\,o il see, moving to the randomized case will also re-

i can lie about her value (declar@a+ v;), but does not EVeN yuire reinterpretations of these properties, particylar

have to declare her bundle of interéstand hence cannotlie o mer sovereignty.) As the following definition states,

aboutit. . _arandomized CA mechanism produces a distribution over
More formally, letb = (b1,b2,...,b,) € (2)". FiX 4 0cations and payments.

N cNandG c G. If iis a participating bidder, Iér](vb)cl be

the set of all such functions, taken over all possible cloid@EFINITION 3.1. (RANDOMIZED CA MECHANISM (RCAM))

of »;, and otherwise Ie\t/Jf,b)G .= Letvjf,bg - ij,bg  x--x LetV be given. Aandomized direct Combinatorial Auction

o ' L mechanismM/ (RCAM) maps eacly,c € V, N ¢ IN and

T c G, to a distribution over pairga, p) wherea andp are

defined exactly as in Definition 2.1.

DEFINITION 2.2. (REVENUE MONOTONICITY) A truthful

V]f,b)Gn Thus,V]E,lf)G is simply the space of valuation profile
in which participating bidders are all single-minded, vitile
bundle valued by participating biddebeingb;.

Let V("™ denote the set of valuation profile sub-  GivenVy ¢ ¢ V, let m, (%) denote the probability that
spaces for known single-minded bidders; thav{é*™ = jigcationa € A will be chosen given declared values
{V](vl?)a | N < IN,G ¢ G,b e (29)"}. We say that a mechad_et p;(7) denote the expected paymentiof
nism isdefined for known single-minded biddér#s set of A randomized CA mechanism ssrategyproof in expec-
valuation profile subspaces¥$**™). From the definition of tation if and only if truth-telling is a dominant strategy for
mechanism (Definition 2.1), it follows that the allocatiorda all bidders in the game induced by expectation.
payment functions depend on the sgff’)c e Y*sm) from Randomized mechanisms can be defined for known
which bidders’ valuation profiles are drawn. Informallys single-minded bidders in a manner analogous to that used
known since the allocation and payments depend.on for deterministic mechanisms above. In what follows, we



concern ourselves only with randomized mechanisms EFINITION 3.4. (MAXIMALITY FOR RCAM’S) A truth-
known single-minded bidders. ful randomized CA mechanisit is maximal with respect

For a randomized CA mechanism that is defined fay bidder: iff YN ¢ IN and VG ¢ G there exists a set of
known single-minded bidders, let;(v) denote the proba-nonnegative finite constanfeiy ¢ . s | s € G} such that the
bility that bidder; wins—that is,i is allocated a bundle thatfollowing holds. For alli ¢ N, Vi ¢ € V, andv € Vi ¢, for
includesb;, given V%, Note that ther, (2)'s fully define any allocationa that has a positive support undéf—that
w;(9)’s. Formally, is, a is chosen by\/ with probability above zero—either:
(31) wi(y) = y AZ b 7Ta(’(}). 1. vi(ai) > 0; or

acAg,a;2b;

The following theorem characterizes the class of strate2- for any allocationa’ with v;(a;) > an g.i,.; andaj =
gyproof randomized mechanisms defined over known single- a; » a; for all j # i, it must be the case that for some
minded bidders (indeed, for any single parameter domain).  v;(a}) <v;(a;).

THEOREM3.1. (SEE EG. [24]) A randomized mechanisnf\" allocationa is maximal if it satisfies either (1) or (2)
defined over known single-minded bidders is strategyprd@f all biddersi. A randomized CA mechanishi satisfies
in expectation, and satisfies participation, iff for (v)  maximality if any allocation with positive support undef

G . .
. . ’ is maximal.
and every biddef ¢ N and every fixed._; we have that
1. the functionw;(#;, 7_;) is monotonically non decreas- It is somewhat harder to decide how to extend our con-

ing in 2. sumer sovereignty definition to randomized mechanisms for
X f . o i . known single-minded bidders. We first consider two possi-
2. pi(0i,v3) = U - wi(v5, 0-5) = [y wit, vq)dt. ble extensions to the definition for deterministic mechasis

which can be seen as opposite extremes. First, we could de-
fine consumer sovereignty (1) as requiring that, fixing bifls o
the others, any bidder is able to win any desired bundle with

robability one if she bids high enough. Unfortunately, in
this case we recover our previous impossibility result.

COROLLARY 3.1. (MMEDIATE FROM THEOREM 3.1) A

strategyproof mechanism satisfies participation if andyo
if it is characterized by a set of feasible allocation distri
tions 7, (2)’s that induce monotonic winning probabilit
functionsw; (7) 's andp;,’s are defined as in Theorem 3.1.

HEOREM3.2. (NFORMAL) Let |G| > 2 and|IN| > 3. Let
be a randomized CA mechanism defined for known single-
minded bidders that offers dominant strategies to bidders
DEFINITION 3.2. (REVENUE MONOTONIC. FORRCAM's) and satisfies participation, consumer sovereignty (I), and
A truthful randomized CA mechanismre/enue monotonic Weak maximality with respect to at least two bidders. Then
if dropping a bidder never increases the mechanism¢ iS not revenue monotonic.
expected revenue.

Now we generalize the properties we defined for det
ministic mechanisms to the randomized setting.

On the other hand, we could define consumer
DEFINITION 3.3. (RRTICIPATION FORRCAM’S) A sovereignty (Il) as requiring that any bidder be able to win
truthful randomized CA mechanism satisfiesticipationiff any desired bundle withomeprobability above zero if she
foral NcIN,G c G, Vy,g € V,andv € Viy ¢, p;(v) =0 bids high enough. This leads to a different problem. Con-
for any bidder; for whomuw; (v) = 0. sider a mechanismd/ with oy g, = 0 that chooses a
) o ) maximal allocation uniformly at random, and charges noth-
Next we define maximality for randomized CA mechgyg.  Note that each bidder wins her desired bundle in at
nisms. Our definition here is stronger (more general) then {Rast one maximal allocation. Therefore, it is easy to yerif
weak maximality definition we provided for deterministighat 1/ is strategyproof and satisfies participation, consumer
mechanisms. We chose to use weak maximality in [26, Z@vereignty, and maximality with respect to all bidders. It
because it strengthened our impossibility result stateceth 51so is revenue monotonic since it never collects any money.
For randomized mechanisms, we will prove a positive re- The above arguments suggest that we ought to seek
sult, namely the existence of revenue monotonic randomizgfl intermediate definition for consumer sovereignty. We
mechanisms with several desired properties. To make g\|is present the following definition, which roughly resir
positive result as strong as possible, we use a more geng{g{, given the valuations of the other bidders, a bidder who
notion of maximality here. Informally, a mechanism is maxiarts bidding ab and then raises her bid can increase her

imal with respect to a bidderif, whenever: values anysub- hropability of winning by at least at leasty times.
setof goodss (rather than a single goag sufficiently, the

mechanism does not withhold that bundle or give the goddsFINITION 3.5. ((y-STER §) CONSUMER SOVEREIGNTY)
in the bundle away to bidders who do not value them. A randomized CA mechanism defined for known



single-minded bidders satisfiesy-§tep, §) consumer 1
sovereignty,y > 0 and § > 0, iff for any fixed tuple

of bundlesb = (b1,...,b,) and for some constants

0= Cio < Ci,1 < ... < Ciy < Ciysl = OO, Vi € IN, the —__,—,7
following holds. For allN ¢ IN, G ¢ G, bidderi € N,

v € (V]f,b)G) ,andj < v, we have that: the winning

g, T . .
probabilities, w;’s, are monotonic and furthermore either Di —
Wi (Ciysi41, V=i) 2 Wi(Ci 5,5 Vi) + 0 OF wi(Ci 5,41, Vi) = 1.

It is easy to see that if a mechanism satisfiestep,d) 0 . . Lo .
consumer sovereignty for some= k, it then also_satlsfles o ) o 3 c4 0; Cs o
(v-step,d) consumer sovereignty for any for which0 <
~v < k. Observe that the constants,, are independent of Figure 1:. i's probapility of winning as a function of her bid
all bidders’ declared valuations; in a sense, they can be s8&ount, given fixed bids by the other agents.
as “bidder-specific, leveled reserve prices.” Thus, whiee Wt A Revenue Monotonic M echanism

do not assume that the mechanism designer knows anythifghis section, we constructastep randomized mechanism,
about the valuation distribution(s), if such information iyhich we dub),, that is strategyproof and revenue mono-
available, it can be useful for setting these constants. tonic and satisfies participation, maximality andstep,s)

We now propose a simple and useful class of randoggnsumer sovereignty, for any givenand for somej > 0.
ized mechanisms. These define the probability that any givga constructiZ, such that when a biddeincreases her bid
bio_lder wins as a stepwise function of her bid amount, withgge step, her probability of winning increasestynless she
finite number of steps. wins in all maximal allocations, in which case her probapili

of winning is equal tal. We first give a nonlinear feasibility
DEFINITION 3.6. (STEPWISERANDOMIZED MECHANISM) programF and show that its solutions correspond to mech-
A randomized CA mechanism defined for known singde@isms that satisfy all our desired properties. We then con-
minded bidders is atepwise mechanisififor somek > 0 struct a quadratically constrained linear program (QLEP)
and some constan@s=c; o < ¢;1 < ... < ¢k < ¢ k+1 = o0, and prove that all of its solutions that satisfy one adddion
Vi € IN, the following holds. For all fixed tuples ofconstraintalso solvé'. Finally, we constructively prove that

bundlesb = (b1,...,b,), forall N ¢ N, G ¢ G, for such solutions oP always exist.
all biddersi ¢ N and valuation profiles_; € (ij,bg) L Given Vﬂ\(lbé, forall N ¢ IN let My be the set of all

t maximal allocations with respect to maximality parameters
set to zero—thatisyn ¢,i,s =0,Vie N,s € G. Let My be

i set of maximal allocations—that.ief n ¢ IM y—such that
each bidder is either allocated her desired bundle or ngthin
and such that each bidder wins in at least one allocation

. . . a € My. Let( denote the tuple of declared valuations in
A ~-step randomized mechanism can be interpreted 5fch all participating bidders bid

mechanism that for each biddgrcares only about specific

declared valuesg; o, ¢, ..., ci and treats any declared emma 4.1. Forall V{2, all N’ ¢ N ¢ IN, and all bidders
value ofi betweerr; ;; andc;,s,+1 the same as; ;. Infact, ; ¢ N7 if ; belongs to all allocations € My theni belongs
one can easily ve[lfy that; () = wi(cl’?l.’ .. ._,cms_n), for {5 all allocationsa’ ¢ M.
all v whereg; 5, < v; < ¢; 5,41 for all participating bidders.
If a v-step randomized mechanism additionally has the fBFoof. Sincei belongs to alla € My, then it must be the
lowing monotonicity property that either (1);(c; s,,7-;) + case thab; does not overlap with any other bidder’s desired
§ < wi(Cisiv1,?-), OF (2) wi(cisi41,7-;) = 1, then the bundle; thatish; nb; = @,Vj € N,j # i. Therefore, since
mechanism satisfies{step,d) consumer sovereignty. N’ ¢ N, itis also true thab; nb; = @,Vj € N',j # i.
Figure 1 shows a samptle; for a 6-step stepwise ranThus,: has to belong to all maximal allocations und€f
domized mechanism, given fixed bids by the other biddeard therefore to all allocations € M y-. ]
Observe that, by Theorem 3.1, if the mechanism is to satisfy
strategyproofness and participation, our choicevpfmust 4.1 Feasbility program Observe that a mechanism is a
imply a specific choice op;. Here, if the bidder declaresmapping from declared valuations to allocation probabgit
7;, she must pay an amount equal to the area of the shadgd and payment;’s. Here we express such a mapping
region. as a solution to a set of feasibility programs (albeit oneh wi

and for all ¢;5, < 7 < c¢ig,41, it is the case tha
’U}NJ(ZA}Z', fl_l) = wN,f(Ci,s“ fl_i), forall £ e N.

We call the mechanism-astep randomized mechanis
if it satisfies the above for = ~.
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Figure 2: Nonlinear feasibility progradﬁ(VﬂfIbé, G). Constants are’s andc; 5,’s. Variables arery ,’s, wy 'S, pn,;'s and
0. We adopt the conventions that indexes subsets d@¥, i and! index elements oV, s; indexes elements d0, ...,~},

andv indexes elements df]f,b)c. Observe that because this last set is (uncountably) iefithie feasibility program involves
an infinite number of both variables and constraints.

some nonlinear constraints, and an uncountably infinite-ndrheorem 3.1). Second, Constrairff.ifiax) entails maxi-
ber of both variables and constraints). Recall that any @#ality. Third, Constraint £.rm) entails revenue monotonic-
mechanism defined for known single-minded bidders is alifg Finally, Constraints £.mon), (¥.cs) and §.9) together

to condition its behavior of¥, N, andV\"), (see Definition ensure that the mechanism satisfigsstep, §) consumer
2.1). Because the mechanism is free to behave differefg@yereignty for a givery and some > 0. o

for everyG (available set of goods) aﬁq(vl?)G (set of known ] ] ]

bundles of interest for the bidders), we write a separate f& Quadratically constrained linear program Con-
sibility program for each possible joint assignment to ehe§ider quadratically constrained linear program (QLCP)
variables. Our feasibility program, denoté&dand given in P(VHSI%, G) in Figure 3. We will prove that ifP(VHSI%, G)
Figure 2, is thus parameterized b} bé andG. Note that we can be solved for alvngbé andG ¢ G with 6 > 0 then we

ha}\g)e introduced thg))assumption that the mechanism kn%\gﬁ construct solutions for thlé(Vﬂgbé, @)'s and construct
Vi, rather thanVy ¢, (i.e., it knows the bundles of nongyr gesired mechanism/,. Recall thatF is parameterized
partlc!pat|ng bidders). This assu.mpuon- W'”. r_nake no.drffeby an infinite size valuation spacsz(b) and thus has an in-
ence in what follows, but dramatically simplifies notation. finite number of variables and coAr]{sGtraints. The main idea

LEMMA 4.2. Any solution toF(V]lffé,G) for all Vﬂgbé and in this section is that we can move from an infinite-sized

G ¢ @, corresponds to ay-step randomized mechanisn’” to @ finite-sized QCLRP by working with a finite sized
that satisfies strategyproofness, participation, maxitpalvaluation spacelE%’?G. Specifically, for each bidder we
(»Y-Step'(‘)') consumer Sovereignty’ and revenue monotoniciaﬂly need to consider the finite set of pOSSible declared val-
. X uesc;o,...,cis,. Formally, ME@G = {v|v € V]f,lf)c;,w €
Proof. We must ensure that a solution to tﬁévﬂg,)c,G)’s N,3s; € {0,....v} : v; = ¢;.5, }. To show that any solution

induces a valid mechanism. First, it is necessary to ensyfép corresponds to a solution & we provide a mapping
thatmy ,'s correspond to probabilities. This is achieved bfYom I 1oy ®
NG VNG

Constraints {.a;) and (#.a2). Second, Constrainf{w) en- e )
sures that these allocation probabilities fully define viign 10 Provide intuition for our proof, we stat€(Vyy ¢, &)
probabilities, as required by Equation (3.1). Third, Coff" @ Simple example and show how we can find a solution
straint (F.step) ensures that our mechanism is stepwise righit that setss > 0. Consider the bidder-bundle setting
domized. described in the introduction, which we used to demonstrate
Now we must show that the mechanism satisfies our fif&t VCG is not revenue monotonic. Thatis,det {g1, g2}
desired properties. First, Constraint&.raon) and f.sp) andIN = {1,2,3}; bidders1, 2 and 3 are known single-
together entail both strategyproofness and participatiyn Minded, where the bundles valued by biddére, and3



maximized subject to:

(P.m1) N (@) =0 VN, @,a€Ag\ My

(P.m2) 0<mna (@) <1 VN, @,ae My

(P.7T3) Z WN,a():l VN,
aeMpy

(P.my) 7N.a(@) = 7N (0) + > (anai- 6+ 8;) VYN, D|@; = cis,

(P.q1) GN,ai =0 VN,i,ae My[Va' e My,a; =b;

(P.q2) 0<gnai <1 YN, i,a € Myla; = b;

(P.q3) -1<qN,a:i <0 VN,i,aGMNkli:@

(P.qs) Y anai=1 VN,i|3a’ € My anda) = @
aeM n:a;=b;

(PQ5) Z gN,ai = -1 VN,i|EIa’ € MN anda; =
aeMy:a;=g

Figure 3: Quadratically constrained linear progrd?ﬁvﬂébé,G). Variables arery »’s, ¢a;'s andd. We adopt the
conventions thafV indexes subsets dR, i indexes elements oV, s; indexes elements ofo,...,v}, and @ indexes
elements OM]%’)G ={vjve V](Vb)c;, VieN,3s; €{0,....,7}: 0 =cis, }

areby = {¢g1}, b2 = {91,092} andbs = {go} respectively. other words, we can move from one node to another by
Let S5 » denote this three-bidder, two-good setting. We stétereasing one bidder’s bid by one step. If an edge indicates
the constraints and explain the solution for the case wHenaal increase in biddeis declared value, we say the edge is of
bidders are present and all goods are for sale. That is,tigtee;. Now, assign.M x| labels to each edge, one for each
G = G andN = IN. One can easily follow the same approadhlocation inM . Allocationa’s label on an edge of type
for other choices of7 and N, many of which are trivial. denotes the change iy , by moving along an edge of type

It is easy to verify that there is exactly one choice; (which increases biddéls bid amount by one step) and is
for My: we have to either award biddér her desired equal togy . ; - 6. Define the cost of a path as the absolute
bundle, or award biddersand3 each their desired bundlevalue of the sum of the labels of the edges in the path.

Therefore./\/lN = {(@,{91,92},®),({gl},@,{QQ})}- Let .
az = (2,{91,92},2) andars = ({g1}.2,{g2}). Thus, LEMMA 4.3. In eachG Ry and for all allocationsa € My,

all paths between any two given nodesnd¢ have the same

- b)) . g &Y\
forall @ € Wy, (i) mn.a(@) = 0, for all a € Ag such COSE [T o () — 7v.0(5)].

thata # as,a; 3 constitute P.my), (i) 0 < 7y..(@2) < 1 if
a = ag OFa = aj 3 constitute P.2), and (iil) 7v..,(@) = Proof. For alli ¢ N, the number of edges of type is the
1 - 7N ,a, 5 () constitute £.73). same in all paths betweerandt. Since all edges of type

As each biddei belongs to exactly one allocatione  haye the same label corresponding to allocadicthe sum of
My, Constraints £.q1)—~(P.q5) can be expressed a8 ... = a’s associated labels along any path betweandt is equal

0,foralla # az,a; z3andalli € N, andgn,a, 5,1 = ¢N,a1 5,3 = to TN a(t) = Tna(s). o
1, UN,a2,2 = 1,qN,a1 52 =1, andgy a,1 = qN,ay,3 = —1.
Intuitively, g ,a,; - 0 denotes the change tov,, when Figure 4 represent§ Ry for S3 2. On each edge, the

bidder: increases her bid by one step. We constrain thbel corresponding te; s—which denotes the change in
qN,a,i's In (P.m4) such that when increases her bid by oner ,, . due to moving along the edge—is equat@., ,,i-6
step—frome; ,, to ¢; s,,,, the probability that e My will  for somei ¢ N and is exactly the negative of the label
be chosen weakly increasesiibelongs toa;, and weakly corresponding tay. The the cost of the longest path (e.g.,
decreases otherwise. between(ci o, 2,4, ¢3,0) @and(c1,+,¢2,0,¢3,7)) IS 37.

One can illustrate constraints iF¢r4) by the following Now let us move to the proof of our general result.
graph representation. L&t Ry be a graph of(y + 1)Vl
nodes, each corresponding tc()b;':\ different potential dettlateemma 4.4. Any solution toP(VﬂfI%, G) with § > 0 corre-
valuation profile of bidders i1, ,. Let there be a directed i (b)
edge between each pair of ngdcés that differ in only Onesop}ondsto a solution t5'(Vy . @)-
f[he bidders’ declarations, and in which this differenceris Broof. Let a solution tOP(V(b) .G) for which § > 0 be
increase of exactly one step (i.e., frany, t0 ¢; 5;41). In N.G

given. Thus we havey .(@) for all @ € M%’?G. To give



3y (10,7 Yaentasmt; (TN,a(0)+ X ey (N,a,000-5¢) ). The first equality

follows from (4.2) and (4.3) and the second equality follows

from (P.m1) and (P.my). Now, if (1) a; = b;,Va € My,
3l (-1.0,7) (3 L7) (3:0,9-1) then, wn ;i (7) = Yaerta,-s, TN.2(0) = 1. The first equal-

ity holds by (P.q1) and the second equality holds b#.f3).

Otherwise, letr’ = (9/,7_;). Thenwy ;(?7") —wn:(?) =
2 (2,09 (L L) (-1, 0-1(,2,7) (9,1 y-1) (7,0,9-2) YacMuasb; (AN a0+ (8;—5i)) = 0-(s;—s;). Thefirstequal-
ity holds by (P.7,) and the second equality holds b¥.{,).
Now, if 7; < 7/ thens; < s} and thus (2uy;(7) < wn (7).
Thus, by (1) and (2), we havé'(mon).

(F.cs) is induced by the same set of constraints as
(F.mon); that is, by P.mr1), (P.w3), (P.my), (P.q1)—(P.q4),
(4.2) and (4.3). Following the same argument as above, if
a; = b;,Vae My, thenwy (7)) = o Jai=b; TN a(O) =1.
Otherwise,wy ;(¢i s;+1,7-i) — wni(¢is;, P-;) = 8. Thus
we get '.cs).

(F.sp) is induced by K.step) and (4.4). This is because
by (F.step), the integral part off{sp) is over a discrete
0 (0,7,0) domain and thus we can writé'(sp) as (4.4).

(F.rm) is induced by (4.4) and the rest of the constraints

2 (2,7,0) (1,7-1,0) (1,7,1) (0,7-2,0) (0,7-1,1) (0,7,2)

] (1,7,0) (0,7-1,0) (0,7,1)

Figure 4: GraphGRy for our three-bidder, two-good example
Each node(a, b, ¢) denotes(c: a, ca.p, .0 ). The label correspond- in F. As stated above, if bidderbelongs to allh € My,

ing to a; 3 on directed edges from levél to k + 1 is 6 and on thenvo, wy () = 1 and thuspy () = 0. Otherwise,

directed edges from levél+ 1 to k is -6, 0 < k < 3y — 1. pNi(7) = Ticy 1<8ilci 0, <Bi<ci s, 1 Cias) -0. By Lemma 4.1, it
is clear that dropping’ bldd@hﬁ i either does not change the

a solution toF(VﬂfIbé,G) we have to map they .(@)’s payment of biddet or sets it to zero (if dropping entails a
to the allocation probab|I|t|es winning probabilities dancase in which belongs to all the allocation in the support of

payments inF(Vngbé, G). Forall v V]EZb)G’ let the mechanism). Thug{rm) follows immediately. O
(4.2) N,a(?) =N ,a(D) Constraints inP(Vngbé,G) are all linear or quadratic,

) and so our problem of identifying mechanisyh, can be re-
wherem; = ¢;,, for somes; € {0 -.,7} such thate; s, < guced to solving a set of quadratically constrained lineas p

U; < ¢is;+1. Also, for all o e V]f, andallie N let grams where the objective function in each is to maxiniize
(4.3) wni(?)= Y wna(?),and and then checking each for- 0. However, we can do even
acA & ,a:2b; better. The nextresult demonstrates that this QCLP is away
N . feasible; later, we will show how to analytically constract
(4.4) pn,i(9) = > Cis [wn,i(cis, D)= solution withs > 0.
1ss<sg
Cirsi SHi<Cirsivy LEMMA 4.5. Let P(Vngbé,G) be given. For any given
wn,i (€511, B-3) . mn,a(0) > 0,¥a € My, such thaty, n, 7n,a(0) = 1,

, and any givenyy . i, Ya € My, such that(P.q;)—(P.gs)
We show that the aboven 'S, wn.i's, pn,i's andd satisfied, there exists a solution to the set of ineqgaalit

indeed constitute a solution E(V(b) G). in (P.7t1)~(P.73) and (P.74) that sets) > 0.
Note that (4.3) is in fact{.w). Also note thaty > 0

induces £.6). Itis easy to see that five of the constraints iRroof. Let 7y (@) = 0, Ya € Ag — My. Thus we have

F are directly induced by (4.2), (4.3) and a set of constrairf{d 7). We can write P.72) and (P.74) as

in P. Precisely, (i) €.a1) is induced by (4.2), ®.71) and (4.5) 0< wN’a(()) + Z(qzv,a,z"5'8i) <1.

(P.m2); (i) (F.a2) is induced by (4.2)P.7m1) and (P.3); (iii) i

(F.max) is induced by (4.2) and*(m; )—this simply follows Let t, denoteYcn (gn,a,i - 5i). If ta = 0 then let

the fact that any. ¢ My is certainly not inM y: (iv) (F.w) TN, = Tn,a(0); by the assumption of the lemma, (4.5) holds.

is induced by (4.3); and (v)i{step) is induced by (4.2) andOtherwise, we can rewrite each equation (4.5) in which

(4.3). ta <Oas5<”’vti“(0) andt, >Oas§<1”+“(0) Now,
(F.mon) is induced by R.7m1), (P.73), (P.74), (P.q1)— we have many constraints of the forin< k for different

(P.qs), (4.2) and (4.3). To see this, note that we caronnegativé:’s. Denote the smallegtby £* and sety = k*.

writt wni(?) = Tacag.aiob TNa(Clsis---1Cns,) = Thus(4.5) holds and furthermore, sincerall . (0)'s and all



k's are greater than zeré; = ¢ is greater than zero. Note5 A Polynomial Time Algorithm

thatif¢, = 0 in all constraints (4.5), any > 0 would work. At first glance, it may seem that constructing, requires

It remains to show that A73) holds. We can time exponential in the number of potential bidd@¥sand
write Y, cme 7o (D) = ZaeMN(WN,a(O)JF Yi(qas - 0 - goods, sinceP has an exponential number of variables and
$i)) = Zaemy T™N,a(0) + 6 Zacpmy Lildn,ai - si) = 1+ constraints. As the examplg o in Section 4 shows, some
00X Yaemy (@Nai-8i) =1+0 %, 8i (Zacmy ai-z IN,ai +  Settings are “easy to solve” because of their special bidder
YaeMy ai=b; AN,ai) = 1 +0 = 1. The first equality holds by bundle structure that let us circumvent the exponentiaineat
(P.m4), the third equality holds by the lemma’s assumptiog¥. the problem. It turns out that, even in the general case, we
and the fifth equality holds byH.q1), (P.q4) and (P.g5). O ¢an always construci1 y for all VH\(IZ%, G,andN c Nin

THEOREM4.1. For any giveny > 0, there exists ay-step polynomial time in|N| and|G]|.

randomized mechanism that is strategyproof and revenue _ ®) o

monotonic and satisfies participation, maximality and (THEOREMS5.1. For any givenVy ', G and N, in time

step,§) consumer sovereignty, for sorfie 0. polynomial in|N| and |G| we can find a set of maximal
) ) b) allocationsM y , whereay ¢ ; s = 0, such that each bidder

Proof. Itis easy to verify Athat regardless Uﬁr,a andGi W€ ;¢ N belongs to at least one allocation iy and for all

can always generatey ,(0)’'s such thaty .\, ™v,2(0) = ae My andallie N, a; = b; or a; = @.

1. For example, we can sertN,a((A)) = IM—IN\ In fact,

there are infinitely many such assignmentsmfya(())’s. Proof. Set My = @. Randomly order all the bidders in

L T i N and mark them as “unawarded”. Then run the following
Similarly, there exist infinitely many random assignmerits 8reedy algorithm. (1) Sef’ = G. Start from the top of the
theqy a.i's t(hb?t Sat"Sfy C.q1)~(P.gs)- Now note t.hat EXCePLjist and award each “unawarded” bidddrer desired bundle
for 3, P(Vyg,G)'s have no other variable in commony, it available, and remove; from G, until there are either
Thus, |f(l}/)ve sev to be the minimum 0b's in the Solutions no more goods or no more bidders. Mark all the bidders that
to P(Vyy i, G)'s, the rest of the proof directly follows frompaye awarded their desired bundle as “awarded”. (2) Start
Lemma 4.4 and Lemma 4.5. U from the top of the list and award each “awarded” bidédler
In the example, it is clear thatyd < 1 and thuss < % her desired bundlé; if available, and remové; from G’,

Since we have complete freedom in choosing, (0)’s, we until there are either no more goods or no more bidders. (3)

can set them appropriately—that is to et .1 3(0) = 1/3 Add the current allocation toV . If there is any bidder

andmy ., (0) = 2/3—so thats = L is feasible. As we said Marked as “unawarded” then go to step 1. Otherwise, stop.
,a2 .

earlier, we described the solution 6%, for N = IN and Steps 1-3 tak&)(|N|G|log(|G|)) time and we have to

G = @G. To fully define the mechanism we simply have tg'n them at mosfV| times, since in each run at least one
find & for all choices forN' andG and keep the smallegt— bidder is marked as “awarded”. Thus, the algorithm take
which indeed isj = - time O(|N|?|G|log(|G|)) to run. We add one allocation to
3 . : :
Our QCLP formulation characterizes a class of randoffl~ at the end of each run; thuet y is of sizeO(|N|). o
ized mechamsr_ns that ;at|sfy our desired properties. How- Unfortunately, finding adesirablesolution among the
ever, a mechanism designer may also hope to optimize sQup

S o : . F of feasible solutions—e.g. a solution that maximizes
additional objective function such as social welfare or-rey ..\ complicated and dependent on the architecture

enue. In our construction above, we have full or partialfreg . given bidder-bundle setting, our choice/efy’s and
dom to 586’ M, TN, ANDGN o, HETE, we briefly discuss,y, o o parameters. However, we can construct a feasible
tuning J; we leave further investigations of optimization fogolution in polynomial time giving a (loose) lower bound on

futurg vyork. , , , . the maximunv that satisfies our constraints.
Fixing My's, mn.a's andgy a,;'S, we obtain a strate-

gyproof mechanism, which yields the same social welfargieorem5.2. For any givenvﬂgbé, G and N, we can con-
no matter how we sef. This is because the social welfargtruct a~-step randomized meéhani% in time polyno-
depends only on the allocation and bidders’ true valuatiopfial in | N| and |G| such thatM., is strategyproof and rev-
Since fixed sets ofMx’s and 7y,.’s always produce the enue monotonic and satisfies participation, maximality and
same distribution over the allocation space, the sociat Welstep,§) consumer sovereignty whefe- 7%

fare is always the same in expectation regardless ddn K

the other handg does affect payments; indeed, the ma)oof. ConstructMy as in the proof of Theorem 5.1. If
mum § maximizes revenue. Furthermore, the bigges, |IMn| = 1, then the solution is trivial. (All participating
the stronger is the consumer sovereignty guarantee offerelidders win with probability equal to one.) Otherwise, if
bidders. Thus maximizing offers (different) benefits both|/Mn| > 2, let gn.a;: = W Va € My,i € N, where
to the auctioneer and to bidders. My ; is the set of allocations € My thati belongs to.



1
Therefore,- < gy a,i

TN,a
and

1. Letry ., = m Therefore,l < [13]

5 Consider the combination of constrainf3£z)
(P.74) in the form we presented in the proof of Lemm?“]

<

<

4.5. Thatiss < ™= if ¢, <0, ands < =722 if ¢, > 0,
wheret, = ¥, n(gn,a - Si). By our choice ofry ,'s and [15]

qN.a:'SIN above,_’”vtif‘(o) > 7717 andl_’”tvij"‘(o) > ﬁ Thus,
max(d) > min{nTlv, #} = n+7 =
6 Conclusionsand Future Work [17]

In this work, we showed that our previous impaossibility re-

sult

CA mechanisms can be circumvented by stepwise rand&Hl

ized

whether our mechanisms can be extended to unknown singl

about deterministic, strategyproof, revenue morioton

mechanisms. In future work, we intend to investigate
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