Interactivity and Scalability Enhancements for
Quality-Adaptive Streaming

Charles Krasic
Department of Computer Science
University of British Columbia
Vancouver, Canada
krasic@cs.ubc.ca

ABSTRACT

In this paper we describe the design and implementation of
our adaptive media streaming system and its support for
fully interactive video navigation. The system builds upon
and extends previous work on adaptive streaming, to encom-
pass coordinated adaptation of network, processor, and stor-
age resources. The adaptation methods we describe allow
our application to provide robust and responsive streaming,
that supports a wider set of video navigation modes unseen
before in any previous streaming application.

In addition to the technical contributions toward stream-
ing, and to shed light on the motivation for our approach,
this paper also outlines a prototype application we are build-
ing above our adaptive-streaming framework for distributed
collaborative video authoring. The goal of this application is
to assist (distributed) teams of amateur cinematographers in
authoring video projects, and, through teamwork, to elevate
the quality of user generated content.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications

General Terms

Design, Algorithms, Performance, Experimentation

1. INTRODUCTION

Despite its success, streaming video delivery still suffers
from significant limitations with respect to reliability, qual-
ity and navigation features in comparison to other modes
of video delivery, namely downloads or DVDs (and other
portable storage). In this paper and in our previous work
[2, 1], we describe our QStream streaming system. In broad
terms, the goal of the project is to investigate system and
networking techniques which narrow the performance gaps
between streaming and other modes of video delivery. Video
streaming is technically challenging because its performance
is the result of interactions spanning a number of subsys-
tems, and their corresponding resources (storage, network,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’08, October 26-31, 2008, Vancouver, British Columbia, Canada
Copyright 2008 ACM 978-1-60558-303-7/08/10 ...$5.00.

753

Jean-Sébastien Légaré
Department of Computer Science
University of British Columbia

. Vancouver, Canada
jslegare@cs.ubc.ca

processing). End-to-end performance optimization often re-
sembles the carnival game called 'whack a mole’; in the sense
that knocking down a performance problem in one area only
causes a new one to arise somewhere else. Thus, we feel
that effectively orchestrating interactions between compo-
nents, layers and subsystems is just as elusive a challenge as
designing an optimal solution for any of the particular sub-
components of a video streaming solution (e.g., video codec,
network protocol, storage format).

We believe this paper makes two main contributions in
design and implementation. First, our design leverages and
extends quality-adaptation methods to provide previously
absent (to streaming) navigation features and improve scal-
ability. Second, our design is fully implemented in a real
system, QStream, which is demonstrable and is available as
open-source to the research community. We believe that
such an implementation is of vital importance to confirm
that the proposed methods have achieved their end-to-end
objectives.

2. SCALABLE STORAGE

A quality-adaptive server, by definition, continuously ad-
justs the bitrate of video stream to match resource avail-
ability. This can be implemented through a combination of
layered video compression and adaptive streaming protocols.
The idea is that some clients, due to transient congestion or
static capacity limitations, may end up receiving a stream
with significantly lower bitrate than the full amount of the
video stored as stored at the server. However, with suitably
advanced techniques, the reduction in quality can be made
very gracefully, avoiding buffering interruptions and mini-
mizing visual degradation to the video. Our prior work in
this area was concerned primarily with adaptation to net-
work bandwidth [2] and processor speed [1]. In this paper,
we also consider the problem of scalable storage layout and
access. By scalability here, we mean that the storage band-
width (e.g., filesystem speed) requirements of delivering a
stored video stream can be adapted in synchronization with
downstream (network and client) quality adaptations to the
video.

Our motivation for developing a scalable layout scheme
stems from two aspects of overall performance in the context
of video streaming, namely, server scalability and navigation
functionality. By server scalability, we mean primarily the
number of concurrent clients that are supportable by a sin-
gle server. By navigation functionality, we refer to expand-
ing streaming navigation options to include fast-forward and
rewind, which have so far remained absent from the com-
monly used streaming systems.

N 5 e 1 s e e e :
L I N R
ey W et

Figure 1: Accessing any byte in a file implies fetch-
ing one (or more) pages.

Today, most video files are stored in one of several popu-
lar file formats, such as avi (.avi), QuickTime movie (.mov),
Flash video (.flv), Matroska (.mkv), etc. While there are dif-
ferences in the details between them, for our purposes they
are all equivalent in that none provide any direct support
for scalability, meaning that their data layout is designed
entirely toward the “common case” of sequential playback of
the video, at one quality level. Support for random access
is provided, but only in the sense of starting playback at
a random point. These formats do not anticipate the case
where subsequent access is non-sequential due to quality-
adaptation.

By design, a quality-adaptive server will skip parts of
the video during playback (due to network limitations), but
the file data layouts referenced previously are such that
even partial access patterns at the upper layer (e.g., strid-
ing through video frames or spatial layers) translate at lower
system layers (blocks or sectors) to include neighboring data,
perhaps even degenerating to a sequential scan of the entire
file. Figure 1 depicts this “false sharing” waste.

Our data layout strategy allows storage bandwidth to be
adapted in co-ordination with layered video. The layered
video scheme we use in our implementation is SPEG, which
offers spatial scalability (SNR adaptation) in addition to the
usual temporal scalability (frame dropping) [2]. However,
our storage scheme is designed to be generic, and will sup-
port other layered formats such as H.264/SVC [4] as well.

We divide the media into hierarchical layers (top to bot-
tom):

Root layer Contains file-global information such as the num-

ber of video and audio streams in the file, and the
length and the type of each stream. For each video

stream listed, the file will present one metadata layer.
Metadata layer Contains summary information on each

video frame, i.e., temporal importance of the frame,
and pointers to its spatial enhancement layers (en-

coded frame data).
Data layer Contains encoded audio and video frame data

chunks, laid out strategically.

Encoded video data chunks are always accessed indirectly
through the metadata layer. The intuition behind this de-
sign is that the server access pattern is based on some com-
bination of spatial and temporal quality, and thus the final
utility of a data chunk on disk will vary based on a combi-
nation of factors such as playback speed and network band-
width (weighted by an adaptation policy). When playback
speed increases, the temporal components of some frames
will become less important. When network bandwidth be-
comes scarce, some spatial quality may be dropped. The
metadata allows our server to prioritize frames and their
constituent data chunks, before any of the resource “heavy”
processing steps ensue. Data chunks below a certain utility
threshold can be dropped, i.e., not sent over to the client
nor fetched from storage. Our layout strategy and access
algorithm prevents false sharing between sent and unsent
chunks.

754

3. COORDINATED ADAPTATION

Priority-Progress is the name we give our general algo-
rithm for quality-adaptation. It is based on a type of sliding-
window approach. At a given time, we define a sequence of
frames eligible for processing, denoted as an “adaptation”
window. In QStream, our Priority-Progress adaptation ap-
proach has been applied end-to-end, across storage, network,
and computation resources. There is a separate instance of
Priority-Progress adaptation window for each resource type.
Thus, per-frame “processing” refers to network transport,
media decompression, and filesystem transfer operations re-
spectively. Data (video frames and their constituent chunks)
enter and leave each window as it slides forward accord-
ing to time. Each chunk of a frame is prioritized according
to the temporal importance of the frame and the chunk’s
spatial importance. Although the chunks enter and depart
the window according to time, within the window they are
kept in a priority queue ordered by overall importance of the
data. When the window position moves and a frame exits
the window, any chunks of that frame as yet unprocessed
are dropped, we say these chunks have expired. Process-
ing the contents of a window in priority order is an elegant
way to adapt video to match available resources, but how to
manage the timing of this process is somewhat more subtle.
We review our approach here in support of the subsequent
explanation of coordinated adaptation.

The core insight in our approach is the observation that
the size of the adaptation window directly relates to a trade-
off between the responsiveness to interactive navigation ac-
tions (start-up times) and flexibility to adapt to transient
fluctuations in resource availability. The adaptation window
size is expressed in units of time, defined by a left and right
boundary, and corresponds to the duration between when a
frame is first available for processing (enters the window),
and last available (exits the window). The fact that the
adaptation window processes data in priority order means
that quality will be driven to an equal level, for the period
of time proportional to the size of the window. Larger win-
dow sizes impede start-up time, because unlike conventional
sliding windows, priority order processing of our adaptation
window means that for a consumer to process (e.g., a player
to decode and display) any particular frame, the consumer
must first wait for the window position to reach a point
such that it knows no further data will be forthcoming (for
this frame). Nonetheless, large windows are better in terms
of adapting to resource fluctuations', due to their greater
smoothing effect. Thus, we say that larger windows benefit
quality and robustness of streaming.

By moving the window position forward faster than play-
back speed, it is possible to enlarge the window during the
streaming process without stalling the receiver, but at the
price of dropping more low-priority data and settling (tem-
porarily) for a lower video quality. Measuring our adap-
tation windows in units of time affords us precise control
over the amount of skimming (also in units of time) with-
out knowing anything about the rate or throughput of the
input and the resource. For example, if the window position
is advanced at a rate of 10% faster than the nominal play-
back speed, then the window size can grow precisely 10%
time units larger, and the reduction in quality/bitrate of

'Resource fluctuations can manifest to users as lower visual
quality, or more acutely as full interruptions in the video.

the video during the skimming period will also be 10% (rel-
ative to whatever storage, network, or processor bandwidth
was used). This allows one to execute a window skimming
plan that works in the face of arbitrary fluctuations of re-
source requirements and availability. To take full advantage
of these possibilities, we now describe our coordinated time-
line for multi-resource adaptive streaming.

Skim Network Bandwidth

Skim Storage
Bandwidth Skim CPU Bandwidth
- -

Xmit jitter decode jitter

120%

-

.033-1 .033-29

expire expire

setup Xmit decode present

Time (seconds)

Figure 2: Per-Frame Pipeline Schedule

Figure 2 depicts the end-to-end streaming timeline from
the perspective of a single frame of the video. As time passes,
frames travel from left to right through the stages. They do
so in decode order, meaning that frames with inter-frame
dependencies (P or B frames) enter only after their reference
frames. Let us first consider the sequence of stages and their
purposes, but not yet their duration.

A video frame first begins processing in the storage setup
stage, at which time the metadata for the frame is first re-
trieved from storage. The metadata will be used in later
stages to prioritize the frame’s data chunks. The stage also
smooths out variations in storage latency. The network
transmit (zmit) stage is the period during which the frame
is in the network Priority-Progress adaptation window. It is
also during this stage that video data will be fetched from
the data layer. Thus, the xmit stage simultaneously adapts
to network and storage bandwidth?. After xmit, the decode
stage is the time during which the frame can be decoded
(decompressed) at the receiver. For each of these stages,
the trade-off between startup time and robustness applies
(see Section 3).

To achieve the goal of perceptually instantaneous startup
time, the pipeline stages will use the minimum durations
feasible for the first frame of the stream, i.e., a single frame.
However, the durations grow to timescales of seconds and
tens of seconds to provide robustness and smooth quality.
Our strategy is to use a two phase approach, with very ag-
gressive skimming rate to start, but only for a short time,
and during this phase, the skimming rates decrease linearly
(see Figure 3a). The maximum window size for the decode
stage is reached after about 15 seconds (see Figure 3b). We
allow the xmit window to grow for a much longer time, on
the order of minutes, but by about 45 seconds of stream-
ing, we complete a transition to a conservative skim rate of
10% (see Figures 4a and 4b). In Figure 4, after about 3.5

2The zmit jitter and decode jitter denote thresholds after
which a frame will not start processing, but may complete.
Their roles are relatively minor, but they help eliminate bad-
put.

755

50 . ‘ _
mit —+—
mititter > I
or decode x|
£ 30
£
2
= -
2 20t ~ |
°© S
10 [, - |
b e - .
0 * . TEeny
0 5 10 s ”
treamPosition
(a) Skim Rate (Seconds)

10 T T —
mit ———
mititter
decode -

,,,,, I

Cumulativeindowiesseconds

20
treamPosition

(b) Window Size (Seconds)
Figure 3: Window Scaling: Aggressive Phase

minutes of streaming, the maximum window size target is
reached and window growth (bandwidth skimming) stops.
The approach described above retains the previously re-
ported robustness and reliability of Priority-Progress [1, 2],
and has enabled instant startup and added navigation modal-
ities (fast forward and rewind, single step, etc.). The QStream
implementation is instrumented to measure end-to-end delay
(GUI input to first frame display) of navigation actions, and
these measurements confirm that for all navigation actions,
startup delay is between one or two tenths of a second.

4. COLLABORATIVE VIDEO EDITING

A number of trends in recent years have led to an ex-
plosion in amount and popularity of user generated video
on the Internet. We believe commoditization of video tools
and the rise of the Internet as a distribution vehicle bears
striking similarity to the evolution of open source software
development over the years. With respect to user generated
video, devices and tools for video generation and authoring
are proliferating, but as is the case with software, the human
tasks involved in video productions can range tremendously
in scale. As with software, we believe that amateur video en-
thusiasts will embrace tools which allow them to collaborate
with like-minded partners, and through teamwork produce
more elaborate video projects. We are developing a project
called Qinematic, that acts as a service platform for video
authoring analogous to sites such as SourceForge which sup-
port collaboration between open source software developers.

The Qinematic project plans to explore mechanisms spe-
cific to distributed collaboration such as version control for
video and integration of communication tools into the au-
thoring environment. Qinematic is inspired partly by and
shares many goals with Internet based authoring services
such as JumpCut.com and YouTube’s remixer.

50

T T
mit ——
mititter
decode -

,,,,, I

30

Cumulativekimates

1.5 2 2.5 3 35
treamPosition

(a) Skim Rate (Minutes)

0 0.5 1

T T
mit ——
mititter
decode -

,,,,, I

35
30
25

20 ¢

Cumulativeindowiesseconds

1.5 2 2.5 3 35
treamPosition

(b) Window Size (Minutes)

0 0.5 1

Figure 4: Window Scaling: Conservative Phase

We intend to use QStream as the “engine” for Qinematic.
We firmly believe that QStream’s highly interactive stream-
ing will allow us to provide many, if not all, of the application
features that are habitually found in local non-linear video
editors, with the added panoply of collaboration possibilities
opened by adopting an Internet-based approach.

The initial design objectives for Qinematic are as follows:

Fully interactive navigation The user will be able to play
a movie in any direction, and at different speeds. It
will also be possible to “scrub” the video (see Sections
2 and 3 for details).

A scene/clip editor The editor will allow defining “clips”,
and performing delete, move, and copy operations on
them.

An effects editor The editor will allow both inter-clip and
intra-clip transitions. Examples of such effects would
be cross-fade, and color conversion, respectively.

A Collaborative aspect A team of users should be able
to edit the same video content, and share their modi-
fications with others.

In Qinematic, the smallest unit of work is a clip, which
can be chained together in various ways to form compos-
ite content. As the makeup of content evolves through the
editing process, the state of the content at any point will
be represented through a play-list. We are in the process of
extending the algorithms of Section 3 to support seamless
transitions for play-lists made up of remote content.

We intend to develop version management for video, anal-
ogous to the role of source code management (SCM) in soft-
ware development. The work-flow of software development
centers around source code, configuration files, etc. SCM al-
lows the work-flow to proceed in a collaborative fashion. We
plan to apply similar practices to the work-flow of collabora-

756

tive video authoring, i.e., revision control on edit description
lists (EDL), media clips, etc.

Finally, a key design decision behind Qinematic is that
we are building it using the rich Internet application model,
i.e., familiar web based interface, deployment model, and
extensibility mechanisms. To this end we have developed
a NPAPI plugin compatible with standard web browsers to
allow web based applications to utilize QStream to provide
access to video content.

S. RELATED WORK AND CONCLUSION

Providing QoS support in the storage layer for multime-
dia retrieval, through mechanisms such as admission con-
trol and resource reservations has been studied by various
groups. Our approach to storage is mainly at the applica-
tion level, and aims to use adaptation to cope with best effort
service. As such we believe it is orthogonal and complemen-
tary to QoS mechanisms. Lin et al. [3] propose a method to
support VCR modes in streaming. Like their work, we sup-
port reverse playback, however unlike their work our scheme
does not require dual bitstreams to be stored. Other ap-
proaches, such as Yang et al[5], optimize GOP patterns to
better support VCR modalities. We view their approach as
complementary to ours, because our approach is designed to
function with any GOP pattern, but performance is subject
to limitations of GOP structure.

To our knowledge, QStream is the first available streaming
implementation that supports all modes of VCR style inter-
action (a.k.a. ”scrubbing”). Specifically, in addition to the
usual operations of play, pause, and seek supported by most
streaming platforms, our system provides variable playback
speeds ranging from up to extremely rapid rates (128x) and
down to slow-motion and frame accurate single step, in for-
ward and backward directions. Interactive response to all
navigation operations occurs on timescales in the low tenths
of a second. These results were measured with our current
implementation, which is fully open source, and can be ob-
tained from http://qstream.org.

6. REFERENCES

[1] C. Krasic, A. Sinha, and L. Kirsh. Priority-progress
CPU adaptation for elastic real-time applications. In
Proceedings of the Multimedia Computing and
Networking Conference (MMCN), Jan. 2007.

C. Krasic, J. Walpole, and W. Feng. Quality-adaptive
media streaming by priority drop. In Proceedings of the
International Workshop on Network and Operating
Systems Support for Digital Audio and Video
(NOSSDAV), pages 112-121, June 2003.

C.-W. Lin, J. Zhou, J. Youn, and M.-T. Sun. Mpeg
video streaming with ver-functionality. Circuits and
Systems for Video Technology, IEEE Transactions on,
11(3):415-425, March 2001.

H. Schwarz, D. Marpe, and T. Wiegand. Overview of
the scalable video coding extension of the h.264/avc
standard. IEEE Trans. Circuits Syst. Video Techn.,
17(9):1103-1120, 2007.

K.-C. Yang, C.-M. Huang, and J.-S. Wang. Design of
frame dependency for vcr streaming videos. Image
Commun., 22(5):505-514, 2007.

