
TOLERATING BUSINESS
FAILURES IN HOSTED

APPLICATIONS
Jean-Sébastien Légaré

1

Dutch T. Meyer, Mark Spear, Alexandru Totolici, Sara Bainbridge, Kalan
MacRow, Robert Sumi, Quinlan Jung, Dennis Tjandra, David Williams-King,

William Aiello, Andrew Warfield

NSS Lab. UBC
SoCC 2013

PHOTO ALBUM

2

3

APPS ARE GREAT. BUT THEY FAIL.

• GeoCities

• Piknik

• Google Reader

• Friendster

• And more!

4

EXPORT IS NOT ENOUGH

5

all_my_data_in_xml.tgz

6

CONTRIBUTIONS

The Micasa platform that allows developers:

• To build apps that tolerate EOL

• To assert auditable guarantees about EOL behavior

7

HOSTED APPS ARE GREAT.

8

Server Data

User Data

ROLLING
UPGRADES

SHARING/AC

VALIDATION

SEARCH

SPEED

BUT… FAILURES ARE CATASTROPHIC

WE CAN BUILD DIFFERENTLY

9
Server data

User Data

• Cloud storage is available to users (Move data)

• Browsers are more powerful (Cache logic)

ROLLING
UPGRADES SHARING/AC

VALIDATION

SEARCH

SPEED

SHARING AND ACCESS CTL

10

User A’s Store

Nice Photo!

User B’s Store

A [URLs]

B [URL]
B [URL]

DATA STORE DESIGN GOALS

• Allow multiple-SP ecosystem. All support API.

• Sharing: capability URLs to objects

• No registr. to friend store.

• Files and folders

• Revocation: undo share

• Limit writes: No RW to other stores. Append only.

• Inbox-style communication

• Migrate between storage providers
11

WE CAN BUILD DIFFERENTLY

12

Server Data User Data

• Cloud storage is available to users (Move data)

• Browsers are more powerful (Cache logic)

ROLLING
UPGRADES

SHARING/AC

VALIDATION

SEARCH

SPEED

CLIENT SIDE DESIGN GOALS

• Code cached using HTML5 Application Cache

• Durable storage of client side code--can use storage

provider

• After (manual or automatic) trigger that server is gone, need to

switch to "unplugged" code paths

• Library support/extension for redirecting app.com requests

when unplugged

13

Application
Provider

.htm
.js

.css

Client Code

Server
Code/Data

-User List
-Cache
-Indexes

Libeol extension

User A’s Store

User A

Browser
+ libeol

User B

Browser
+ libeol

{rpc}

User B’s Store

Static Requests + RPC “Peer-to-Store”
14

WE CAN BUILD DIFFERENTLY

15

Server Data User Data

• Cloud storage is available to users (Move data)

• Browsers are more powerful (Cache logic)

ROLLING
UPGRADES

SHARING/AC

VALIDATION

SEARCH

SPEED

SEARCH

VALIDATION

• Users have RW/Del over their store

• Extra precautions when displaying user data

• content integrity filters (object len, checksums)

• routines to digitally sign and verify messages

16

CONTRIBUTIONS

The Micasa platform that allows developers:

• To build apps that tolerate EOL

• To assert auditable guarantees about EOL behavior

17

User Store

AUDITABLE PROVIDER GUARANTEES

18

PLUGGED

IDL
POLICY

3rd Party

UNPLUGGED

Monitor

Audit Log

EVALUATION

19

• Ease of development

• Satisfactory performance

• Good user experience

APPLICATIONS BUILT

App Name SLOC Description

TwoCans 1500 IM System

HotCRP-P 10K Permanent HotCRP

Lenscapes 2200 Photo album sharing

Data Viewer 650 Namespace file explorer

20

Python Server prototype implementing CAPSI API (X lines of code).
Supports three underlying storage backends, FS, Azure, S3.

TWOCANS

• Chat owner keeps list of message capabilities

• Message authors can revoke their messages

• Uses client-side crypto to sign and verify messages

• Very simple hosted service

• Messages don’t go through server: p2store

• Only user registry and public chat URLs

21

HOTCRP-P (PERMANENT)

• Refitted php app to DHTML view logic

• Client-side archiving of papers/reviews (copy)

• Local index is built using applet port of Apache Lucene

• Unplugged mode allows local archive search

(regardless of conference website availability)

22

PERFORMANCE

• Application benchmark for

caching, sampling Flickr pages.

• Compare loading pages

statically with content-

identical Micasa impl.

• Evaluation server keeps

flattened capability structure.

• Compare cached vs non-

cached load times and BW.

23

Birdi@:
Nice!

Chex:
great comp.

Accessing an item: $root/Comments/0/{icon, author, text}

OVERHEADS

• Fetching Micasa blobs slower than apache static fetch

• Content integrity overhead (checksum + signatures)

• Additional data dependencies

24

LOAD TIMES AND BW OVER STATIC

• Page Load times:

• 80% of pages have <100% overhead over static (2sec vs 1sec avg)

• With caching, all pages have <40% load times overhead

• BW Consumption

• 23% overhead, 6% when cached hierarchies are available

25

FUTURE WORK

• Improve user data privacy

• Confidentiality via crypto in user-defined groups

• Monitor exfiltration of capabilities

• Ease adoption of data store API (see paper)

• Client-side abstraction layer to support backend diversity

• Explore advertising avenues (see paper)

26

ALLOW TESTING GUARANTEES

• Raise level of trust between users and application providers

• Unplug to test out features present after End-of-Life (EOL)

• Provide audit mechanism

• Verify provider’s claims wrt to functionality

27

APPLICATION CLASSES SUPPORTED

• Data View based Applications: Blogs, Photo Galleries are best suited

• Peer-to-store connections allow sharing and commenting

• Local archives of previously viewed content

• Preserve search with client-side indexing

• Access to “friends” data can be kept

• Notifications via polling (fallback for live pub-sub)

• Server-side caching of user objects

• Server protocols (e.g. SMTP for webmail)

28

CONCLUSION

• Platform to handle service provider EOL

• Lose no benefits from central hosting

• Application can go in unplugged mode

• App`s dependence on the provider can be audited

• Demonstrated feasibility with several useful applications

• Performance of proto well within the bounds of usability

29

