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APPS ARE GREAT. BUT THEY FAIL.

• GeoCities

• Piknik

• Google Reader

• Friendster

• And more!
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EXPORT IS NOT ENOUGH
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all_my_data_in_xml.tgz
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CONTRIBUTIONS

The Micasa platform that allows developers:

• To build apps that tolerate EOL

• To assert auditable guarantees about EOL behavior
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HOSTED APPS ARE GREAT.
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BUT… FAILURES ARE CATASTROPHIC



WE CAN BUILD DIFFERENTLY
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SHARING AND ACCESS CTL
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User A’s Store

Nice Photo!

User B’s Store
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B [URL]
B [URL]



DATA STORE DESIGN GOALS

• Allow multiple-SP ecosystem.  All support API.

• Sharing: capability URLs to objects

• No registr. to friend store.

• Files and folders

• Revocation: undo share 

• Limit writes:  No RW to other stores.  Append only.

• Inbox-style communication

• Migrate between storage providers
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WE CAN BUILD DIFFERENTLY
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CLIENT SIDE DESIGN GOALS

• Code cached using HTML5 Application Cache

• Durable storage of client side code--can use storage 

provider

• After (manual or automatic) trigger that server is gone, need to 

switch to "unplugged" code paths

• Library support/extension for redirecting app.com requests 

when unplugged
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Static Requests + RPC “Peer-to-Store”
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WE CAN BUILD DIFFERENTLY
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VALIDATION

• Users  have RW/Del over their store

• Extra precautions when displaying user data

• content integrity filters (object len, checksums)

• routines to digitally sign and verify messages
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CONTRIBUTIONS

The Micasa platform that allows developers:

• To build apps that tolerate EOL

• To assert auditable guarantees about EOL behavior
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User Store

AUDITABLE PROVIDER GUARANTEES
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EVALUATION
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• Ease of development

• Satisfactory performance

• Good user experience



APPLICATIONS BUILT

App Name SLOC Description

TwoCans 1500 IM System

HotCRP-P 10K Permanent HotCRP

Lenscapes 2200 Photo album sharing

Data Viewer 650 Namespace file explorer
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Python Server prototype implementing CAPSI API (X lines of code).
Supports three underlying storage backends, FS, Azure, S3.



TWOCANS

• Chat owner keeps list of message capabilities

• Message authors can revoke their messages

• Uses client-side crypto to sign and verify messages

• Very simple hosted service

• Messages don’t go through server: p2store

• Only user registry and public chat URLs
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HOTCRP-P (PERMANENT)

• Refitted php app to DHTML view logic

• Client-side archiving of papers/reviews (copy)

• Local index is built using  applet port of Apache Lucene

• Unplugged mode allows local archive search

(regardless of conference website availability)
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PERFORMANCE

• Application benchmark for 

caching, sampling Flickr pages.

• Compare loading pages 

statically with content-

identical Micasa impl.

• Evaluation server keeps 

flattened capability structure.

• Compare cached vs non-

cached load times and BW.
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Birdi@:
Nice!

Chex:
great comp.

Accessing an item: $root/Comments/0/{icon, author, text}



OVERHEADS

• Fetching Micasa blobs slower than apache static fetch

• Content integrity overhead (checksum + signatures)

• Additional data dependencies
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LOAD TIMES AND BW OVER STATIC

• Page Load times:

• 80% of pages have <100% overhead over static (2sec vs 1sec avg)

• With caching, all pages have <40% load times overhead

• BW Consumption

• 23% overhead, 6% when cached hierarchies are available
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FUTURE WORK

• Improve user data privacy

• Confidentiality via crypto in user-defined groups

• Monitor exfiltration of capabilities

• Ease adoption of data store API (see paper)

• Client-side abstraction layer to support backend diversity

• Explore advertising avenues (see paper)
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ALLOW TESTING GUARANTEES

• Raise level of trust between users and application providers 

• Unplug  to test out features present after End-of-Life (EOL)

• Provide audit mechanism

• Verify provider’s claims wrt to functionality
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APPLICATION CLASSES SUPPORTED

• Data View based Applications: Blogs, Photo Galleries are best suited

• Peer-to-store connections allow sharing and commenting

• Local archives of previously viewed content

• Preserve search with client-side indexing

• Access to “friends” data can be kept

• Notifications via polling (fallback for live pub-sub)

• Server-side caching of user objects

• Server protocols (e.g. SMTP for webmail)
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CONCLUSION

• Platform to handle service provider EOL

• Lose no benefits from central hosting

• Application can go in unplugged mode

• App`s dependence on the provider can be audited

• Demonstrated feasibility with several useful applications

• Performance of proto well within the bounds of usability
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