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ABSTRACT
Studies in experimental economics have consistently demon-
strated that Nash equilibrium is a poor description of hu-
man players’ behavior in unrepeated normal-form games.
Behavioral game theory offers alternative models that more
accurately describe human behavior in these settings. These
models typically depend upon the values of exogenous pa-
rameters, which are estimated based on experimental data.
We describe methods for deriving and analyzing the poste-
rior distributions over the parameters of such models, and
apply these techniques to study two popular models (Poisson-
CH and QLk), the latter of which was previously shown to
be the best-performing existing model in a comparison of
four widely-studied behavioral models [22]. Drawing on a
large set of publicly available experimental data, we derive
concrete recommendations for the parameters that should
be used with Poisson-CH, contradicting previous recommen-
dations in the literature. We also uncover anomalies in
QLk that lead us to develop a new, simpler, and better-
performing model.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Experimentation, Performance

Keywords
Behavioral game theory, Bounded rationality, Game theory,
Cognitive models

1. INTRODUCTION
It is well known that in many settings, the standard game-

theoretic assumption that agents will adopt Nash equilib-
rium strategies—where each agent simultaneously responds
optimally to all the others—is a poor predictor of actual
human behavior [e.g., see 9]. The field of behavioral game
theory aims to develop models that more accurately describe
human behavior, as evaluated using experimental data [2].
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These models typically depend upon parameters such as
agents’ sensitivity to utility differences and the distribution
of cognitive ability in the population. In order for behavioral
models to be effective tools for prediction, it is necessary to
identify “good” estimates for these parameters. Such param-
eter values are also interesting for their own sake, because
they can offer economic insights into human behavior.

There has been recent interest in the computer science
community in behavioral solution concepts as an alterna-
tive to standard economic models. Wunder et al. [23] ex-
tended the cognitive hierarchy model in their analysis of
the Lemonade Stand Game. Gao and Pfeffer [7] used quan-
tal response equilibrium to model bounded rationality in a
game where the agents are responding to payoffs that are
unknown to the modeler. Wright and Leyton-Brown [22,
henceforth WLB] conducted an exhaustive meta-study of
behavioral game theory models, focusing on the problem
of unrepeated, simultaneous-move games. They evaluated
four prominent models from the behavioral game theory lit-
erature: Quantal Response Equilibrium [QRE; 12], Level-
k [Lk; 13, 6], Poisson–Cognitive Hierarchy [Poisson-CH; 3],
and Quantal Level-k [QLk; 19]. The evaluation criterion
was out-of-sample prediction performance: they identified
parameters for each model that maximized the likelihood of
a training data set, and then evaluated each model in terms
of the likelihood it assigned to a separate test set. The
data were taken from six publicly available datasets describ-
ing lab experiments in which subjects played unrepeated,
simultaneous-move games against other human opponents.
In the end they observed a result that was statistically sig-
nificant and quite robust: that the QLk model substantially
outperformed all others on the set of all data, and also had
the best or nearly the best performance on each individual
dataset.

While WLB effectively identified the best-performing ex-
isting model, their work offers very little insight about the
models’ parameter values. For example, because they re-
lied upon a maximum-likelihood approach, they obtained
no information about the extent to which parameter val-
ues could be changed without a major drop in predictive
accuracy, or even about the extent to which individual pa-
rameters influence a model’s performance. Our paper shows
how to address such questions. Specifically, it describes a
Bayesian approach for gaining understanding about a be-
havioral model’s entire parameter space. We combine ex-
perimental data with explicitly quantified prior beliefs to
derive a posterior distribution that assigns probability to
parameter settings in proportion to their consistency with



the data and the prior [8]. We apply this approach to an-
alyze the posterior distributions for two models: QLk and
Poisson–Cognitive Hierarchy. Although Poisson-CH did not
demonstrate competitive performance in [22], we analyze it
here because it is very simple, and because the literature
contains a very specific recommendation for how its param-
eter should be set: Camerer et al. [3] recommend setting
the model’s single parameter, which represents agents’ mean
number of steps of strategic reasoning, to 1.5. Our own
analysis sharply contradicts this recommendation, placing
the 99% confidence interval almost a factor of three lower,
on the range [0.51, 0.59]. We devote most of our attention
to QLk, however, since it was previously shown to achieve
strong performance. Our analysis points out several anoma-
lies in the parameter distributions for QLk, suggesting that
a simpler model could be preferable. By exhaustively eval-
uating a family of variations on QLk, we identify a simpler,
more predictive model based in part on the cognitive hier-
archy concept.

In the economics community, Rogers et al. [17] proposed
a unifying framework that generalizes both Poisson-CH and
QRE, and compared the fit of several variations within this
framework. This is similar to our search of a family of QLk
variants, but there are several differences. First, we com-
pare out-of-sample prediction performance, not in-sample
fit. Second, Rogers et al. restricted the distributions of types
to be grid, uniform, or Poisson distributions, whereas we
consider unconstrained discrete distributions. Third, they
required different types to have different precisions, while
we do not. Finally, we consider level-k beliefs as well as
cognitive hierarchy beliefs, whereas they compared only cog-
nitive hierarchy belief models (although their framework in
principle allows for both).

In the next section, we define the models that we analyze.
We then describe the framework that we used for estimating
and analyzing parameters and their distributions, and the
dataset and specific techniques that we used to derive our
estimates. In Section 4 we present the results of our analyses
for the Poisson-CH and QLk models. In Section 5, we de-
scribe the QLk-like variants that we evaluated, and present
the results of our search.

2. BEHAVIORAL MODELS
We begin by formally defining the behavioral models that

we analyze. We then relate these models to some other
widely studied models that we do not consider further, due
to their poor predictive performance observed by WLB [22].

2.1 Quantal Level-k
Stahl and Wilson [19] proposed a rich model of strate-

gic reasoning that we refer to as the quantal level-k model
(QLk). The QLk model of human behavior incorporates
two primary components: iterated strategic reasoning, and
cost-proportional errors. Iterated strategic reasoning refers
to a limit on the number of levels of higher-order belief that
agents can maintain.1 Agents make cost-proportional errors
if their rate of making errors increases as errors become less
costly. This can be modeled by assuming that agents best
respond quantally, rather than via strict maximization.

Definition (Quantal best response). Let ui(ai, s−i) be

1This limit is believed to be quite low; e.g., Arad and Ru-
binstein [1] found no support for 4th order or higher beliefs.

agent i’s expected utility when playing action ai against
strategy profile s−i. Then a quantal best response QBRi(s−i;λ)
by agent i to s−i is a mixed strategy si such that

si(ai) =
exp[λ·ui(ai, s−i)]∑
a′i

exp[λ·ui(a′i, s−i)]
, (1)

where λ (the precision) indicates agents’ sensitivity to utility
differences. �

Note that unlike regular best response, which is a set-valued
function, quantal best response always returns a single mixed
strategy. When λ = 0, quantal response mixes uniformly
over all of the agents’ actions; as λ → ∞, quantal best re-
sponse approaches strict best response.

In the QLk model, agents have one of three levels: level-
0, level-1, or level-2. Level-0 agents are nonstrategic, and
choose their actions uniformly at random. Level-1 agents
quantally best respond to level-0 agents; that is, they be-
lieve that the rest of the population consists entirely of
level-0 agents. Similarly, level-2 agents quantally respond
to level-1 agents. Level-1 and level-2 agents can use differ-
ent precisions (λ’s), and furthermore level-2 agents’ beliefs
about level-1 agents’ precision can be arbitrarily different
from level-1 agents’ actual precision.

Definition (QLk model). Let Ai denote player i’s action

set. Then the probability distribution πQLki,k ∈ Π(Ai) over
actions that QLk predicts for a level-k agent playing as agent
i is defined as follows.

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRi(π
QLk
−i,0 ;λ1),

πQLki,1(2) = QBRi(π
QLk
−i,0 ;λ1(2)),

πQLki,2 = QBRi(π
QLk
i,1(2);λ2),

where πQLki,1(2) is a mixed-strategy profile representing level-2

agents’ (possibly incorrect) beliefs about how level-1 agents
play. The overall predicted distribution πQLk of actions is
the weighted sum of the distributions for each level: πQLki =∑2
k=0 αkπ

QLk
i,k , where α0 = 1 − α1 − α2. The QLk model

thus has five parameters: {α1, α2}, the proportions of level-
1 and level-2 agents (α1 + α2 ≤ 1; any remaining agents
are level-0); {λ1, λ2}, the precisions of level-1 and level-2
agents’ responses; and λ1(2), level-2 agents’ beliefs about
the precision of level-1 agents. �

2.2 Poisson Cognitive Hierarchy
Like QLk, the cognitive hierarchy model [3] aims to model

agents with heterogeneous bounds on iterated reasoning. It
differs from the QLk model in two key ways. First, agents
use standard best response, rather than quantal response.
Second, agents best respond to the full distribution of lower-
level types, rather than only to the strategy one level be-
low. More formally, every agent has an associated level
m ∈ {0, 1, 2, . . .}. Let f be a probability mass function
describing the distribution of the levels in the population.
Level-0 agents play uniformly at random. Level-m agents
(m ≥ 1) best respond to the strategies that would be played
in a population described by the truncated probability mass
function f(j | j < m).

Camerer et al. [3] advocate a single-parameter restriction
of the cognitive hierarchy model called Poisson-CH, in which
f is a Poisson distribution.



Definition (Poisson-CH model). Let πPCHi,m ∈ Π(Ai) be
the distribution over actions predicted for an agent i with
levelm by the Poisson-CH model. Let f(m) = Poisson(m; τ).
LetBRi(s−i) denote the set of i’s best responses to the strat-
egy profile s−i. Let πPCHi,0:m =

∑m
`=0 f(`)πPCHi,` /

∑m
`=0 f(`) be

the “truncated” distribution over actions predicted for an
agent conditional on that agent’s having level 0 ≤ ` ≤ m.
Then πPCH is defined as follows:

πPCHi,0 (ai) = |Ai|−1,

πPCHi,m (ai) =

{
|BRi(πPCHi,0:m−1)|−1 if ai ∈ BRi(πPCHi,0:m−1),

0 otherwise.

As with QLk, the overall predicted distribution of actions
πPCH is a weighted sum of the distributions for each level:
πPCHi =

∑∞
`=0 f(`)πPCHi,` . The mean of the Poisson distri-

bution, τ , is this model’s single parameter. �

2.3 Other Behavioral Models
WLB evaluated two other behavioral models in addition

to those listed above. The first, QRE [12], is a generalization
of Nash equilibrium where agents respond quantally instead
of best responding. The second, Lk [13, 6], is similar to QLk,
except that agents best respond to the next level down rather
than quantally responding. We omit these models from our
analysis, since they consistently achieved worse predictive
performance than QLk in WLB’s comparison.

3. BAYESIAN PARAMETER ANALYSIS
In this section, we describe this paper’s first contribution,

our formal framework for parameter estimation, along with
the experimental data and estimation techniques we used.

3.1 Prediction Framework
We begin by noting that any behavioral game theoretic

model is a mapping from a game description G and a vector
of parameters θ to a distribution over action profiles in G.
In other words, a given behavioral model provides us with
a way of computing Pr(a | G, θ). Our goal is to use this
behavioral model in conjunction with our experimental data,
D, to predict future behavior in a given gameG. The dataset
may or may not contain examples of earlier play in G. The
model parameters need to be determined based upon the
data. There are two approaches that we can take.

The frequentist approach, taken by Rogers et al. [17] and
Wright and Leyton-Brown [22], is to compute a point esti-

mate θ̂ of the model’s parameters based on our dataset, and
then use θ̂ to compute the prediction for new games. That
is, we use the model

Pr(a | G,D) = Pr(a | G, θ̂). (2)

The Bayesian approach is to calculate a posterior distri-
bution over parameter values Pr(θ | D), and then use this
distribution to integrate out the parameter. This yields the
alternate model

Pr(a | G,D) =

∫
Pr(a | G, θ) Pr(θ | D)dθ. (3)

Observe that Equation (2) can be seen as a special case of

(3), where the posterior is a point mass at θ̂.
We use the posterior distribution to analyze model param-

eters, which is an application of Bayesian estimation. How-
ever, on our dataset, we have observed that the frequentist

approach achieves better predictive performance than the
Bayesian approach. Thus, we use point estimation to com-
pare performance between model variants. We describe both
approaches.

3.1.1 Point Estimation
We use the maximum likelihood estimate of the parame-

ters as our point estimate:

θ̂ = arg max
θ

Pr(D | θ).

Our dataset consists of a set D of observations di = (Gi, ai),
indicating that an action profile ai was played in game Gi.
The likelihood of a single datapoint is

Pr(di | θ) = Pr(Gi, ai | θ).

By the chain rule (of probabilities), this is equivalent to

Pr(di | θ) = Pr(ai | Gi, θ) Pr(Gi | θ). (4)

We assume that θ and G are independent; i.e., we assume
that Pr(Gi | θ) = Pr(Gi). Intuitively, this means that we
assume there is a single “true” parameter value θ∗ for all
games, rather than a separate “true” θGi for each game Gi.
This allows us to rewrite (4) as

Pr(di | θ) = Pr(ai | Gi, θ) Pr(Gi). (5)

We assume that the datapoints are independent, so the like-
lihood of the dataset is just the product of the likelihoods
of the datapoints:

Pr(D | θ) =
∏
di∈D

Pr(di | θ). (6)

Substituting (5) into (6) gives us

Pr(D | θ) =
∏
di∈D

Pr(ai | Gi, θ) Pr(Gi). (7)

The probabilities Pr(Gi) are constant with respect to θ, and
can therefore be disregarded when maximizing likelihood:

arg max
θ

Pr(D | θ) = arg max
θ

∏
di∈D

Pr(ai | Gi, θ).

3.1.2 Bayesian Estimation
We derive an expression for the posterior distribution Pr(θ | D)

by applying Bayes’ rule, where p0(θ) is the prior:

Pr(θ | D) =
p0(θ) Pr(D | θ)

Pr(D)
. (8)

Substituting in (7), the posterior distribution is

Pr(θ | D) =
p0(θ)

∏
di∈D Pr(ai | Gi, θ) Pr(Gi)

Pr(D)
,

and since both Pr(Gi) and Pr(D) are constant with respect
to θ,

Pr(θ | D) ∝ p0(θ)
∏
di∈D

Pr(ai | Gi, θ). (9)

3.2 Data
We analyzed data from nine experimental studies, summa-

rized in Table 1; this expands beyond the six studies WLB
considered. We also constructed a new dataset (Combo9)
containing observations from all nine source datasets. To



Codename Source Games n Units

SW94 Stahl and Wilson [19] 10 400 $0.025
SW95 Stahl and Wilson [20] 12 576 $0.02
CGCB98 Costa-Gomes et al. [5] 18 1566 $0.022
GH01 Goeree and Holt [9] 10 500 $0.01
CVH03 Cooper and Huyck [4] 8 2992 $0.10
RPC09 Rogers et al. [17] 17 1210 $0.01
HSW01 Haruvy et al. [11] 15 869 $0.02
HS07 Haruvy and Stahl [10] 20 2940 $0.02
SH08 Stahl and Haruvy [18] 18 1288 $0.02

Combo9 Above datasets 128 3600 $0.01

Table 1: Names and contents of each dataset. The
column headed n indicates the number of observa-
tions in the dataset. Units are in expected value.

ensure that each was equally represented, despite their dif-
ferences in size, we included exactly 400 observations from
each dataset (sampled uniformly without replacement).

The precision parameter for quantal response is not scale
invariant. That is, the correct value of λ can differ depend-
ing upon the units in which payoffs are expressed. To ensure
consistent estimation of precision parameters, we renormal-
ized all games so that their payoffs were in expected cents.

3.3 Estimation Methods
For all of the models we considered, we used a flat prior for

the parameters. Although this prior is improper, it results in
a correctly-normalized posterior distribution; the posterior
distribution in this case reduces to the likelihood [8]. We
computed the posterior distribution for the single-parameter
Poisson-CH model by grid sampling. That is, we computed
the likelihood of the Combo9 dataset for each value of τ ∈
{0.01k | k ∈ N, 0 ≤ 0.01k ≤ 10}, and then normalized by
the sum of the likelihoods.

The QLk model has five parameters, and is therefore too
high dimensional to grid sample efficiently; approximately
5 × 1012 samples would have been required for a grid of
the same granularity as we used for Poisson-CH! Instead,
for QLk—and the other high dimensional models introduced
in Section 5—we used a sequential Monte Carlo technique
called annealed importance sampling, or AIS [14]. AIS al-
lows for efficient sampling from high dimensional distribu-
tions, similarly to Markov Chain Monte Carlo (MCMC)
techniques. However, each sample point generated using
AIS is independent, so AIS does not exhibit the random-
walk behavior that can plague MCMC samplers. Briefly,
the annealed importance sampling procedure is as follows.
A sample

#»

θ 0 is drawn from an easy-to-sample-from distri-
bution P0. For each Pj in a sequence of intermediate distri-
butions P1, . . . , Pr−1 that become progressively closer to the
posterior distribution, a sample

#»

θ j is generated by drawing

a sample
#»

θ ′ from a proposal distribution Q(· | #»

θ j−1), and
accepted with probability

Pj(
#»

θ ′)Q(
#»

θ j−1 |
#»

θ ′)

Pj(
#»

θ j−1)Q(
#»

θ ′ | #»

θ j−1)
. (10)

If the proposal is accepted,
#»

θ j =
#»

θ ′; otherwise,
#»

θ j =
#»

θ j−1.
We repeat this procedure multiple times, and report the dis-
tribution of the resulting

#»

θ r values, with each
#»

θ r’s contri-
bution weighted according to

P1(
#»

θ 0)P2(
#»

θ 1)

P0(
#»

θ 0)P1(
#»

θ 1)
· · · Pr−1(

#»

θ r−2)Pr(
#»

θ r−1)

Pr−2(
#»

θ r−2)Pr−1(
#»

θ r−1)
. (11)

For the initial sampling distribution P0, we used a prod-
uct distribution over the population proportions parameters
and the precision parameters. For the population propor-
tion parameter components we used a Dirichlet distribution
Dir(1, 1, 1); this is equivalent to uniformly sampling over the
simplex of all possible combinations of population propor-
tions. For the precision parameter components we used the
renormalized non-negative half of a univariate Gaussian dis-
tribution N (0, 22) for each precision parameter; this gives a
distribution that is decreasing in precision (on the assump-
tion that higher precisions are less likely than lower ones),
and with a standard deviation of 2, which was large enough
to give a non-negligible probability to most previous preci-
sion estimates.

The proposal distribution was a product distribution“cen-
tered” at the current value, with proportion parameters #»α ′

sampled from Dir(20 #»αj−1), and each precision parameter λ′

sampled from N (λj−1, 0.2
2) (truncated at 0 and renormal-

ized). The “hyperparameters” for the Dirichlet distribution
(20) and the precision distributions (0.22) were chosen by
trial and error on a small subset of the data to make the
acceptance rate near to the standard heuristic value of 0.5
[16]. We used 200 intermediate distributions of the form

Pj(
#»

θ ) = Pr(
#»

θ | D)γj ,

with the first 40 γj ’s spaced uniformly from 0 to 0.01, and
the remaining 160 γj ’s spaced geometrically from 0.01 to
1, as in the original AIS description [14]. We performed 5
Metropolis updates in each distribution before moving to
the next distribution in the chain.

For the model performance comparisons in Section 5, we
computed the parameter point-estimates using the Nelder-
Mead simplex algorithm [15]. To reduce the danger of get-
ting caught in a local minimum, we repeated the optimiza-
tion from 500 random starting points, and chose the value
which gave the highest log likelihood.

4. RESULTS
In this section, we describe the results of our analysis of

posterior distributions for the two models defined in Sec-
tion 2. We start by comparing the posterior distribution for
the Poisson-CH model’s parameter to a previously published
recommendation. We then turn our attention to the QLk
model, whose posterior distribution exposes several possible
issues with the model.

4.1 Poisson-CH
Camerer et al. [3] recommended setting the τ parameter of

the Poisson-CH model to 1.5. Figure 1 gives the cumulative
posterior distribution over τ for each of our datasets. Over-
all, our analysis strongly contradicts Camerer et al.’s recom-
mendation. On Combo9, the posterior probability of 0.51 ≤
τ ≤ 0.59 is more than 99%. Every other source dataset had
a wider high posterior density region than Combo9 (indi-
cated by the higher slope of Combo9’s cumulative density
function); this is expected, as smaller datasets lead to less
confident predictions. Nevertheless, all but two of the source
datasets had median values less than 1.0. Only the Stahl and
Wilson [19] dataset (SW94) appears to support Camerer
et al.’s recommendation (median 1.43). However, SW94
appears to be an outlier; its high posterior density region is
wider than the other distributions, and the distribution is
very multimodal, likely due to SW94’s small size.
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Figure 1: Cumulative posterior distributions for the
τ parameter of the Poisson-CH model. Bold trace
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Figure 2: Marginal cumulative posterior distribu-
tion for the level proportion parameters (α1, α2; top
panel) and precision parameters (λ1, λ2, λ1(2); bottom
panel) of the QLk model on the combined dataset.

4.2 QLk
Figure 2 gives the marginal cumulative posterior distribu-

tions for each of the parameters of the QLk model. (That
is, we computed the five-dimensional posterior distribution,
and then extracted from it the five marginal distributions
shown here.) We found these distributions surprising for
several reasons. First, the models predict many more level-
2 agents than level-1 agents. In contrast, it is typically
assumed that higher level agents are scarcer, as they per-
form more complex strategic reasoning. Even more surpris-
ingly, the model predicts that level-1 agents should have
much higher precisions than level-2 agents. This is odd if
the level-2 agents are to be understood as “more rational”;
indeed, precision is sometimes interpreted as a measure of
rationality [e.g., see 21, 7]. Third, the distribution of λ1(2),
the precision that level-2 agents ascribe to level-1 agents, is
very concentrated around very small values ([0.023, 0.034]).
This differs by two orders of magnitude from the“true”value

of λ1, which is quite concentrated around its median value
of 3.1. Finally, the median value of λ1 (3.1) is more than 17
times larger than that of λ2 (0.18). It seems unlikely that
level-1 agents would be an order of magnitude more sensitive
to utility differences than level-2 agents.

One interpretation is that the QLk model is essentially ac-
curate, and these parameter values simply reflect a surpris-
ing reality. For example, the low precision of level-2 agents
and the even lower precision that they (incorrectly) ascribe
to the level-1 agents may indicate that two-level strategic
reasoning causes a high cognitive load, which makes agents
more likely to make mistakes, both in their own actions and
in their predictions. The main appeal of this explanation is
that it allows us to accept the QLk model’s strong perfor-
mance at face value.

An alternate interpretation is that QLk fails to capture
some crucial aspect of experimental subjects’ strategic rea-
soning. For example, if the higher-level agents reasoned
about all lower levels rather than only one level below them-
selves, then the low value of λ1(2) could predict well because
it“simulates”a model where level-2 agents respond to a mix-
ture of level-0 and level-1 agents. We investigate this second
possibility in the next section.

5. MODEL VARIATIONS
In this section, we investigate the properties of the QLk

model by evaluating the predictive power of a family of sys-
tematic variations of the model. In the end, we identify a
simpler model that dominates QLk on our data, and which
also yields much more reasonable marginal distributions over
parameter values.

Specifically, we constructed a family of models by extend-
ing or restricting the QLk model along four different axes.
QLk assumes a maximum level of 2; we varied this by con-
sidering maximum levels of 1 and 3 as well. QLk has in-
homogeneous precisions in that it allows each level to have
a different precision; we varied this by also considering ho-
mogeneous precision models. QLk allows general precision
beliefs that are not restricted to be accurate; we also con-
structed models that make the simplifying assumption of
accurate precision beliefs about lower levels’ precisions. Fi-
nally, in addition to Lk beliefs, where all other agents are
assumed by a level-k agent to be level-(k − 1), we also con-
structed models with CH beliefs, where agents believe that
the population consists of the true, truncated distribution
over the lower levels. We evaluated each combination of
axis values; the 17 resulting models2 are listed in the first
part of Table 2. In addition to the 17 exhaustive axis combi-
nations for models with maximum levels in {1, 2, 3}, we also
evaluated 12 additional axis combinations that have higher
maximum levels and 8 parameters or fewer: ai-QCH4 and ai-

QLk4; ah-QCH and ah-QLk variations with maximum levels in
{4, 5, 6, 7}; and ah-QCH and ah-QLk variations that assume
a Poisson distribution over the levels rather than using an
explicit tabular distribution. These additional models are
listed in the bottom part of Table 2.

5.1 Simplicity Versus Predictive Performance
We evaluated the predictive performance of each model on

2When the maximum level is 1, all combinations of the other
axes yield identical predictions. Therefore there are only 17
models instead of 3 · 23 = 24.
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Figure 3: Model simplicity (number of parameters) versus prediction performance. QLk1, which has far lower
performance than the other models, is omitted for scaling reasons.

the Combo9 dataset using 10-fold cross-validation repeated
10 times, as in WLB. The results are given in the last col-
umn of Table 2, and plotted in Figure 3. Performance is
measured by how much more likely the test data is accord-
ing to the given model (with parameters chosen based on a
training dataset, separate from the test set) than it is ac-
cording to assuming that actions are chosen uniformly at
random (u.a.r.). E.g., the test data is 1018.37 times more
likely according to the QLk1 model’s prediction than accord-
ing to a uniform random prediction.

All else being equal, a model with higher performance is
more desirable, as is a model with fewer parameters. We can
plot an “efficient frontier” of models with the (statistically
significant) highest performance for a given number of pa-
rameters or fewer; see Figure 3. The original QLk (gi-QLk2)
is not efficient in this sense; it is dominated by ah-QCH3,
which has significantly better predictive performance even
though it has fewer parameters (due to restricting agents to
homogeneous precisions and accurate beliefs). Our analysis
thus argues that the flexibility added by inhomogeneous pre-
cisions and general precision beliefs is less important than
the number of levels and the choice of population belief.

Conversely, the poor performance of the Poisson variants
relative to ah-QCH3 suggests that flexibility in describing the
level distribution is more important than the total number
of levels modeled. Figure 4 shows the marginal posterior
level weight distributions for all four models on the efficient
frontier. There is broad agreement among all models on the
proportion of level-0 agents. However, in order to get the
“right” number of level-0 agents, ah-QCHp (which models the
level distribution as a Poisson) must place a great deal of
weight on level-1 agents as well; in contrast, the tabular-
distribution models all select bimodal distributions that as-
sign relatively little weight to level-1 agents, and more to
higher-level agents (level-2 and higher).

In fact, there is a pattern in the models along the efficient
frontier: this set consists exclusively of models with accurate
precision beliefs, homogeneous precisions, and cognitive hi-
erarchy beliefs.3 This suggests that the most parsimonious
way to model human behavior in normal-form games is to
use a model of this form, with the tradeoff between sim-
plicity (i.e., number of parameters) and predictive power
determined solely by the number of levels modeled.

To test the extent of the simplicity/power tradeoff in this
family of models, we also evaluated ah-QCH4, ah-QCH5, ah-
QCH6, and ah-QCH7, and for comparison purposes also evalu-
ated every other model in our design space having 8 or fewer
parameters. For the Combo9 dataset, adding additional lev-
els yielded small increases in predictive power until level 5,
after which it yielded no further, statistically significant im-
provements. Thus, Figure 3 includes ah-QCH4 and ah-QCH5

as part of the efficient frontier.
Overall, we recommend ah-QCH3 to practitioners seek-

ing a single model to use for predicting human behavior
in simultaneous-move games. While it is possible to achieve
gains in performance on our (large) dataset by modeling ad-
ditional levels, these gains are small. Specifically, the gain in
prediction from adding two parameters to ah-QCHp to yield
ah-QCH3 was more than twice as great as was the gain in
prediction from adding two parameters to ah-QCH3 to yield
ah-QCH5. Since more complex models are more prone to

3One might be interested in a weaker definition of the effi-
cient frontier, saying that a model is efficient if it achieves
significantly better performance than all efficient models
with fewer parameters, rather than all models with fewer
parameters. In this case the efficient frontier consists of all
models previously identified as efficient plus ah-QCH7 and
gi-QLk3. Our original definition rejected gi-QLk3 because
it does not predict significantly better than gh-QLk3, which
in turn does not predict significantly better than ah-QCH5.



Name
Max
Level

Pop'n
Beliefs Precisions

Prec.
Beliefs #

Log-likelihood
vs. u.a.r.

QLk1 1 n/a n/a n/a 2 18.37± 0.12
gi-QLk2 2 Lk inhomo. general 5 29.18± 0.03
ai-QLk2 2 Lk inhomo. accurate 4 26.75± 0.19
gh-QLk2 2 Lk homo. general 4 28.64± 0.04
ah-QLk2 2 Lk homo. accurate 3 26.18± 0.03
gi-QCH2 2 CH inhomo. general 5 28.17± 0.16
ai-QCH2 2 CH inhomo. accurate 4 27.39± 0.18
gh-QCH2 2 CH homo. general 4 27.90± 0.03
ah-QCH2 2 CH homo. accurate 3 27.44± 0.02
gi-QLk3 3 Lk inhomo. general 9 30.57± 0.17
ai-QLk3 3 Lk inhomo. accurate 6 29.54± 0.27
gh-QLk3 3 Lk homo. general 7 30.35± 0.20
ah-QLk3 3 Lk homo. accurate 4 27.27± 0.03
gi-QCH3 3 CH inhomo. general 10 30.35± 0.24
ai-QCH3 3 CH inhomo. accurate 6 29.96± 0.11
gh-QCH3 3 CH homo. general 8 30.29± 0.12
ah-QCH3 3 CH homo. accurate 4 29.47± 0.02

ai-QLk4 4 Lk inhomo. accurate 8 30.05± 0.26
ah-QLk4 4 Lk homo. accurate 5 27.30± 0.03
ah-QLk5 5 Lk homo. accurate 6 27.11± 0.11
ah-QLk6 6 Lk homo. accurate 7 27.02± 0.10
ah-QLk7 7 Lk homo. accurate 8 26.99± 0.12
ah-QLkp * Lk homo. accurate 2 27.34± 0.02
ai-QCH4 4 CH inhomo. accurate 8 29.86± 0.20
ah-QCH4 4 CH homo. accurate 5 29.82± 0.05
ah-QCH5 5 CH homo. accurate 6 30.20± 0.04
ah-QCH6 6 CH homo. accurate 7 30.25± 0.03
ah-QCH7 7 CH homo. accurate 8 30.33± 0.02
ah-QCHp * CH homo. accurate 2 27.70± 0.02

Table 2: Model variations, evaluated on the Combo9
dataset. The column headed # indicates the number
of parameters in the model; the models with max
level of ∗ used a Poisson distribution.

over-fitting—particularly with smaller amounts of data—we
believe that ah-QCH3 offers the best tradeoff between ro-
bustness and experimental performance. Of course, a prac-
titioner working with a large dataset and interested in max-
imal prediction quality might also investigate ah-QCH5.

5.2 Parameter Analysis for ah-QCH3

We are now in a position to answer some of the questions
from Section 4.2 by examining our new model’s marginal
posterior distributions, plotted in Figure 5.

We first note that, in contrast to QLk’s multimodal, jagged
parameter CDFs, the parameter CDFs for ah-QCH3 are smooth,
and even appear to be unimodal. This suggests that ah-QCH3
is a much more robust model; its prediction quality is less
likely to change drastically as a result of small changes in
parameter values.

Second, the posterior distribution for the precision param-
eter λ is concentrated around 0.20, which is very close to the
QLk model’s estimate for λ2. This suggests that QLk’s much
lower estimate for λ1(2) may have been the closest that the
model could get to having the level-2 agents best-respond to
a mixture of level-0 and level-1 agents (as in cognitive hier-
archy). It is unclear whether the order-of-magnitude differ-
ences and counterintuitive ordering of λ1 and λ2 are similar
effects where QLk’s parameters are set in a way that “sim-
ulates” the assumptions of a more accurate model. Inter-
estingly, like QLk, the ah-QCH3 model predicts more level-2
agents than level-1. In fact, the ah-QCH3 model predicts even
fewer level-1 agents than QLk. This provides some support
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Figure 4: Marginal cumulative posterior distribu-
tions of levels of reasoning for efficient frontier mod-
els.

for QLk’s seemingly counterintuitive prediction that level-1
agents are less common than more sophisticated types.

6. CONCLUSIONS
We showed how Bayesian parameter analysis can be used

to gain understanding about the sensitivity of behavioral
game theoretic models to their parameters. We derived
concrete recommendations for the use of an existing model,
Poisson-CH, which differed substantially from advice in the
literature. We also uncovered anomalies in the best-performing
existing model (QLk) that led us to a new, simpler, better-
performing model (ah-QCH3). More broadly, the family of
accurate, homogeneous-precision QCH models allows the
modeler to trade off complexity against performance along
an efficient frontier of models simply by adjusting the num-
ber of levels modeled.

A possible direction for future work is to identify a para-
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Figure 5: Marginal cumulative posterior distribu-
tions for the level proportion parameters (α1, α2, α3;
top panel) and precision parameter (λ; bottom
panel) of the ah-QCH3 model on the combined dataset.

metric distribution of levels that closely matches the ob-
served distribution of levels. This would permit a model that
uses higher levels, and thus yielding higher performance,
without requiring more parameters. Other directions in-
clude exploring applications of ah-QCH3 for modeling human
behavior in practical settings such as markets or bargain-
ing, and applying Bayesian analysis to additional behavioral
models.
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