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Nash equilibria of two-player games are much easier to compute in practice than those of n-

player games, even though the two problems have the same asymptotic complexity. We used a
recent constructive reduction to solve general games using a two-player algorithm. However, the

reduction increases the game size too much to be practically usable. An open problem is to find

a more compact constructive reduction, which might make this approach feasible.
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It is well known that finding a Nash equilibrium in a two-player game is asymp-
totically no easier than finding an equilibrium of an n-player game for n > 2 [Chen
et al. 2009]. This is surprising, since payoffs in a two-player game are linear in the
mixed strategy of the opposing player, unlike in an n-player game. Performing this
computation in practice using the best known solvers, this linearity makes it much
easier to solve two-player games than n-player games. This presents a puzzle: if the
asymptotic complexities are the same, then why are the empirical performances so
different? Can we leverage fast existing algorithms for two-player games to address
the n-player case?

Lemke and Howson [1964] used linear algebra pivoting operations to rapidly find
a sample Nash equilibrium in two-player games. Howson [1972] extended this algo-
rithm to polymatrix games, which also have a linear structure. For other games, a
more general algorithm such as the global Newton method [Govindan and Wilson
2003] must be used. The global Newton method (GNM) is a strict generalization of
Lemke-Howson, in the sense that for a given two-player game and an appropriately
chosen starting point, it will follow the same path through strategy space.1 How-

1The GNM operates in a strategy × game space, so strictly speaking it is the projection of the
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ever, the GNM does so much less efficiently, since it uses numerical path-following
techniques rather than pivoting operations. This makes a big difference to prac-
tical performance; for example, Govindan and Wilson proposed to solve multiple
polymatrix games just to find a good starting point for the GNM [Govindan and
Wilson 2004].

Initially, it was not known how to exploit the theoretical equivalence between
two-player and n-player games, because the reductions used to prove the equiv-
alence were not constructive. However, Feige and Talgam-Cohen [2010] recently
presented a direct reduction from n-player games to two-player games, via poly-
matrix games. This suggests a way to efficiently compute a sample equilibrium in
n-player games: first “linearize” the game using the constructive reduction, then
apply a linearity-exploiting algorithm to the linearized game. In this letter we
describe an investigation of this approach. See the appendix for implementation
details and timing results.

The Feige-Talgam-Cohen (henceforth FTC) reduction converts an arbitrary normal-
form game into an approximately equivalent polymatrix game. It does this by in-
troducing mediator agents, each of which plays a single strategy with approximately
the same probability that a specific pure strategy profile will be played, based on
the strategies of the original players. The original players’ payoffs then depend only
on linear combinations of their payoffs for each pure strategy profile of the other
players, and so the reduced game is a polymatrix game, which can then be solved
using the Howson algorithm.

Overall, we observed that this method was a very slow way of computing a
sample Nash equilibrium. The slow performance was attributable to the large
number of additional agents introduced by the reduction. Specifically, one mediator
agent is introduced for each i-incomplete pure strategy profile (i.e., each profile of
pure strategies for each agent other than i); hence Ω(nkn−1) mediator agents are
required, where k is the number of pure strategies for each agent. The exponential
increase in the number of agents means that the linear algorithm must operate on
strategy profiles of length Ω(nkn). In contrast, the GNM algorithm, although it
cannot exploit linearity, need only operate in an O(n)-dimensional space.

One might wonder how a polynomial reduction could produce an exponential
number of agents. The reduction generates Ω(nkn) constant-sized polymatrix payoff
matrices for the polymatrix version of the game. These matrices are then combined
into an Ω(nkn) × Ω(nkn) two-player payoff matrix, which is polynomial in the size
of the original normal-form game (Ω(kn)). Crucially, a normal-form representation
for the reduced game, which would be of size Ω(knk

n

), is never generated.
We note that the FTC reduction was never intended to be compact in terms of

the number of agents. A reduction which was improved to be both constructive and
compact could make this approach a feasible way to efficiently compute a sample
Nash equilibrium in n-player games. It may also be worthwhile to consider re-
ductions from compactly represented games instead of from games in normal form.
Daskalakis et al. [2006] showed a polynomial reduction from instances of any com-
pact representation satisfying certain reasonable properties to two-player games.
However, this reduction is indirect. If the FTC approach could be adapted to take

path onto strategy space that is the same.
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compactly represented games as inputs, we would have a constructive reduction
that generates a number of agents polynomial in the size of the representation.
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A. APPENDIX
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Fig. 1. Time to find a sample Nash equi-
librium using GNM and reduced-Howson.

We used Gamut [Nudelman et al.
2004] to generate 10 uniform random
games each of 3, 4, . . . , 18 players. Each
player had two pure strategies. We con-
verted each game to a polymatrix game
using the FTC reduction. We then ap-
plied Howson’s [1972] algorithm to the
converted game. We refer to this pro-
cedure as reduced-Howson.

Feige and Talgam-Cohen [2010] pro-
vide reductions using a multiplication
gadget that operates on binary rep-
resentations of probabilities, and an-
other, much simpler version that op-
erates on unary representations. Both
versions take an approximation preci-
sion as a parameter. At low precisions, the unary version uses fewer auxiliary
agents, so we used the unary version with precisions of both 4 and 8 unary digits
(equivalent to 2 or 3 binary digits, respectively). This is very imprecise! But even
these approximations turned out to be quite computationally expensive. Figure 1
compares the running times of reduced-Howson (with both approximation preci-
sions) to those of the GNM solver provided in Gambit [McKelvey et al. 2007].
The GNM solver completed for all but three of our 160 test games. The reduced-
Howson solvers with 4 and 8 digits of precision solved 40 and 30 games respectively;

ACM SIGecom Exchanges, Vol. 10, No. 1, March 2011, Pages 9–12



12 · James R. Wright et al.

the remaining games either timed out or ran out of memory. The run times for
reduced-Howson were orders of magnitude longer than those for GNM, illustrating
the performance impact of the exponential increase in agents described above.
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