Search: Advanced Topics

CPSC 322 Lecture 9

Learning Goals for this class

- Define/read/write/trace/debug different search algorithms
 - •With / Without cost
 - Informed / Uninformed
- Justify and describe methods for pruning cycles and repeated states (multiple paths)

Lecture Overview

- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

Branch-and-Bound Search

- Biggest advantages of A*
 - informed
 - optimal
 - optimally efficient
- What is the biggest problem with A*?
 - space
- Possible, preliminary solution:

Branch-and-Bound Search Algorithm

- Follow exactly the same search path as depthfirst search
 - treat the frontier as a stack: expand the mostrecently added path first

Once this strategy has found a solution....

What should it do next?

- A. Keep searching, looking for deeper solutions
- B. Stop and return that solution
- C. Keep searching, but only for shorter solutions
- D. None of the above
- E. Create a startup that it can sell to Google for billions of dollars

Branch-and-Bound Search Algorithm

Keep track of a lower bound and upper bound on solution cost at each path

- lower bound: LB(p) = f(p) = cost(p) + h(p)
- upper bound: UB = cost of the best solution found so far.

 \circ Initialize UB to ∞ (or some finite overestimate of the solution cost).

- When a path *p* is selected for expansion:
 - if LB(p) ≥UB, remove p from frontier without expanding it (pruning)
 - else expand *p*, adding all of its neighbors to the frontier

Branch-and-Bound Analysis

iclicker.

• Complete?

•

- yesnoit dependsOptimal?yesnoit depends
- Space complexity?
 - O(b^m) O(m^b) O(bm) O(b+m)
- Time complexity?

O(b^m) O(m^b) O(bm) O(b+m)

Branch-and-Bound Analysis

- Completeness: not in general, for the same reasons that DFS isn't complete
 - however, for many problems of interest there are no infinite paths and no cycles
 - also, you may be able to initialize the upper bound to some large finite number that is an overestimate of the solution cost
 - hence, for many problems B&B is complete
- Time complexity: **O(b^m)**
- Space complexity: **O(mb)** (like DFS!)
 - Big improvement over A*
- Optimality: YES, but not optimally efficient Slide 9

A note on B&B and Alspace

The Alspace search applet performs B&B slightly differently than is covered here in the lectures

- sometimes it expands a goal node even if that goal node shouldn't have been expanded next (according to how we've set up the algorithm)
- So be careful if using the applet to check your B&B tracethroughs

Lecture Overview

- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

Other A* Enhancements

- The main problem with A^{*} is that (in the worst case) it uses exponential space. Branch and bound was one way around this problem. Are there others?
- Iterative Deepening A* (IDA*)
- Memory-bounded A^{*}

(Heuristic) Iterative Deepening – IDA*

- **B & B** can still get stuck in infinite (extremely long) paths
- Search depth-first, but to a fixed depth/bound
 - depth is measured in **f-values**
 - if you don't find a solution, update the bound with the lowest f that passed the previous bound, and try again

Analysis of Iterative Deepening A* (IDA*)

• Complete and optimal:

 $O(b^m)$

yes no it depends
Space complexity:

 $O(m^b)$

Time complexity:

O(b^m) O(m^b) O(bm) O(b+m)

O(bm)

i⊳licker.

O(b+m)

(Heuristic) Iterative Deepening – IDA*

 Counter-intuitively, the asymptotic time complexity is not changed, even though we visit paths multiple times (*as we saw in previous slides on IDS*)

Memory-bounded A^{*}

- IDA* and B&B use a tiny amount of memory
- what if we have more memory available?
- keep as much of the frontier in memory as we can
- if we have to delete something:
 - delete the "worst" paths (with highest f-values.)
 - "back them up" to a common ancestor
 - Update the heuristic value of the ancestor if possible

Heuristic value by look ahead

What is the most accurate admissible heuristic value for n, given only this info?

A. 7
B. 5
C. 2
D. 8
E. 42

Search Summary Table

	complete?	optimal?	time O()	space O()
DFS	No	No	b ^m	mb
BFS	Yes	Yes*	b ^m	b ^m
IDS	Yes	Yes*	b ^m	mb
LCFS	Yes^	Yes^	b ^m	b ^m
BestFS	No	No	b ^m	b ^m
A *	Yes^	Yes^+	b ^m	b ^m
B&B	No	Yes+	b ^m	mb
IDA*	Yes^	Yes^+	b ^m	mb
MBA*	Yes^#	Yes^+#	b ^m	b ^m

* arc costs are equal # enough memory to store a solution

^ arc costs are positive

+ h(n) is admissible and non-negative

Lecture Overview

- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

Cycle Checking

You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.

• In general, the time is linear in path length.

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear problem into an exponential one!

Multiple-Path Pruning

- •You can prune a path to node *n* that you have already found a path to
- (if the new path is longer more costly).

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to *n* is shorter than the first path to *n*?

- You can remove all paths from the frontier that use the longer path. (as these can't be optimal)
- You can also change the initial segment of the paths on the frontier to use the shorter path

Lecture Overview

- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

Dynamic Programming

- Idea: for statically stored graphs, build a table of dist(n):
 - The actual distance of the shortest path from node n to a goal g
 - This is the perfect
 - dist(g) = 0
 - dist(z) = 1
 - dist(c) = 3
 - dist(b) = 4
 - dist(k) = ? 6 7 \infty
 - dist(h) = ? **6 7 ∞**
- How could we implement that?

Dynamic Programming

This can be built backwards from the goal:

$$dist(n) = \begin{cases} 0 & if \quad is _ goal(n), \\ \min_{\langle n,m \rangle \in A} (cost(n,m) + dist(m)) & otherwise \\ \frac{n}{g} & \frac{dist(n)}{0} \\ b & min[(2+0)] = 2 \\ 0 & c & min[(3+0)] = 3 \\ 1 & \frac{1}{a} & \frac{1}{c} & \frac{1}{3} & a & min[(3+3),(1+2)] = 3 \end{cases}$$

Dynamic Programming

This can be used locally to determine what to do. From each node \boldsymbol{n} go to its neighbor which minimizes

 $(\cot(n,m) + dist(m))$

dist(n) arc cost

But there are at least two main problems:

- You need enough space to store the graph.
- The dist function needs to be recomputed for each goal

Next class

- Start Constraint Satisfaction Problems (CSP)
 - Chp 4.

• Keep working on Assignment 1!