Search: Advanced Topics
CPSC 322 Lecture 9

Slide 1

Learning Goals for this class

» Define/read/write/trace/debug different search
algorithms

*With / Without cost

*Informed / Uninformed

* Justify and describe methods for pruning cycles
and repeated states (multiple paths)

Slide 2

L ecture Overview

 Branch & Bound

« A" tricks

* Pruning Cycles and Repeated States
* Dynamic Programming

Slide 3

Branch-and-Bound Search

* Biggest advantages of A*
 Informed
« optimal
« optimally efficient
« What is the biggest problem with A*?
* space
* Possible, preliminary solution:

Slide 4

Branch-and-Bound Search Algorithm

* Follow exactly the same search path as depth-
first search

* treat the frontier as a stack: expand the most-
recently added path first

Slide 5

Once this strategy has found a
solution....

What should it do next ?

Keep searching, looking for deeper solutions

Stop and return that solution

Keep searching, but only for shorter solutions
None of the above

Create a startup that it can sell to Google for

billions of dollars

Slide 6

moow2»

Branch-and-Bound Search Algorithm

Keep track of a lower bound and upper bound on
solution cost at each path
* lower bound: LB(p) = f(p) = cost(p) + h(p)

* upper bound: UB = cost of the best solution found so
far.

o Initialize UB to « (or some finite overestimate of the
solution cost).

When a path p is selected for expansion:

* if LB(p) =UB, remove p from frontier without expanding
It (pruning)
* else expand p, adding all of its neighbors to the frontier

Slide 7

Branch-and-Bound Analysis

-i»clicker@
Complete? -

yes no

it depends
Optimal? Jes i~ -
Space complexity?

o(b™ O(m?) O(bm) | O(b+m)
Time complexity?

o(b™ O(m?) O(bm) | O(b+m)

Branch-and-Bound Analysis

Completeness: not in general, for the same
reasons that DFS isn't complete

* however, for many problems of interest there are no
Infinite paths and no cycles

e also, you may be able to initialize the upper bound to
some large finite number that is an overestimate of the
solution cost

* hence, for many problems B&B is complete
Time complexity: O(b™)

Space complexity: O(mb) (like DFS!)

* Big improvement over A*

Optimality: YES, but not optimally efficient

Slide 9

A note on B&B and Alspace

The Alspace search applet performs B&B slightly
differently than is covered here in the lectures

* sometimes it expands a goal node even Iif that
goal node shouldn’t have been expanded next
(according to how we’ve set up the algorithm)

* S0 be careful if using the applet to check your
B&B tracethroughs

Slide 10

L ecture Overview

* Branch & Bound

« A"tricks

* Pruning Cycles and Repeated States
* Dynamic Programming

Slide 11

Other A" Enhancements

The main problem with A™ is that (in the worst case)
It uses exponential space. Branch and bound
was one way around this problem. Are there
others?

* lterative Deepening A* (IDA*)
* Memory-bounded A’

Slide 12

(Heuristic) Iterative Deepening — IDA*

B & B can still get stuck in infinite (extremely long)
paths
« Search depth-first, but to a fixed depth/bound

* depth is measured in f-values

* if you don't find a solution, update the bound with the
lowest f that passed the previous bound, and try again

Slide 13

Analysis of Iterative Deepening A* (IDA%)

« Complete and optimal:
yes no fitdepends

« Space complexity:

O™ O(m" O(bm) [O(b+m)
« Time complexity:

O™ O(m") O(bm) [O(b+m)

(Heuristic) Iterative Deepening — IDA*

« Counter-intuitively, the asymptotic time complexity
IS not changed, even though we visit paths

multiple times (as we saw in previous slides on
IDS)

Slide 15

Memory-bounded A"

IDA* and B&B use a tiny amount of memory
what if we have more memory available?
keep as much of the frontier in memory as we can

If we have to delete something:
* delete the “worst” paths (with highest f-values.)
* “back them up” to a common ancestor

* Update the heuristic value of the ancestor if
possible

Slide 16

Heuristic value by look ahead

0 ®© "
D o

What is the most accurate admissible

heuristic value for n, given only this info ?
A. 7

B.5

C. 2

D. 8

E. 42

Slide 17

MBA*: Compute New h(p)

P

h(p,) h(pn)Q

O

A New h(p) = min{miax[(cost(pi) - cost(p))+h(p,)], Old h(p)]
B New h(p) = max{miin[(cost(pi) - cost(p))+ h(p,)], Old h(p)]

C New h(p) = max{miax[(cost(pi) - cost(p))+ h(p;)], Old h(p)J

Slide 18

Search Summary Table

space O()
No No pbm mb

Yes Yes* ot ol

IDS Yes Yes* pbm mb
Yesh Yesh pbm bm
No No pm pm
Yesh YesH* pbm pbm

B&B No Yes* bm mb
Yesh Yes™t pm mb
YesN Yes/N bm bm

*arc costs are equal # enough memory to store a solution
A arc costs are positive

*h(n) is admissible and non-negative Slide 19

L ecture Overview

* Pruning Cycles and Repeated States

Slide 20

Cycle Checking

You can prune a path that ends in a node already on the path.
This pruning cannot remove an optimal solution.

* In general, the time is linear in path length.

Slide 21

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear
problem into an exponential one!

A

CPSC 322, Lecture 10 Slide 23

Multiple-Path Pruning

*You can prune a path to node n that you have
already found a path to

* (if the new path is longer — more costly).

Slide 24

Multiple-Path Pruning & Optimal Solutions

Problem: what If a subsequent path ton is
shorter than the first path ton ?

* You can remove all paths from the frontier that
use the longer path. (as these can’'t be optimal)

* You can also change the initial segment of the
paths on the frontier to use the shorter path

Slide 25

L ecture Overview

 Dynamic Programming

Slide 26

Dynamic Programming

 |dea: for statically stored graphs, build a table of dist(n):

The actual distance of the shortest path from node nto a

goal g
This is the perfect

f function cost
heuristic

dist(g) =0
dist(z) = 1
dist(c) = 3
dist(b) =4

disttk)=? § 7 o0

distthy=? 6 7 00

 How could we implement that?

Dynamic Programming

This can be built backwards from the goal:

_ (0 if is_goal(n),
AISt =1 min mmealCOSE(N, M) +dist(m)) otherwise
n dist(n)
g 0
b min[(2+0)] = 2
C min[(3+0)] = 3

a min[(3+3),(1+2)] = 3

Slide 28

Dynamic Programming

This can be used locally to determine what to do.
From each node n go to its neighbor which minimizes

(cost(n, m) + dist(m))

4
2 C‘D\Z 2
@ . ‘\‘
1 3 i @/’
3
3
But there are at least two main problems:

* You need enough space to store the graph.
* The dist function needs to be recomputed for each goal

dist(n)
arc cost

Slide 29

Next class

« Start Constraint Satisfaction Problems (CSP)
« Chp 4.

« Keep working on Assignment 1!

Slide 30

