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Search: Advanced Topics
CPSC 322 Lecture 9
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Learning Goals for this class

• Define/read/write/trace/debug different search 

algorithms  

•With / Without cost

•Informed / Uninformed

• Justify and describe methods for pruning cycles 

and repeated states (multiple paths)
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Lecture Overview

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming
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Branch-and-Bound Search

• Biggest advantages of A*

• informed

• optimal

• optimally efficient

• What is the biggest problem with A*?

• space

• Possible, preliminary solution:
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Branch-and-Bound Search Algorithm

• Follow exactly the same search path as depth-
first search

• treat the frontier as a stack: expand the most-
recently added path first
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Once this strategy has found a 

solution….

What should it do next ?

A. Keep searching, looking for deeper solutions

B. Stop and return that solution

C. Keep searching, but only for shorter solutions

D. None of the above

E. Create a startup that it can sell to Google for 

billions of dollars
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Branch-and-Bound Search Algorithm

Keep track of a lower bound and upper bound on 
solution cost at each path

• lower bound: LB(p) =  f(p) = cost(p) + h(p)

• upper bound: UB = cost of  the best solution found so 
far.

o Initialize UB to  (or some finite overestimate of the 
solution cost).

When a path p is selected for expansion:
• if LB(p) UB, remove p from frontier without expanding 

it (pruning)

• else expand p, adding all of its neighbors to the frontier



Branch-and-Bound Analysis

• Complete?

• Optimal? 

• Space complexity?

• Time complexity?

O(b+m)O(bm) O(bm)O(mb)

it dependsyes no

O(b+m)O(bm) O(bm)O(mb)

it dependsyes no
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Branch-and-Bound Analysis

• Completeness: not in general, for the same 

reasons that DFS isn't complete

• however, for many problems of interest there are no 

infinite paths and no cycles

• also, you may be able to initialize the upper bound to 

some large finite number that is an overestimate of the 

solution cost

• hence, for many problems B&B is complete

• Time complexity: O(bm)

• Space complexity: O(mb) (like DFS!)

• Big improvement over A*

• Optimality: YES, but not optimally efficient



A note on B&B and AIspace

The AIspace search applet performs B&B slightly 

differently than is covered here in the lectures

• sometimes it expands a goal node even if that

goal node shouldn’t have been expanded next 

(according to how we’ve set up the algorithm)

• So be careful if using the applet to check your

B&B tracethroughs
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Lecture Overview

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming
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Other A* Enhancements

The main problem with A* is that (in the worst case) 

it uses exponential space.  Branch and bound 

was one way around this problem.  Are there 

others?

• Iterative Deepening A* (IDA*)

• Memory-bounded A*
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(Heuristic) Iterative Deepening – IDA*

B & B can still get stuck in infinite (extremely long) 

paths

• Search depth-first, but to a fixed depth/bound

• depth is measured in f-values

• if you don't find a solution, update the bound with the 

lowest f that passed the previous bound, and try again



Analysis of Iterative Deepening A* (IDA*)

• Complete and optimal: 

• Space complexity:

• Time complexity:

O(b+m)O(bm) O(bm)O(mb)

it dependsyes no

O(b+m)O(bm) O(bm)O(mb)
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(Heuristic) Iterative Deepening – IDA*

• Counter-intuitively, the asymptotic time complexity 

is not changed, even though we visit paths 

multiple times (as we saw in previous slides on 

IDS)
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Memory-bounded A*

• IDA* and B&B use a tiny amount of memory

• what if we have more memory available?

• keep as much of the frontier in memory as we can

• if we have to delete something:

• delete the “worst” paths (with highest f-values.)

• “back them up” to a common ancestor

• Update the heuristic value of the ancestor if 

possible

p

pn
p1
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Heuristic value by look ahead

What is the most accurate admissible 

heuristic value for n, given only this info ?

A. 7

B. 5

C. 2

D. 8

E. 42

n

n1

n2

3

5

h(n1)=5

h(n2)=2
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MBA*: Compute New h(p)
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Search Summary Table
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complete? optimal? time O( ) space O( )

DFS No No bm mb

BFS Yes Yes* bm bm

IDS Yes Yes* bm mb

LCFS Yes^ Yes^ bm bm

BestFS No No bm bm

A* Yes^ Yes^+ bm bm

B&B No Yes+ bm mb

IDA* Yes^ Yes^+ bm mb

MBA* Yes^# Yes^+# bm bm

* arc costs are equal     # enough memory to store a solution

^ arc costs are positive
+ h(n) is admissible and non-negative
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Lecture Overview

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming
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Cycle Checking

You can prune a path that ends in a node already on the path. 

This pruning cannot remove an optimal solution.

• In general, the time is linear in path length.
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Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear 

problem into an exponential one!
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Multiple-Path Pruning

•You can prune a path to node n that you have 

already found a path to

• (if the new path is longer – more costly). 



Slide 25

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is 
shorter than the first path to n ?

• You can remove all paths from the frontier that 
use the longer path. (as these can’t be optimal)

• You can also change the initial segment of the 
paths on the frontier to use the shorter path
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Lecture Overview

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming



cost

Dynamic Programming

• Idea: for statically stored graphs, build a table of dist(n):

• The actual distance of the shortest path from node n to a 

goal g

• This is the perfect

• dist(g) = 0

• dist(z) = 1

• dist(c) = 3

• dist(b) = 4

• dist(k) = ?

• dist(h) = ?

• How could we implement that?

k c

b h

g

z

2

3

1

2

4

1

7 6

7 6

heuristic
f  function



0

min[(2+0)] = 2

min[(3+0)] = 3

min[(3+3),(1+2)] = 3
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This can be built backwards from the goal:

Dynamic Programming
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But there are at least two main problems:

• You need enough space to store the graph.

• The dist function needs to be recomputed for each goal

Dynamic Programming

This can be used locally to determine what to do.

From each node n go to its neighbor which minimizes

a

b

c

g
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Next class

• Start Constraint Satisfaction Problems (CSP) 

• Chp 4.

• Keep working on Assignment 1!


