
Slide 1

Heuristic Search:

BestFS and A*

CPSC 322 Lecture 8

Slide 2

Lecture Overview

• Recap / Finish Heuristic

Function

• Best First Search

• A*

Slide 3

Strategies for Creating Heuristics

• Calculate the solution cost for a relaxed version
of the problem
• eg. No walls, no movement constraints

• Use (optimal) search to find the solution cost for
a subproblem
• eg. 8-puzzle, but replace some numbers with blank

tiles

Slide 4

Admissible heuristic for Vacuum world?

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations

goal states

Slide 5

Admissible heuristic for Vacuum world?

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations

dirty rooms

optimal cost

2 32 3

1 21 2 1 11 1

0 00 0

Slide 6

Learning Goals for today’s class

• Define/read/write/trace/debug & Compare

different search algorithms

•With / Without cost

•Informed / Uninformed

• Formally prove A* optimality.

Slide 7

Lecture Overview

• Recap Heuristic Function

• Best First Search

• A*

Slide 8

Best-First Search

• Idea: select the path whose end is closest to a

goal according to the heuristic function.

• Best-First search selects a path on the frontier

with minimal h-value (for the end node).

• It treats the frontier as a priority queue ordered by h.

(similar to ______)

• This is a greedy approach: it always takes the path

which appears locally best

Slide 9

Analysis of Best-First Search

• Not Complete : low heuristic values in a cycle

can mean that the cycle gets followed forever.

• Optimal: no (why not?)

• Time complexity is O(bm)

• Space complexity is O(bm)

(sample: misleading heuristic)

(ex4 from course website)

Slide 10

Lecture Overview

• Recap Heuristic Function

• Best First Search

• A* Search Strategy

Slide 11

A*: “Mixing” LCFS and BestFS

A. Lowest cost(p) – h(p)

B. Highest cost(p) – h(p)

C. Highest cost(p) + h(p)

D. Lowest cost(p) + h(p)

g

S

cost(p)

h(p)

• LCFS uses the cost of a path p

• BestFS uses h(p) from the end of a path p

• Could we use both? If so, how?

Slide 12

• A* is a mix of:

• lowest-cost-first and

• best-first search

• A* treats the frontier as a priority queue ordered

by f(p)=

• It always selects the path on the frontier with the

lowest estimated total distance to a goal.

g

S

cost(p)

h(p)

A*: “Mixing” LCFS and BestFS

A*: Computing f-values

G

0

S

5

b

4

d

1

c

3

a

4

e

1
3

3

5

1 1

3
4

2

1

2

arc costs

h(n)

What is the f-value of S → a → b→ d?

A*: Computing f-values

G

0

S

5

b

4

d

1

c

3

a

4

e

1
3

3

5

1 1

3
4

2

1

2

What is the f-value of S → a → b→ d? (3+1+2) + 1 = 7

cost(<S,a,b,d>) h(d)

Trace through A* on this graph. Break ties alphabetically.

• What is the order of visited nodes?

• What is the solution path, and what is its cost?

A*: Sample problem (Group activity)

G

0

S

5

b

4

d

1

c

3

a

6

e

1

3

3

5

1
1

3

4

2

1

2

f(p) = cost(p) + h(p)

Slide 16

Analysis of A*

If the heuristic is completely uninformative (eg.

h=0 everywhere) and the edge costs are all the

same, A* is equivalent to….

A. BFS

B. LCFS

C. DFS

D. A and B

E. B and C

Slide 17

Analysis of A*

Let's assume that arc costs are strictly positive. The

heuristic could be completely uninformative, and

the edge costs could all be the same, meaning

that A* would do the same thing as ______. SO:

• Time complexity: O(bm)

• Space complexity: O(bm)

• Completeness: YES

• Optimality: ??

Slide 18

Optimality of A*

If A* returns a solution, that solution is guaranteed to

be optimal, as long as

• the branching factor is finite

• arc costs are strictly positive

• h(n) is an underestimate of the length of the shortest path

from n to a goal node (i.e. is admissible), and is non-

negative

Theorem

If A* selects a path p as the solution, then

p is an optimal (i.e., lowest-cost) path.

Proof of Optimality of A*

Suppose A* returns path p

Proof by contradiction:

Assume that there exists some other path p’ that is

a “better” path to a goal

Slide 19

p
S

g

p’

g

Proof of Optimality of A*

Consider the moment when p is chosen from the

frontier.

Some part of path p’ will also be on the frontier; let’s

call this partial path p”

(Why can we claim this?)

Slide 20

p
S

g

p’

g

p”

frontier

Because p was expanded before p”, f(p) ≤ f(p”); therefore,

cost(p) + h(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*

Slide 21

p
S

g

p’

g

p”

frontier

Because p ends at a goal, h(p)=

cost(p) + h(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*

Slide 22

p
S

g

p’

g

p”

frontier

Because p ends at a goal, h(p)=0

cost(p) + h(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*

Slide 23

p
S

g

p’

g

p”

frontier

Because p ends at a goal, h(p)=0

cost(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*

Slide 24

p
S

g

p’

g

p”

frontier

Proof of Optimality of A*

Because h is admissible, cost(p”) + h(p”) ≤ cost(p’)

cost(p) ≤ cost(p”) + h(p”)

Slide 25

p
S

g

p’

g

p”

frontier

Proof of Optimality of A*

Therefore, we see that

cost(p) ≤ cost(p’)

Which contradicts our assumption that p’ was a better path!

Slide 26

p
S

g

p’

g

p”

frontier

Slide 27

Optimal efficiency of A*

• In fact, we can prove something even stronger

about A*: in a sense (given the particular heuristic

that is available) no search algorithm could do

better!

• Optimal Efficiency: Among all optimal

algorithms that start from the same start node

and use the same heuristic h, A* expands the

minimal number of paths.
• Note: we’re ignoring possible issues with tie-breaking

Sample A* applications

• An Efficient A* Search Algorithm For

Statistical Machine Translation. 2001

• The Generalized A* Architecture. Journal of

Artificial Intelligence Research (2007)

• Machine Vision … Here we consider a new

compositional model for finding salient curves.

• Factored A*search for models over sequences

and trees International Conference on AI. 2003….

It starts saying… The primary challenge when using A*

search is to find heuristic functions that simultaneously are

admissible, close to actual completion costs, and efficient

to calculate… applied to NLP and BioInformatics

Slide 28

Sample A* applications (cont’)

Aker, A., Cohn, T., Gaizauskas, R.: Multi-

document summarization using A* search and

discriminative training. Proceedings of the

2010 Conference on Empirical Methods in Natural

Language Processing.. ACL (2010)

Slide 29

Sample A* applications (cont’)

EMNLP 2014 A* CCG Parsing with a Supertag-

factored Model M. Lewis, M. Steedman
We introduce a new CCG parsing model which is factored on lexical

category assignments. Parsing is then simply a deterministic search

for the most probable category sequence that supports a CCG

derivation. The parser is extremely simple, with a tiny feature set, no

POS tagger, and no statistical model of the derivation or

dependencies. Formulating the model in this way allows a highly

effective heuristic for A∗ parsing, which makes parsing extremely fast.

Compared to the standard C&C CCG parser, our model is more

accurate out-of-domain, is four times faster, has higher coverage, and

is greatly simplified. We also show that using our parser improves the

performance of a state-of-the-art question answering system

Follow up ACL 2017 (main NLP conference – in Vancouver!)

A* CCG Parsing with a Supertag and Dependency

Factored Model Masashi Yoshikawa, Hiroshi Noji, Yuji

Matsumoto
Slide 30

Search Summary Table

Slide 31

complete? optimal? time O() space O()

DFS No No bm mb

BFS Yes Yes* bm bm

IDS Yes Yes* bm mb

LCFS Yes Yes^ bm bm

BestFS No No bm bm

A* Yes Yes^+ bm bm

* Assuming arc costs are equal

^ Assuming arc costs are positive
+ Assuming h(n) is admissible and non-negative

Slide 32

Next class

Finish Search (finish Ch. 3)

• Branch-and-Bound

• A* enhancements

• Pruning

