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Heuristic Search: 

BestFS and A*

CPSC 322 Lecture 8
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Lecture Overview

• Recap / Finish Heuristic 

Function

• Best First Search

• A* 
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Strategies for Creating Heuristics

• Calculate the solution cost for a relaxed version 
of the problem
• eg. No walls, no movement constraints

• Use (optimal) search to find the solution cost for 
a subproblem
• eg. 8-puzzle, but replace some numbers with blank 

tiles
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Admissible heuristic for Vacuum world?

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations 

goal states
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Admissible heuristic for Vacuum world?

states? Where it is dirty and robot location

actions? Left, Right, Suck

Possible goal test? no dirt at all locations 

# dirty rooms

optimal cost

2 32 3

1 21 2 1 11 1

0 00 0
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Learning Goals for today’s class

• Define/read/write/trace/debug & Compare

different search algorithms  

•With / Without cost

•Informed / Uninformed

• Formally prove A* optimality.
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Lecture Overview

• Recap Heuristic Function

• Best First Search

• A* 
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Best-First Search

• Idea: select the path whose end is closest to a 

goal according to the heuristic function.

• Best-First search selects a path on the frontier 

with minimal h-value (for the end node).

• It treats the frontier as a priority queue ordered by h. 

(similar to ______)

• This is a greedy approach: it always takes the path 

which appears locally best
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Analysis of Best-First Search

• Not Complete : low heuristic values in a cycle 

can mean that the cycle gets followed forever.

• Optimal: no (why not?)

• Time complexity is O(bm)

• Space complexity is O(bm)

(sample: misleading heuristic)

(ex4 from course website)
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Lecture Overview

• Recap Heuristic Function

• Best First Search

• A* Search Strategy
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A*: “Mixing” LCFS and BestFS

A. Lowest      cost(p) – h(p)

B. Highest     cost(p) – h(p)

C. Highest     cost(p) + h(p) 

D. Lowest      cost(p) + h(p)

g

S

cost(p)

h(p)

• LCFS uses the cost of a path p

• BestFS uses h(p)  from the end of a path p

• Could we use both?  If so, how?
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• A* is a mix of:

• lowest-cost-first and 

• best-first search

• A* treats the frontier as a priority queue ordered 

by f(p)= 

• It always selects the path on the frontier with the 

lowest estimated total distance to a goal.

g

S

cost(p)

h(p)

A*: “Mixing” LCFS and BestFS



A*: Computing f-values
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What is the f-value of  S → a → b→ d?



A*: Computing f-values
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Trace through A* on this graph.  Break ties alphabetically.

• What is the order of visited nodes?

• What is the solution path, and what is its cost?

A*: Sample problem (Group activity)
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f(p) = cost(p) + h(p)
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Analysis of A*

If the heuristic is completely uninformative (eg. 

h=0 everywhere) and the edge costs are all the 

same, A* is equivalent to….

A. BFS

B. LCFS

C. DFS

D. A and B

E. B and C
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Analysis of A*

Let's assume that arc costs are strictly positive.  The 

heuristic could be completely uninformative, and 

the edge costs could all be the same, meaning 

that A* would do the same thing as ______.  SO:

• Time complexity: O(bm)

• Space complexity: O(bm)

• Completeness: YES

• Optimality: ??
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Optimality of A*

If A* returns a solution, that solution is guaranteed to 

be optimal, as long as

• the branching factor is finite

• arc costs are strictly positive

• h(n) is an underestimate of the length of the shortest path 

from n to a goal node (i.e. is admissible), and is non-

negative

Theorem

If A* selects a path p as the solution, then

p is an optimal (i.e., lowest-cost) path.



Proof of Optimality of A*

Suppose A* returns path p

Proof by contradiction:

Assume that there exists some other path p’ that is 

a “better” path to a goal

Slide 19

p
S

g

p’

g



Proof of Optimality of A*

Consider the moment when p is chosen from the 

frontier.

Some part of path p’ will also be on the frontier; let’s 

call this partial path p”

(Why can we claim this?)
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p
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Because p was expanded before p”, f(p) ≤ f(p”); therefore,

cost(p) + h(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*
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Because p ends at a goal, h(p)=

cost(p) + h(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*
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Because p ends at a goal, h(p)=0

cost(p) + h(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*
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Because p ends at a goal, h(p)=0

cost(p) ≤ cost(p”) + h(p”)

Proof of Optimality of A*
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Proof of Optimality of A*

Because h is admissible, cost(p”) + h(p”) ≤ cost(p’)

cost(p) ≤ cost(p”) + h(p”)
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Proof of Optimality of A*

Therefore, we see that

cost(p) ≤ cost(p’)

Which contradicts our assumption that p’ was a better path!
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Optimal efficiency of A*

• In fact, we can prove something even stronger 

about A*: in a sense (given the particular heuristic 

that is available) no search algorithm could do 

better!

• Optimal Efficiency: Among all optimal 

algorithms that start from the same start node

and use the same heuristic h, A* expands the 

minimal number of paths.
• Note: we’re ignoring possible issues with tie-breaking



Sample A* applications

• An Efficient A* Search Algorithm For 

Statistical Machine Translation. 2001

• The Generalized A* Architecture. Journal of 

Artificial Intelligence Research (2007) 

• Machine Vision … Here we consider a new 

compositional model for finding salient curves.

• Factored A*search for models over sequences 

and trees International Conference on AI. 2003…. 

It starts saying… The primary challenge when using A* 

search is to find heuristic functions that simultaneously are 

admissible, close to actual completion costs, and efficient 

to calculate…  applied to NLP and BioInformatics
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Sample A* applications (cont’)

Aker, A., Cohn, T., Gaizauskas, R.: Multi-

document summarization using A* search and 

discriminative training. Proceedings of the 

2010 Conference on Empirical Methods in Natural 

Language Processing.. ACL (2010)
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Sample A* applications (cont’)

EMNLP 2014 A* CCG Parsing with a Supertag-

factored Model M. Lewis, M. Steedman
We introduce a new CCG parsing model which is factored on lexical 

category assignments. Parsing is then simply a deterministic search 

for the most probable category sequence that supports a CCG 

derivation. The parser is extremely simple, with a tiny feature set, no 

POS tagger, and no statistical model of the derivation or 

dependencies. Formulating the model in this way allows a highly 

effective heuristic for A∗ parsing, which makes parsing extremely fast. 

Compared to the standard C&C CCG parser, our model is more 

accurate out-of-domain, is four times faster, has higher coverage, and 

is greatly simplified. We also show that using our parser improves the 

performance of a state-of-the-art question answering system

Follow up ACL 2017 (main NLP conference – in Vancouver!)

A* CCG Parsing with a Supertag and Dependency 

Factored Model Masashi Yoshikawa, Hiroshi Noji, Yuji 

Matsumoto 
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Search Summary Table
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complete? optimal? time O( ) space O( )

DFS No No bm mb

BFS Yes Yes* bm bm

IDS Yes Yes* bm mb

LCFS Yes Yes^ bm bm

BestFS No No bm bm

A* Yes Yes^+ bm bm

* Assuming arc costs are equal

^ Assuming arc costs are positive
+ Assuming h(n) is admissible and non-negative
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Next class

Finish Search   (finish Ch. 3)

• Branch-and-Bound

• A* enhancements

• Pruning


