
Slide 1

Uniformed Search (cont.)
CPSC 322 Lecture 6

Slide 2

Lecture Overview

• Recap DFS vs BFS

• Uninformed Iterative Deepening (IDS)

• Search with Costs

In what aspects do DFS and BFS differ when we look at the

generic graph search algorithm?

Slide 4

Recap: Graph Search Algorithm

Inputs: a graph, a start node no, Boolean procedure goal(n)

that tests if n is a goal node

frontier:= [<s>: s is a start node];

While frontier is not empty:

select and remove path <no,….,nk> from frontier;

If goal(nk)

return <no,….,nk>;

For every neighbor n of nk

add <no,….,nk, n> to frontier;

return NULL

When to use BFS vs. DFS?

5

• The search graph has cycles or is infinite

• We need the shortest path to a solution

• There are only solutions at great depth

• There are some solutions at shallow depth

• Memory is limited

BFS DFS

BFS DFS

BFS DFS

BFS DFS

BFS DFS

• Understand basic properties of search algorithms:

completeness, optimality, time and space

complexity of search algorithms.

Slide 6

Learning Goals for Search (up to today)

complete? optimal? time O() space O()

DFS False False bm mb

BFS True True* bm bm

IDS

LCFS

• Select the most appropriate search algorithms for

specific problems.

• BFS vs. DFS vs. IDS

• LCFS vs. BestFS

• A* vs. B&B vs. IDA* vs. MBA*

• Define/read/write/trace/debug different

search algorithms

• With / Without cost

• Informed / Uninformed
Slide 7

Learning Goals for Search (up to today)

in upcoming lectures

Slide 8

Lecture Overview

• Recap DFS vs BFS

• Uninformed Iterative Deepening (IDS)

• Search with Costs

Slide 9

Iterative Deepening (sec 3.6.3)

Can we achieve an acceptable (linear) space complexity

maintaining completeness and optimality?

Key Idea: let’s re-compute elements of the frontier rather

than saving them.

complete? optimal? time O() space O()

DFS False False bm mb

BFS True True* bm bm

IDS True True* bm mb

LCFS

Slide 10

Iterative Deepening in Essence

• Look with DFS for solutions at depth 1, then 2, then

3, etc.

• If a solution cannot be found at depth D, look for a

solution at depth D + 1.

• You need a depth-bounded depth-first searcher.

• Given a bound B you simply assume that paths of

length B cannot be expanded….

IDS

Slide 11

d=1

d=2

d=3

IDS

Slide 12

d=1

bound = 1

IDS

Slide 13

d=1

d=2

bound = 2

IDS

Slide 14

d=1

d=2

d=3

bound = 3

(Time) Complexity of Iterative Deepening

Complexity of solution at depth m with branching factor b
depth # paths at this depth # times each path

evaluated by the time

we reach depth m

total # of path

evaluations at this

depth

1 b m mb

2 b2 m-1 (m-1)b2

3 b3 m-2 (m-2)b3

4 b4 m-3 (m-3)b4

.

.

.

.

.

.

.

.

.

.

.

.

m bm 1 bm

sum to get complexity

Slide 17

(Time) Complexity of Iterative Deepening
Complexity of solution at depth m with branching factor b

Total # of paths generated

bm + 2 bm-1 + 3 bm-2 + … + mb =

bm (1 + 2 b-1 + 3 b-2 + … + m b1-m) ≤

)(
1

)(

2

1

1 mm

i

im bO
b

b
bibb =

−
=

=

−

b=2 4

b=3 2.25

b=4 1.77…

Slide 18

Lecture Overview

• Recap DFS vs BFS

• Uninformed Iterative Deepening (IDS)

• Search with Costs

Slide 19

Example: Romania

Slide 20

Search with Costs

Sometimes there are costs associated with arcs.

Definition (cost of a path)

The cost of a path is the sum of the costs of its arcs:

Definition (optimal algorithm)

A search algorithm is optimal if, when it returns a solution, it is

the one with minimal cost.

In this setting we often don't just want to find just any solution

• we usually want to find the solution that minimizes cost

()),cost(,,cost
1

10
=

−=
k

i

iik nnnn

Slide 21

Lowest-Cost-First Search (LCFS)
• At each stage, lowest-cost-first search selects a path on the

frontier with lowest cost.

• The frontier is a priority queue ordered by path cost

• We say “a path” because there may be ties

• Example of one step for LCFS:

• the frontier is [p2, 5, p3, 7 , p1, 11,]

• p2 is the lowest-cost path in the frontier

• “neighbors” of p2 are {p9, 10, p10, 15}

• What happens?

• p2 is selected, and tested for being a goal (its end).

• (if not a goal) Neighbors of p2 are inserted into the frontier

• Thus, the frontier is now [p3, 7 , p9, 10, p1, 11, p10, 15].

• _____ is selected next.

• When arc costs are equal LCFS is equivalent to..

A. DFS

B. BFS

C. IDS

D. None of the above

E. Click E to escape the Matrix

Slide 23

Analysis of Lowest-Cost Search

• Is LCFS complete?

• not in general: a cycle with zero or negative arc costs

could be followed forever.

• yes, as long as arc costs are strictly positive

• Is LCFS optimal?

• Not in general. Why not?

• Arc costs could be negative: a path that initially looks

high-cost could end up getting a “refund”.

• However, LCFS is optimal if arc costs are guaranteed

to be non-negative.

Slide 24

Analysis of Lowest-Cost Search

• What is the time complexity, if the maximum path length is

m and the maximum branching factor is b?

• The time complexity is O(bm): may need to examine

every node in the tree.

• Knowing costs doesn't help here.

• What is the space complexity?

• Space complexity is O(bm): in the case where arc costs

are equal (and > 0), LCFS behaves like BFS.

Search Summary Table

Slide 25

complete? optimal? time O() space O()

DFS False False bm mb

BFS True True* bm bm

IDS True True* bm mb

LCFS True** True** bm bm

* Assuming arc costs are equal

** Assuming arc costs are positive

Slide 26

Beyond uninformed search….

What information we could use to better select

paths from the frontier?

A. an estimate of the shortest distance from the last node on

the path to the goal

B. an estimate of the shortest distance from the start state to

the goal

C. an estimate of the cost of the current path

D. None of the above

E. Roll a d20 and hope your dungeon master is feeling nice

Slide 27

Next Class

• Heuristic Search (textbook 3.6)

• Best-First Search

• Combining LCFS and BestFS: A* (finish 3.6)

• A* Optimality

Finish Search (finish Ch. 3)

• Branch-and-Bound

• A* enhancements

• Non-heuristic Pruning

• Dynamic Programming

