
Slide 1

Uninformed Search
CPSC 322 Lecture 5

Slide 2

• Search is a key computational mechanism in

many AI agents

• We will study the basic principles of search on the

simple deterministic planning agent model

Generic search approach:

• define a search space graph,

• start from current state,

• incrementally explore paths from current state until goal

state is reached.

Recap

Generic Search Algorithm with three bugs

Input: a graph,

a start node,

Boolean procedure goal(n) that tests if n is a goal node.

frontier := { g: g is a goal node };

while frontier is not empty:

select and remove path n0, n1, …, nk from frontier;

if goal(nk)

return nk ;

for every neighbor n of nk

add n0, n1, …, nk to frontier;

return NULL

• The goal function defines what constitutes a solution

• The neighbor relationship defines the graph

• How paths are selected from the frontier defines the search strategy

• The order in which paths are added to the frontier is not specified

Generic Search Algorithm

Slide 4

Inputs: a graph, a start node no, Boolean procedure goal(n)

that tests if n is a goal node

frontier:= [<no >: no is a start node];

While frontier is not empty:

select and remove path <no,….,nk> from frontier;

If goal(nk)

return <no,….,nk>;

For every neighbor n of nk

add <no,….,nk, n> to frontier;

return NULL

• Determine basic properties of search algorithms:

completeness, optimality, time and space

complexity of search algorithms.

• Select the most appropriate search algorithms for

specific problems.

• BFS vs. DFS vs. IDS

• LCFS vs. BestFS

• A* vs. B&B vs. IDA* vs. MBA*

Slide 5

Learning Goals for this class

in upcoming lectures

Slide 6

Lecture Overview

• Recap

• Criteria to compare Search Strategies

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

Slide 7

Comparing Searching Algorithms: will it

find any solution? the best solution?

Def. (complete): A search algorithm is complete if,

whenever at least one solution exists, the algorithm

is guaranteed to find a solution within a finite

amount of time.

Def. (optimal): A search algorithm is optimal if, when

it returns a solution, it is the best solution (i.e. there

is no better solution)

Slide 8

Comparing Searching Algorithms:

Complexity

Def. (time complexity)

The time complexity of a search algorithm is an expression for

the worst-case amount of time it will take to run

• expressed in terms of the maximum path length m and the

maximum branching factor b.

Def. (space complexity) : The space complexity of a search

algorithm is an expression for the worst-case amount of

memory that the algorithm will use (number of paths)

• also expressed in terms of m and b.

Slide 9

Lecture Overview

• Recap

• Criteria to compare Search Strategies

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

Slide 10

Depth-first Search: DFS

• Depth-first search treats the frontier as a stack

• It always selects the path most recently added to

the frontier.

Example:

• the frontier is [p1, p2, …, pr]

• neighbors of last node of p1 (its end) are {n1, …, nk}

• What happens?
• p1 is selected, and its end is tested for being a goal. If it is not…

• New paths are created attaching {n1, …, nk} to p1

• These “replace” p1 at the beginning of the frontier.

• Thus, the frontier is now [(p1, n1), …, (p1, nk), p2, …, pr] .

• NOTE: p2 is only selected when all paths extending p1 have been

explored.

top of stack

Analysis of DFS

Def. : A search algorithm is complete if whenever there is at

least one solution, the algorithm is guaranteed to find it

within a finite amount of time.

Is DFS complete? B. No

• If there are cycles in the graph, DFS may get “stuck” in

one of them

• see this in AISpace by adding a cycle to “Simple Tree”

• e.g., click on “Create” tab, create a new edge from N7 to N1, go

back to “Solve” and see what happens

A. Yes

http://www.aispace.org/mainTools.shtml

Analysis of DFS

13

Is DFS optimal? A. Yes

Def.: A search algorithm is optimal if when it finds a solution, it

is the best one (e.g., the shortest)

goal nodes are red boxes

• It can “stumble” onto longer solution paths

before it gets to shorter ones.

• see this in AISpace by loading “Extended Tree Graph” and set N6 as a goal

• e.g., click on “Create” tab, right-click on N6 and select “set as a goal node”

B. No

http://www.aispace.org/mainTools.shtml

Analysis of DFS

14

• What is DFS’s time complexity, in terms of m and b ?

Def.: The time complexity of a search algorithm is

the worst-case amount of time it will take to run,

expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m)O(bm) O(bm)O(mb)
A B C D

• In the worst case, must examine

every node in the tree

Analysis of DFS

15

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use

(i.e., the maximal number of nodes on the frontier),

expressed in terms of

- maximum path length m

- maximum forward branching factor b.

O(b+m)O(bm) O(bm)O(mb)

• What is DFS’s space complexity, in terms of m and b ?

- for every node in the path currently explored,

DFS maintains a path to its unexplored siblings

in the search tree

- Alternative paths that DFS needs to explore

- The longest possible path is m, with a

maximum of b-1 alterative paths per node

Analysis of DFS

16

Def.: The space complexity of a search algorithm is the

worst-case amount of memory that the algorithm will use

(i.e., the maximum number of nodes on the frontier),

expressed in terms of

- maximum path length m

- maximum forward branching factor b.

See how this

works in

http://www.aispace.org/mainTools.shtml

Slide 17

Depth-first Search: Analysis of DFS Summary

• Is DFS complete? ______

• May not halt on graphs with cycles.

• However, DFS is complete for finite acyclic graphs.

• Is DFS optimal? ______

• It may stumble on a suboptimal solution first

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• Time complexity is _____: may need to examine every

node in the tree.

• What is the space complexity?

• Space complexity is _____: the longest possible path is

m, and for every node in that path we must maintain a

“fringe” of size b.

Slide 18

Depth-first Search: When it is appropriate?

A.There are cycles

B.Space is restricted (complex state

representation e.g., robotics)

C.There are shallow solutions

D.You care about optimality

E.You have to hand in your code in 5 minutes

Slide 19

Appropriate

• Space is restricted (complex state representation e.g.,

robotics)

• There are many solutions, perhaps with long path lengths,

particularly for the case in which all paths lead to a

solution

Depth-first Search: When it is appropriate?

Inappropriate

• Cycles

• There are shallow solutions

• If you care about optimality

Slide 20

Why bother studying/understanding DFS at

all?

• It is simple enough to allow you to learn the basic

aspects of searching (along with breadth-first

search)

• It is the basis for a number of more sophisticated /

useful search algorithms

Slide 21

Lecture Overview

• Recap

• Simple (Uninformed) Search

Strategies

• Depth First

• Breadth First

Slide 22

Breadth-first Search: BFS

• Breadth-first search treats the frontier as a queue

• it always selects one of the earliest elements added to the frontier.

Example:

• the frontier is [p1,p2, …, pr]

• neighbors of the last node of p1 are {n1, …, nk}

• What happens?

• p1 is selected, and its end tested for being a path to the goal.

• New paths are created attaching {n1, …, nk} to p1

• These follow pr at the end of the frontier.

• Thus, the frontier is now [p2, …, pr, (p1, n1), …, (p1, nk)].

• p2 is selected next.

front of queue end of queue

Slide 24

Breadth-first Search: Analysis of BFS

• Is BFS complete?

• Is BFS optimal?

Slide 25

Breadth-first Search: Analysis of BFS

• What is the time complexity, if the maximum path length is m

and the maximum branching factor is b ?

• What is the space complexity?

O(b+m)O(bm) O(bm)O(mb)

O(b+m)O(bm) O(bm)O(mb)

Slide 26

Analysis of Breadth-First Search

• Is BFS complete?

• Does not get stuck in cycles

• Is BFS optimal?

• guaranteed to find the path that involves the fewest arcs (why?)

• What is the time complexity, if the maximum path length is

m and the maximum branching factor is b?

• The time complexity is ______: may need to examine every node

in the tree

• What is the space complexity?

• Space complexity is _______: frontier contains all paths of the

relevant length (which is <= the shortest path length to a goal

node)

Slide 27

Using Breadth-first Search

• When is BFS appropriate?

• space is not a problem

• it's necessary to find the solution with the fewest arcs

• although all solutions may not be shallow, at least some

are

• When is BFS inappropriate?

• space is limited

• all solutions tend to be located deep in the tree

• eg. Sudoku solver

• the branching factor is very large

When to use BFS vs. DFS?

28

1. The search graph has cycles or is infinite

2. We need the shortest path to a solution

3. There are only solutions at great depth

4. There are some solutions at shallow depth

5. Memory is limited

BFS DFS

BFS DFS

BFS DFS

BFS DFS

BFS DFS

Slide 29

What have we done so far?

AI agents can be very complex and sophisticated

We started from a very simple one, the

deterministic, goal-driven agent for which: the

sequence of actions and their appropriate

ordering is the solution

GOAL: study search, a set of basic methods

underlying many intelligent agents

We have looked at two search strategies (DFS &

BFS):

• To understand key properties of a search strategy

• They represent the basis for more sophisticated

(heuristic / intelligent) search methods

Slide 30

Search Summary Table

complete? optimal? time O() space O()

DFS False False bm mb

BFS True True* bm bm

*Assuming arcs all have the same cost (we’ll get to this later)

Slide 31

Next “Class”

• Iterative Deepening

• Search with costs

(read textbook.: 3.7.3, 3.5.3)

To test your understanding of today’s class

• Work on Practice Exercise 3.B

• http://www.aispace.org/exercises.shtml

