Probability and Time: Hidden Markov Models (HMMs)

CPSC 322 Lecture 31

Lecture Overview

Recap

- Markov Models
 - Markov Chain
 - Hidden Markov Models

Stationary Markov Chain (SMC)

(s₂) S_3

A stationary Markov Chain : for all t >0

- $P(S_{t+1} | S_0, ..., S_t) =$ _____ and
- $P(S_{t+1} | S_t)$ is ______ for all *t*

We only need to specify _____ and ___

- Simple Model, easy to specify
- Often the natural model
- The network can extend indefinitely
- Variations of SMC are at the core of most Natural Language Processing (NLP) applications!

Learning Goals for today's class

You can:

- Specify the components of an Hidden Markov Model (HMM)
- Justify and apply HMMs to Robot Localization

Lecture Overview

Recap

- Markov Models
 - Markov Chain
 - Hidden Markov Models

How do we minimally extend Markov Chains?

• Maintaining the Markov and stationary assumptions?

A useful situation to model is the one in which:

- the reasoning system does not have access to the states
- but can make observations that give some information about the current state

Hidden Markov Model

• A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P(S_0)$ specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(O_t|S_t)$ specifies the sensor model

Example: Localization for "Pushed around" Robot

- Localization (where am I?) is a fundamental problem in robotics
- Suppose a robot is in a circular corridor with 16
 locations

5

6

7

8

9

10

11

12

13

14

15

• There are four doors at positions: 2, 4, 7, 11

3

4

• The Robot initially doesn't know where it is

2

0

- The Robot is **pushed around**. After a push it can stay in the same location, move left or right.
- The Robot has a Noisy sensor telling whether it is in front of a door

This scenario can be represented as...

 Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves one step left or right with equal probability

This scenario can be represented as...

• Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves left or right with equal probability

Slide 10

This scenario can be represented as...

Example of noisy sensor telling whether it is in front of a door.

- If it is in front of a door $P(O_t = T) = .8$
- If not in front of a door $P(O_t = T) = .1$

 $P(O_t \mid Loc_t)$ $Loc_t | P(O_t=T) |$ $P(O_t=F)$ 0 .9 .1 .9 1 .1 2 .2 .8 3 .1 .9 .2 4 .8

Useful inference in HMMs

• Localization: Robot starts at an unknown location and it is pushed around *t* times. It wants to determine where it is

$$P(Loc_t | o_1 \dots o_t)$$

 In general: compute the posterior distribution over the current state given all evidence to date P(S_t | O₀ ... O_t)

Example : Robot Localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings
- Three actions: *goRight, goLeft, Stay*
- This can be represented by an augmented HMM

Robot Localization Sensor and Dynamics Model

- Sample Sensor Model (assume same as for pushed around)
- Sample Stochastic Dynamics: $P(Loc_{t+1} | Action_t, Loc_t)$

$$\begin{split} &P(Loc_{t+1} = L \mid Action_t = goRight , Loc_t = L) = 0.1 \\ &P(Loc_{t+1} = L+1 \mid Action_t = goRight , Loc_t = L) = 0.8 \\ &P(Loc_{t+1} = L+2 \mid Action_t = goRight , Loc_t = L) = 0.074 \\ &P(Loc_{t+1} = L' \mid Action_t = goRight , Loc_t = L) = 0.002 \text{ for all other locations } L' \end{split}$$

- All location arithmetic is modulo 16
- The action *goLeft* works the same but to the left

Dynamics Model - More Details

• Sample Stochastic Dynamics: $P(Loc_{t+1} | Action, Loc_t)$ $P(Loc_{t+1} = L | Action_t = goRight, Loc_t = L) = 0.1$ $P(Loc_{t+1} = L+1 | Action_t = goRight, Loc_t = L) = 0.8$ $P(Loc_{t+1} = L+2 | Action_t = goRight, Loc_t = L) = 0.074$ $P(Loc_{t+1} = L' | Action_t = goRight, Loc_t = L) = 0.002$ for all other locations L'

goRight					goLeft							stay (deterministic)								
	0	1	2	3		15		0	1	2	3	 15		0	1	2	3		15	
0	.1	.8	.074	.002		.002	0	.1	.002	.002	.002	 .8	0	1						
1	.002	.1	.8	.074		.002	1	.8	.1	.002	.002	 .074	1		1			•••		
2	.002	.002	.1	.8		.002	2	.074	.8	.1		 .002	2			1		•••		
3	.002	.002	.002	.1		.002	3	.002	.074	.8	.1	 .002	3				1			
												 						•••		
15	.8	.074	.002	.002		.1	15	.002	.002	.002	.002	 .1	15					•••	1	

Robot Localization additional sensor

• Additional Light Sensor: there is light coming through an opening at location 10

Info from the two sensors is combined :"Sensor Fusion"

The Robot starts at an unknown location and must determine where it is

The model appears to be too ambiguous

- Sensors are too noisy
- Dynamics are too stochastic to infer anything

But inference actually works pretty well. You can check it at :

http://www.cs.ubc.ca/spider/poole/demos/localization
 /localization.html

You can use standard BNet inference. However you typically take advantage of the fact that time moves forward (not in 322)

Sample scenario to explore in demo

- Keep making observations without moving. What happens?
- Then keep moving without making observations.
 What happens?
- Assume you are at a certain position alternate moves and observations

HMMs have many other applications....

Natural Language Processing: e.g., Speech Recognition

Observations: DNA Sequences

ATCGGAA

For these problems the critical inference is:

find the most likely sequence of states given a sequence of observations (Viterbi algorithm, CPSC 422)

Markov Models

Next Class

- **One-off decisions**(*Textbook 9.2*)
- Single Stage Decision networks (9.2.1)