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Probability and Time:           

Hidden Markov Models (HMMs)

CPSC 322 Lecture 31
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Lecture Overview

• Recap 

• Markov Models

• Markov Chain

• Hidden Markov Models



Stationary Markov Chain (SMC)

A stationary Markov Chain : for all t >0

• P (St+1| S0,…,St) = ________   and 

• P (St +1| St ) is ________ for all t

We only need to specify ______ and __________ 

• Simple Model, easy to specify

• Often the natural model

• The network can extend indefinitely

• Variations of SMC are at the core of most Natural 

Language Processing (NLP) applications!
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Learning Goals for today’s class

You can:

• Specify the components of an Hidden Markov 

Model (HMM)

• Justify and apply HMMs to Robot Localization



Slide 5

Lecture Overview

• Recap

• Markov Models

• Markov Chain

• Hidden Markov Models



How do we minimally extend Markov Chains?

• Maintaining the Markov and stationary
assumptions?

A useful situation to model is the one in which: 

• the reasoning system does not have access to the 
states

• but can make observations that give some 
information about the current state
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Hidden Markov Model

• P (S0) specifies initial conditions

• P (St+1|St) specifies the dynamics

• P (Ot |St) specifies the sensor model

• A Hidden Markov Model (HMM) starts with a Markov 

chain, and adds a noisy observation about the state at 

each time step:

• |domain(S)| = k

• |domain(O)| = h

B. h x h

A. k

C . k x h

D. k x k
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Example: Localization for “Pushed around” 

Robot

• Localization (where am I?) is a fundamental problem 

in robotics

• Suppose a robot is in a circular corridor with 16 

locations

• There are four doors at positions: 2, 4, 7, 11

• The Robot initially doesn’t know where it is

• The Robot is pushed around. After a push it can stay in 

the same location, move left or right.

• The Robot has a Noisy sensor  telling whether it is in 

front of a door 



This scenario can be represented as…

• Example Stochastic Dynamics: when pushed, it stays in the 

same location p=0.2, moves one step left or right with equal 

probability

P(Loct + 1 | Loct)

Loct= 10 

B. 

A. 

C. 



Slide 10

This scenario can be represented as…

• Example Stochastic Dynamics: when pushed, it stays in the 

same location p=0.2, moves left or right with equal probability

P(Loct + 1 | Loct)

P(Loc1)

0 1 2 … 15

0 .2 .4 0 … .4

1 .4 .2 .4 … 0

2 0 .4 .2 … 0

… … … … … …

15 .4 0 0 .4 .2

0 1 2 … 15

1/16 1/16 1/16 … 1/16
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This scenario can be represented as…

Example of noisy sensor  telling 

whether it is in front of a door. 

• If it is in front of a door P(O t = T) = .8

• If not in front of a door P(O t = T) = .1

P(Ot | Loct)

Loct P(Ot=T) P(Ot=F)

0 .1 .9

1 .1 .9

2 .8 .2

3 .1 .9

4 .8 .2

… … …



Useful inference in HMMs

• Localization: Robot starts at an unknown 
location and it is pushed around t times. It 
wants to determine where it is

• In general: compute the posterior distribution 

over the current state given all evidence to date

P(St  | O0 … Ot)
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Example : Robot Localization
• Suppose a robot wants to determine its location based on its 

actions and its sensor readings

• Three actions: goRight, goLeft, Stay

• This can be represented by an augmented HMM

A0 A1 A2 A3
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Robot Localization Sensor and Dynamics 

Model

• Sample Sensor Model (assume same as for pushed around)

• Sample Stochastic Dynamics: P(Loct + 1 | Actiont , Loc t)

P(Loct + 1 = L | Actiont = goRight , Loct = L) = 0.1

P(Loct + 1 = L+1 | Actiont = goRight , Loct = L) = 0.8

P(Loct + 1 = L + 2 | Actiont = goRight , Loct = L) = 0.074

P(Loct + 1 = L’ | Actiont = goRight , Loct = L) = 0.002  for all other locations L’

• All location arithmetic is modulo 16

• The action goLeft works the same but to the left
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Dynamics Model - More Details

• Sample Stochastic Dynamics: P(Loct + 1 | Action, Loc t)

P(Loct + 1 = L | Action t = goRight , Loc t = L) = 0.1

P(Loct + 1 = L+1 | Action t = goRight , Loc t = L) = 0.8

P(Loct + 1 = L + 2 | Action t = goRight , Loc t = L) = 0.074

P(Loct + 1 = L’ | Action t = goRight , Loc t = L) = 0.002  for all other locations L’

0 1 2 3 … 15

0 .1 .8 .074 .002 … .002

1 .002 .1 .8 .074 … .002

2 .002 .002 .1 .8 … .002

3 .002 .002 .002 .1 … .002

… … … … … … …

15 .8 .074 .002 .002 … .1

goRight
0 1 2 3 … 15

0 .1 .002 .002 .002 … .8

1 .8 .1 .002 .002 … .074

2 .074 .8 .1 … .002

3 .002 .074 .8 .1 … .002

… … … … … … …

15 .002 .002 .002 .002 … .1

goLeft
0 1 2 3 … 15

0 1 …

1 1 …

2 1 …

3 1 …

… … … … … … …

15 … 1

stay (deterministic)
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Robot Localization additional sensor

• Additional Light Sensor: there is light coming through an 

opening at location 10

P (Lt  | Loct)

• Info from the two sensors is combined :“Sensor Fusion”
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The Robot starts at an unknown location and 

must determine where it is

The model appears to be too ambiguous

• Sensors are too noisy

• Dynamics are too stochastic to infer anything

http://www.cs.ubc.ca/spider/poole/demos/localization

/localization.html

But inference actually works pretty well. 

You can check it at :

You can use standard BNet inference. However you typically take 

advantage of the fact that time moves forward (not in 322)
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Sample scenario to explore in demo

• Keep making observations without moving. What 

happens?

• Then keep moving without making observations. 

What happens?

• Assume you are at a certain position alternate 

moves and observations

• ….
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HMMs have many other applications….

Natural Language Processing: e.g., Speech Recognition

• States: phoneme \ word

• Observations:      acoustic signal  \ phoneme

Bioinformatics: Gene Finding

• States: coding / non-coding region

• Observations: DNA Sequences

For these problems the critical inference is: 

find the most likely sequence of states given a sequence of 

observations (Viterbi algorithm, CPSC 422)

--YYY--

ATCGGAA
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Markov Models

Markov Chains

Hidden Markov 
Models

Markov Decision 
Processes (MDPs)

Simplest Possible Dynamic BNet

Add noisy Observations

Add Actions and 
Values (Rewards)

Partially Observable 
Markov Decision 

Processes (MDPs)
CPSC 422

Add noisy Observations

Add Actions and 
Values (Rewards)
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Next Class

• One-off decisions(Textbook 9.2)

• Single Stage Decision networks (  9.2.1)


