Probability and Time: Markov Models

CPSC 322 Lecture 30

Lecture Overview

Recap

- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

R&R systems we'll cover in this course

		Environment			
Problem		Deterministic	Stochastic		
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search			
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination		
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination		

Representation Reasoning Technique

Answering Query under Uncertainty

Learning Goals for today's class

You can:

- Specify a Markov Chain and compute the probability of a sequence of states
- Justify and apply Markov Chains to compute the probability of a Natural Language sentence

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Modelling static Environments

- So far we have used Bnets to perform inference in static environments
- For instance, the system keeps collecting evidence to diagnose the cause of a fault in a system (e.g., a car).
- The environment (values of the evidence, the true causes of the fault) does not change as I gather new evidence

The system's beliefs over possible causes

• What does change?

Modeling Evolving Environments

- Often we need to make inferences about evolving environments.
- Represent the state of the world at each specific point in time via a series of snapshots, or *time slices*,

Tutoring system tracing student knowledge and morale

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Simplest Possible DBN

• One random variable for each time slice: let's assume S_t represents the state at time *t*. with domain $\{v_1 \dots v_n\}$

$$(s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4)$$

- We assume that each random variable depends only on the previous one
- Thus $P(S_{t+1}|S_{\circ}\cdots S_{t}) = P(S_{t+1}|S_{t})$
- Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

Simplest Possible DBN (cont')

How many CPTs do we need to specify?

A. 1 B. 4 C. 2 D. 3 E. 42

- Stationary process assumption: the mechanism that regulates how state variables change overtime is stationary, that is it can be described by a single transition model
- $P(S_t|S_{t-1})$ is the same for all t

Slide 12

D.
$$P(S_t | S_{t+1})$$

A. $P(S_{t+1}|S_t)$ and $P(S_0)$ **B.** $P(S_0)$

A stationary Markov Chain : for all t >0

So now we only need to specify...

C. $P(S_{t+1}|S_t)$

• $P(S_{t+1}|S_t)$ is the same stationary assumption

•
$$P(S_{t+1} | S_0, ..., S_t) = P(S_{t+1} | S_t)$$
 Morkov assumption

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4$$

i⊧clicker.

Stationary Markov Chain (SMC) $(s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4)$

A stationary Markov Chain : for all t >0

- $P(S_{t+1} | S_0, ..., S_t) = P(S_{t+1} | S_t)$
- $P(S_{t+1}|S_t)$ is the same

- Markov assumption stationary assumption
- We only need to specify $P(S_0)$ and $P(S_{t+1}|S_t)$
- Simple Model, easy to specify
- Often the natural model
- The network can extend indefinitely
- Variations of SMC are at the core of many Natural Language Processing (NLP) applications! *PageRank*

A. Left only

C. Both

D. Neither

Stationary Markov-Chain: Example

Domain of variable S_i is {t , q, p, a, h, e} We only need to specify...

 S_t

Probability of initial state

 $P(S_0)$

Stochastic Transition Matrix

 $P(S_{t+1}|S_t)$

	t	q	р	а	h	е
t	0	.3	0	.3	.4	0
q	.4	0	.6	0	0	0
р	0	0	1	0	0	0
а	0	0	.4	.6	0	0
h	0	0	0	0	0	1
е	1	0	0	0	0	0

 S_{t+1}

Markov-Chain: Inference

Probability of a sequence of states $S_0 \dots S_T$ $P(S_0, \dots, S_T) = \mathbb{P}(S_0) \mathbb{P}(S_1 | S_0) \mathbb{P}(S_2 | S_1) \dots \mathbb{P}(S_2 | S_1) \dots \mathbb{P}(S_1 | S_2 | S_1) \dots \mathbb{P}(S_1 | S_1) \dots \mathbb{$

Example:

P(t,q,p) =

A. 0.42 B. 0 C. 0.24 D. 0.054 E. 0.108

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Key problems in NLP

- Word-sense disambiguation, *Translation*.....
- Probabilistic Parsing

Predict the next word

- Speech recognition
- Hand-writing recognition
- Augmentative communication for the disabled

$$P(w_1,..,w_n)$$
?

Impossible to estimate 😕

Part-of-speech tagging Summarization, Machine

$$= P(w_1 \dots w_n) / P(w_2 \dots w_{n-1})$$

$$(w_n | w_1 \dots w_{N-1})$$

$$P(W_1,...,W_n)?$$

Key problems in NLP

Google language repository (22 Sept. 2006) contained "only" 95,119,665,584 sentences

Most sentences will not appear or appear only once 🐵

What can we do?

Make a strong simplifying assumption! Assume sentences are generated by a Markov Chain

$$P(w_1,...,w_n) = P(w_1 | < S >) \prod_{k=2}^{n} P(w_k | w_{k-1})$$

P(The big red dog barks)= P(The|<S>) *

Estimates for Bigrams $P(w_{\lambda} | w_{\lambda-1})$ Silly language repository with only two sentences: "<S>The big red dog barks at the big pink dog" "<S>The big pink dog is much smaller" Count How many times in your documents you have "big red" and "big" C(big, red) $P(red \mid big) = \frac{P(big, red)}{P(big)} = \frac{N_{pairs}}{C(big)} = \frac{C(big, red)}{C(big)} = \frac{C(big, red)}{C(big)} = \frac{C(big, red)}{C(big)} = \frac{V(big, red)}{V(big)} = \frac{V(bi$ Nwords P(wi/wi-1) 105*105 matrix (P(wi/wi-2, w-2)) some models use two some models use two preceeding words 21

Bigrams in practice...

If you have 10⁵ words in your dictionary

 $P(w_i | w_{i-1})$ will contain how many numbers.. ??

 A. 2 *10⁵
 B. 10¹⁰

 C. 5 * 10⁵
 D.2 *10¹⁰
 E. 42

Markov Models

Next Class

- Finish Probability and Time: Hidden Markov Models (HMM) (TextBook 8.5.2)
- Start Decision networks (TextBook chpt 9)