AI Applications

CPSC322 Lecture 3

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<i>Logics</i> <mark>Search</mark>	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS <mark>Search</mark>	Decision Networks Variable Elimination

(Adversarial) Search: Checkers

Game playing was one of the first tasks undertaken in Al

- Arthur Samuel at IBM wrote programs to play checkers (1950s)
 - initially, they played at a strong amateur level
 - however, they used some (simple) machine learning techniques, and soon outperformed Samuel

Source: IBM Research

Chinook's program was declared the Man-Machine World Champion in checkers in 1994!

...and **completely solved** by a program in 2007!

(Adversarial) Search: Chess

In 1996 and 1997, Gary Kasparov, the world chess grandmaster played two tournaments against Deep Blue, a program written by researchers at IBM

Source: IBM Research

(Adversarial) Search: Chess

Deep Blue's Results in the first tournament:

- won 1 game, lost 3 and tied 1
 - \checkmark first time a reigning world champion lost to a computer

(Adversarial) Search: Chess

Deep Blue's Results in the second tournament:

• second tournament: won 3 games, lost 2, tied 1

- 30 CPUs + 480 chess processors
- Searched 126,000,000 nodes per sec
- Generated 30 billion positions per move reaching depth 14 routinely

Sample A* applications

- An Efficient A* Search Algorithm For Statistical Machine Translation. (2001)
- The Generalized A* Architecture. Journal of Artificial Intelligence Research (2007)
 - Machine Vision
- Factored A*search for models over sequences and trees. International Conference on AI (2003)
 - applied to NLP and BioInformatics
- Finding shortest paths on real road networks: the case for A*. International Journal of Geographical Information Science (2009)

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	Logics Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

CSPs: Crossword Puzzles

Daily Puzzles

370 puzzles from 7 sources.

Summary statistics:

- 95.3% words correct (miss three or four words per puzzle)
- 98.1% letters correct
- 46.2% puzzles completely correct

Source: Michael Littman

Slide 10

CSPs: Radio link frequencies

Assigning frequencies to a set of radio links defined between pairs of sites in order **to avoid interference**.

Constraints on frequency depend on **position of the links** and on **physical environment**.

Source: INRIA

Example: RNA secondary structure design

RNA strand made up of four bases: cytosine (C), guanine (G), adenine (A), and uracil (U) 2D/3D structure RNA strand folds into is important for its function

Predicting structure for a strand is "easy": O(n³)

But what if we want a strand that folds into a certain structure?

One of the best algorithms to date: Local search algorithm RNA-SSD developed at UBC [Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

Constraint optimization problems

Optimization under constraints (similar to CSP) E.g. mixed integer programming (software: IBM CPLEX)

- Linear program: max $c^T x$ such that $Ax \le b$
- Mixed integer program: additional constraints, $x_i \in \mathbb{Z}$ (integers)
- NP-hard, widely used in operations research and in industry

Transportation/Logistics: SNCF, United Airlines UPS, United States Postal Service, ...

Supply chain management software: Oracle, SAP,...

Production planning and optimization: Airbus, Dell, Porsche, Thyssen Krupp, Toyota, Nissan, ...

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<mark>Logics</mark> Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

CSP/logic: formal verification

Hardware verification (e.g., IBM) Software verification (small to medium programs)

Much of recent progress based on: Encodings into propositional satisfiability (SAT)

Logic: CycSecure

"scans a computer network to build a formal representation of the network, based on Cyc's pre-existing ontology of networking, security, and computing concepts:

This formal representation also allows users to interact directly with the model of the network, allowing testing of proposed changes."

- Knowledge
 Representation
- Web Mining & Semantic Web !

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

Planning & Scheduling: Logistics

Dynamic Analysis and Replanning Tool (Cross & Walker)

- logistics planning and scheduling for military transport
- used in the 1991 Gulf War by the US
- problems had 50,000 entities (e.g., vehicles); different starting points and destinations

Planning: Spacecraft Control

NASA: Deep Space One spacecraft operated autonomously for two days in May, 1999:

- determined its precise position using stars and asteriods
 - ✓ despite a malfunctioning ultraviolet detector
- planned the necessary course adjustment
- fired the ion propulsion system to make this adjustment

For another space application see the Spike system for the Hubble telescope

Source:

Slide 19

Hours	8 12 16 20 24 28 37 36 40 44 4 33h12m Sbs
Planner	Idle Idle Filde Idle
Attitude	RAX S C C C Constant Poil Constant Poin 🛛 🗰 Constant P C C
Camera Mode	RAX 8 Stuck Of Plan Step Started On
Camera Actions	RAX S Idle I Start time: 33:12:56 I I It Idle
Main Engine	RAX S Standby Standby Stand Standby Standby Standby
Navigation	RAX S Idle Idle

Source: cs221 stanford

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

Reasoning under Uncertainty: Diagnosis

Reasoning Under Uncertainty

Texture classification using Support Vector Machines

• foliage, building, sky, water

Source: *Mike Cora, UBC*

Reasoning Under Uncertainty

E.g. motion tracking: track a hand and estimate activity:

• drawing, erasing/shading, other

Source: *Kevin Murphy,* Slide 24 *UBC*

Watson : analyzes natural language questions and content well enough and fast enough to compete and win against champion players at <u>Jeopardy!</u>
 "This Drug has been shown to relieve the symptoms of ADD with relatively few side effects."

Statistical Machine Translation

Source: cs221 Stanford

Recommender Systems

Suggesting new content/products based on what you have already viewed/consumed

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

Decision Network in Finance for venture capital decision

Slide 29

Planning Under Uncertainty

Learning and Using POMDP models of Patient-Caregiver Interactions During Activities of Daily Living

Goal: Help Older adults living with cognitive disabilities (such as Alzheimer's) when they:

- forget the proper sequence of tasks that need to be completed
- they lose track of the steps that they have already completed.

Source: Jesse Hoey UofT 2007 Slide 30

Military applications: ethical issues

- Robot soldiers
 - Existing: robot dog carrying heavy materials for soldiers in the field
 - The technology is there
- Unmanned airplanes
- Missile tracking
- Surveillance

Decision Theory: Decision Support Systems

E.g., Computational Sustainability

Interdisciplinary field, AI is a key component

- Models and methods for decision making concerning the management and allocation of resources
- to solve most challenging problems related to sustainability
- Often constraint optimization problems. E.g.
 - Energy: when are where to produce green energy most economically?
 - Which parcels of land to purchase to protect endangered species?
 - Urban planning: how to use budget for best development in 30 years?

Source: http://www.computational-sustainability.org/

Dimensions of Representational Complexity in CPSC322

We've already discussed:

- Deterministic versus stochastic domains
- Static versus sequential domains
- Some other important dimensions of complexity:
- Explicit state or propositions or relations
- Flat or hierarchical
- Knowledge given versus knowledge learned from experience
- Goals versus complex preferences
- Single-agent vs. multi-agent

Multiagent Systems: Poker

Search Space: 1.2 quintillion nodes

"In full 10-player games Poki is **better than a typical low-limit casino player** and wins consistently; however, **not as good as most experts** New programs being developed for the 2-player game are quite a bit better, and we believe they will very soon surpass all human players"

Source: The University of Alberta GAMES Group

Multiagent Systems: Robot Soccer

Source: *RoboCup web site*

Extremely complex

- Stochastic
- Sequence of actions
- Multiagent

robotic soccer competition was proposed by LCI (UBC) in 1992 (which became *Robocup* in 1997).