Reasoning Under Uncertainty: Bnet Inference

(Variable elimination)

CPSC 322 Lecture 28

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Intro

Learning Goals for previous class

You can:

 In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.

Define and use Noisy-OR distributions.
 Explain assumptions and benefit.

 Implement and use a naïve Bayesian classifier. Explain assumptions and benefit.

Bnets: Compact Representations

n Boolean variables, k max. number of parents

Learning Goals for today's class

You can:

- Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.
- Carry out variable elimination by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Bnet Inference

• **Our goal:** compute probabilities of variables in a belief network

What is the posterior distribution over **one** or more variables, conditioned on one or more observed variables?

Slide 8

Bnet Inference: General

- Suppose the variables of the belief network are X_1, \ldots, X_n .
- Z is the **query variable**
- $Y_1 = v_1, ..., Y_j = v_j$ are the **observed variables** (with their values)
- Z_1, \ldots, Z_k are the remaining variables
- What we want to compute: $P(Z | Y_1 = v_1 \dots Y_j = v_j)$

Example:

P(L | S = t, R = f)

Slide 9

What do we need to compute?

Remember conditioning and marginalization...

$$P(L | S = t, R = f) = \frac{P(L, S = t, R = f)}{P(S = t, R = f)}$$

L	S	R	P(L, S=t, R=f)	
t	t	f	.3	
f	t	f	.2	

L	S	R	<i>P(L S=t, R=f)</i>
t	t	f	.6
f	t	f	.4

In general.....

$$P(Z \mid Y_1 = v_1 \dots Y_j = v_j) = \frac{P(Z, Y_1 = v_1 \dots Y_j = v_j)}{P(Y_1 = v_1 \dots Y_j = v_j)} = \frac{P(Z, Y_1 = v_1 \dots Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1 \dots Y_j = v_j)}$$

• We only need to **compute the numerator** and then **normalize**

This can be framed in terms of operations
 between factors (that satisfy the semantics of probability)

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Factors

A **factor** is a representation of a function from a tuple of random variables into a number.

• We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$

A factor can denote:

- One distribution
- One *partial* distribution
- Several distributions
- Several *partial* distributions over the given tuple of variables

Factor: Examples

 $P(X_1, X_2)$ is a factor $f(X_1, X_2)$

Distribution

X ₁	X ₂	f(X ₁ , X ₂)
Т	Т	.12
Т	F	.08
F	Т	.08
F	F	.72

 $P(X_1, X_2 = F)$ is a factor $f(X_1)_{X_2=F}$

Partial distribution

X ₁	X ₂	$f(X_1)_{X2=F}$
Т	F	.08
F	F	.72

Factors: More Examples

- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
 - Distribution • e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$
 - Partial distribution • e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)_{X_3 = V_3}$
 - iclicker. Set of Distributions e.g., P(X | Z,Y) is a factor Х Y Ζ val f(X,Z,Y)Set of partial t 0.1 t t Distributions e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor t t f 0.9 $f(X_1, X_2)_{X_3 = V_3}$ f 0.2 t t f f 0.8 f(X,Y,Z) ?? t B. P(Y|Z,X)A. P(X,Y,Z)f t t 0.4 f f 0.6 t C. P(Z|X,Y)D. None of the above f f 0.3 t E. I want ice cream

f

f

f

0.7

Operations on factors

- Assigning values to variables
- Summing out variables
- Multiplying factors

Manipulating Factors

We can make new factors out of an existing factor

• Our first operation: we can assign some or all of the variables of a factor.

What is the result of assigning X=t?

f(X=t,Y,Z)Or $f(X, Y, Z)_{X=t}$ Or f(Y,Z)

• Assignment reduces the factor dimension (*i.e.* # of variables in the factor) Slide 17

More examples of assignment

	Х	Y	Z	val				
f(X,Y,Z):	t	t	t	0.1	f(X=t,Y,Z):	Y	Z	、
	t	t	f	0.9		t	t	(
	t	f	t	0.2		t	f	
	t	f	f	0.8		f	t	
	f	t	t	0.4		f	f	
	f	t	f	0.6		-		
	f	f	t	0.3				
	f	f	f	0.7				

Summing out a variable example

Our second operation: we can **sum out** a variable, say X_1 with domain $\{v_1, ..., v_k\}$, from factor $f(X_1, ..., X_j)$, resulting in a factor on X_2 , ..., X_j defined by:

	В	А	С	val					
	t	t	t	0.03		А	C C	val	
	t	t	f	0.07	-	+	+	0.57	
	f	t	t	0.54		L.	L	0.57	
	f	t	f	0.36	$\sum_{B} f_3(A,B,C)$:	t	f	0.43	
f ₃ (A,B,C):	t	f	t	0.06		f	t		
	t	f	f	0.14		f	f		
	f	f	t	0.48			l	I	
	f	f	f	0.32					
$\sum_{X_1} f \bigg) (X_2 \ldots$	X_{j}	=f($X_{1} =$	$= v_1, X_2$	$_2 \cdots X_j) + \ldots + f$	(X_1)	$= v_k,$	$X_2 \dots$ Slide 19	X_j

Multiplying factors

Our third operation: factors can be *multiplied* together.

	А	В	Val					
	t	t	0.1			1		
f ₁ (A,B):	t	f	0.9		А	В	С	val
	f	t	0.2		t	t	t	
	,	c			t	t	f	
	Ť	f	0.8		t	f	t	
				f ₁ (A,B) x f ₂ (B,C):	t	f	f	
	В	С	Val		f	t	t	
	t	t	0.3		f	t	f	
f ₂ (B,C):	t	f	0.7		f	f	t	
	f	t	0.6		f	f	f	
	f	f	0.4				ç	Slide 20

Multiplying factors

Our third operation: factors can be *multiplied* together.

	A	В	Val		Δ	B		val
	t	t	0.1		<u></u> t	t	t	Vai
f ₁ (A,B):	t	f	0.9		t	t	f	
	f	t	0.2		t	f	t	??
: ali ala a n	f	f	0.8	$f_1(A,B) \times f_2(B,C)$:	t	f	f	
I-CIICKer.		l			f	t	t	
	В	C	Val		f	t	f	
	t	+	03		f	f	t	
	ι		0.5		f	f	f	
f ₂ (B,C):	t	f	0.7			-		
	f	t	0.6	A. 0.32			Β.	0.54
	f	f	0.4	C. 0.24			D.	0.06
						_		
			E. I ju	st feel like clicking	E too	day	. S	lide 21

Multiplying factors: Formal

•The **product** of factor $f_1(A, B)$ and $f_2(B, C)$, where B is the variable in common, is the factor $(f_1 \times f_2)(A, B, C)$ defined by:

$$f_1(A,B)f_2(B,C) = (f_1 \times f_2)(A,B,C)$$

Note1: it's defined on all *A*, *B*, *C* triples, obtained by multiplying together the appropriate pair of entries from f_1 and f_2 .

Note2: *A*, *B*, *C* can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
 - $f(X_1, ..., X_j)$.
- We have defined three operations on factors:
 - 1.Assigning one or more variables
 - $f(X_1 = v_1, X_2, ..., X_j)$ is a factor on $X_2, ..., X_j$, also written as $f(X_1, ..., X_j)_{X_1 = v_1}$
 - **2.**Summing out variables is a factor on X_2, \ldots, X_j
 - $\sum_{X_1} f(X_1, X_2, ..., X_j) = f(X_1 = v_1, X_2, ..., X_j) + ... + f(X_1 = v_k, X_2, ..., X_j)$

3.Multiplying factors

• $f_1(A, B) f_2(B, C) = (f_1 \times f_2)(A, B, C)$

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Intro to Variable Elimination

Variable Elimination Intro

- Suppose the variables of the belief network are X_1, \ldots, X_n .
- Z is the query variable
- $Y_1 = v_1, ..., Y_j = v_j$ are the observed variables (with their values)
- Z_1, \ldots, Z_k are the remaining variables
- What we want to compute: $P(Z | Y_1 = v_1 \dots Y_j = v_j)$
- We showed before that what we actually need to compute is

$$P(Z, Y_1 = v_1 \dots Y_j = v_j)$$

This can be computed in terms of **operations between factors** (that satisfy the semantics of probability)

Variable Elimination Intro

• If we express the joint distribution as a single factor,

 $f(Z, Y_1, ..., Y_j, Z_1, ..., Z_j)$

We can compute P(Z,Y₁=v₁, ..., Y_j=v_j) by
•assigning Y₁=v₁, ..., Y_j=v_j
•summing out the variables Z₁, ..., Z_k

$$P(Z, Y_1 = v_1, \dots, Y_j = v_j) = \sum_{Z_k} \dots \sum_{Z_1} f(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)_{Y_1 = v_1, \dots, Y_j = v_j}$$

Are we happy? NO, because the joint is too big to do this for large problems Slide 26

Next Class

Variable Elimination

- The algorithm
- An example

Temporal models