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Reasoning Under Uncertainty: 

Belief Networks

CPSC 322 Lecture 26



R&R systems we’ll cover in this course
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Search
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STRIPS

Search
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Key points Recap

We model the environment as a set of ….

Why is the joint distribution not an adequate 
representation ? 
- “Representation, reasoning and learning” are 

exponential in …..

Solution: Exploit marginal & conditional
independence 

But how does independence allow us to simplify the 
joint?
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Realistic BNet: Liver Diagnosis
Source: Onisko et al., 1999

~60 binary variables: how large is the JPD?
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Learning Goals for today’s class

You can:

Build a Belief Network for a simple domain

Classify the types of inference

Compute the representational saving in terms 

on number of probabilities required
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Lecture Overview

• Belief Networks

• Build sample BN

• Intro Inference, Compactness, Semantics

• More Examples
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Belief Nets: Burglary Example
There might be a Burglar in my house

The anti-burglar Alarm in my house may go off

I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when I 
am at work

Minor Earthquakes may occur and sometimes the set off 
the alarm. 

Variables: B, A, J, M, E

Joint has                 entries/probs
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Belief Nets: Simplify the joint

• Typically order vars to reflect causal knowledge 
(i.e., causes before effects)
• A burglar (B) can set the alarm (A) off

• An earthquake (E) can set the alarm (A) off

• The alarm can cause Mary to call (M)

• The alarm can cause John to call (J)

P(B, E, A, M, J)

• Apply Chain Rule

P(B) P(E|B) P(A|B,E) P(M|A,E,B)P(J|M,A,E,B)

• Simplify according to marginal & conditional
independence

P(B) P(E) P(A|B,E) P(M|A) P(J|A)

B E

A

M J
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Belief Nets: Structure + Probs

• Express remaining dependencies as a network
• Each var is a node

• For each var, the conditioning vars are its parents

• Associate to each node corresponding conditional 
probabilities

• Directed Acyclic Graph (DAG) 
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Burglary: complete BN

B E P(A=T | B,E) P(A=F | B,E)

T T .95 .05

T F .94 .06

F T .29 .71

F F .001 .999

P(B=T) P(B=F )

.001 .999

P(E=T) P(E=F )

.002 .998

A P(J=T | A) P(J=F | A)

T .90 .10

F .05 .95

A P(M=T | A) P(M=F | A)

T .70 .30

F .01 .99
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Lecture Overview

• Belief Networks

• Build sample BN

• Intro Inference, Compactness, 

Semantics

• More Examples
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Burglary  Example: Bnets inference

(Ex1) I'm at work, 

• neighbor John calls, 

• neighbor Mary doesn't call. 

• No news of any earthquakes. 

• Is there a burglar?

(Ex2) I'm at work, 

• Receive message that neighbor John called , 

• News of minor earthquakes. 

• Is there a burglar?

Our BN can answer any probabilistic query that 
can be answered by processing the joint!

Set decimal places to monitor to 5
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Burglary  Example: Bnets inference

(Ex1) I'm at work, 

• neighbor John calls, 

• neighbor Mary doesn't call. 

• No news of any earthquakes. 

• Is there a burglar?

Our BN can answer any probabilistic query that 
can be answered by processing the joint!

The probability of Burglar will:

A. Go down

B. Remain the same

C. Go up
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Bayesian Networks – Inference Types

Diagnostic

Burglary

Alarm

JohnCalls

Burglary

Earthquake

Alarm

Intercausal

JohnCalls

Predictive

Burglary

Alarm

Mixed

Earthquake

Alarm

JohnCalls
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BNnets: Compactness

B E P(A=T | B,E) P(A=F | B,E)

T T .95 .05

T F .94 .06

F T .29 .71

F F .001 .999

P(B=T) P(B=F )

.001 .999

P(E=T) P(E=F )

.002 .998

A P(J=T | A) P(J=F | A)

T .90 .10

F .05 .95

A P(M=T | A) P(M=F | A)

T .70 .30

F .01 .99

How many values do we have to 

store with this BNet?

A. 5   B. 10    C. 16    D. 20   E.  42
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BNets: Compactness

A Conditional Probability Table (CPT) for boolean Xi with k
boolean parents has 2k rows for the combinations of parent 
values

Each row requires one number pi for Xi = true
(the number for  Xi = false is just 1-pi )

If each variable has no more than k parents, the complete 
network requires O( n2k ) numbers

For k<< n, this is a substantial improvement, 

• the numbers required  grow linearly with n, vs. O(2n) for the 
full joint distribution



P (X1, … ,Xn) = πi P (Xi | Parents(Xi))
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of 
conditional distributions:

P (X1, … ,Xn) = πi P(Xi | X1, … ,Xi-1) (chain rule)

Simplify according to marginal/conditional independence

n

• Express remaining dependencies as a network
• Each var is a node

• For each var, the conditioning vars are its parents

• Associate to each node corresponding conditional 
probabilities
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BNets: Construction General 

Semantics (cont’)
n

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

• Every node is independent from its non-descendants 
given it parents

(CPSC 422) A node is independent from the rest of the 

network given its Markov Blanket
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Lecture Overview

• Belief Networks

• Build sample BN

• Intro Inference, Compactness, Semantics

• More Examples
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Other Examples: Fire Diagnosis

(textbook 8.3.2)

Suppose you want to diagnose 

whether there is a fire in a 

building

• you receive a “noisy” report
about whether everyone is 
leaving the building.

• if everyone is  leaving, this may 
have been caused by a fire
alarm.

• if there is a fire alarm, it may 
have been caused by a fire or 
by tampering

• if there is a fire, there may be 
smoke raising from the bldg.

In-class activity: 

build a Bayesian 

network for this 

environment and 

state what 

probability tables 

are needed
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Other Examples (cont’)

• Make sure you explore and understand the 

Fire Diagnosis example (we’ll expand on it to 

study Decision Networks)

• Electrical Circuit example (textbook ex 6.11, 

1st ed.)

• Patient’s wheezing and coughing example 

(ex. 6.14, 1st ed.)

• Other examples on 
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Realistic BNet: Liver Diagnosis
Source: Onisko et al., 1999

A ~103

B ~1024

C ~104

D ~1060

E 42

Assuming there are ~60 nodes in this Bnet with max 

number of parents =4; and assuming all nodes are 

binary, ~ 1018 numbers are required for the JPD.  How 

many are required for the Bnet?
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Belief network summary

• A belief network is a directed acyclic graph (DAG) 
that effectively expresses  independence 
assertions among random variables. 

• The parents of a node X are those variables on 
which X directly depends.

• Consideration of causal dependencies among 
variables typically help in constructing a Bnet
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Next Class

Bayesian Networks Representation

• Additional Dependencies encoded by BNets

• More compact representations for CPT

• Very simple but extremely useful BNet (Naïve

Bayes Classifier)


