Reasoning Under Uncertainty:
Belief Networks
CPSC 322 Lecture 26
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R&R systems we’ll cover in this course

Environment

Problem Deterministic Stochastic
Variables + Constraints
Constraint Search
_ Satisfaction Arc Consistency
Static Local Search
Quer Logics Bayesian (Belief) Networks
y Search Variable Elimination
Sequential Plannin STRIPS Decision Networks
9 9 Search Variable Elimination
Representation

Reasoning Technique
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Key points Recap

We model the environment as a set of ....

Why is the joint distribution not an adequate
representation ?

- “Representation, reasoning and learning” are
exponential in .....

Solution: Exploit marginal & conditional
Independence

PixIN)=F)  TxIv2)="P(x| 2)

But how does independence allow us to simplify the
joint?
J CHAIN RULE |
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999
~60 binary variables: how large is the JPD?
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Learning Goals for today’s class

YOou can:
Build a Belief Network for a simple domain
Classify the types of inference

Compute the representational saving in terms
on number of probabilities required
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| ecture Overview

 Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Belief Nets: Burglary Example

There might be a Burglar in my house
The anti-burglar Alarm in my house may go off

| have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when |
am at work

Minor Earthquakes may occur and sometimes the set off
the alarm.

Variables: B, A, J, M, E

Joint has entries/probs



Belief Nets: Simplify the joint

* Typically order vars to reflect causal knowledge

(| e., causes before effects)
A burglar (B) can set the alarm (A) off
* An earthquake (E) can set the alarm (A) off
* The alarm can cause Mary to call (M)
* The alarm can cause John to call (J)

P(B, E, A, M, J)

* Apply Chain Rule
P(B) P(E|B) P(A|B,E) P(M|A,E,B)P(J|M,A,E,B)

« Simplify according to marginal &
Independence

P(B) P(E) P(A|B,E)



Belief Nets: Structure + Probs
P(B)+P(E)  P(AIR,E) » P(M | A)xP(3 |A)

* Express remaining dependencies as a network

* Each var is a node
* For each var, the conditioning vars are its parents
* Associate to each node corresponding conditional
probabilities O(
5)

20
\@/ noP’
75\ A>§ % P (N

* Directed Acyclic Graph (DAG) Slide 9
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| ecture Overview

 Belief Networks

* Intro Inference, Compactness,
Semantics

* More Examples
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that
can be answered by processing the joint!

(Ex1) I'm at work,
* neighbor John calls,

* neighbor Mary doesn't call. /(9

* No news of any earthquakes. ;g\
* |s there a burglar?
(Ex2) I'm at work, @ @

* Receive message that neighbor John called ,
®

* News of minor earthquakes. ‘
* Is there a burglar? P@C@ }EJ\
Set decimal places to monitor to 5 @ @
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that
can be answered by processing the joint!

(Ex1) I'm at work,
* neighbor John calls,
* neighbor Mary doesn't call.

* No news of any earthquakes. —

* |s there a burglar?

@ - The probability of Burglar will;
A. Go down

B. Remain the same
m C. Go up
@;T @ Slide 13



Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal Mixed

Earthquake

Earthquake
Burglary

JohnCalls

JohnCalls JohnCalls
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BNnets: Compactness

P(B=T) P(B=F) P(E=T) P(E=F)
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How many values do we
store with this BNet?

nave 1o
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BNets: Compactness

A Conditional Probability Table (CPT) for boolean X, with k

boolean parents has 2% rows for the combinations of parent
values

Each row requires one number p; for X; = true
(the number for X, = false is just 1-p;)

If each variable has no more than k parents, the complete
network requires O( n2X) numbers

For k<< n, this is a substantial improvement,

* the numbers required grow linearly with n, vs. O(2") for the
full joint distribution
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of
conditional distributions: /

P (X, ..., X ) =TI P(OX | X;, ... . X,;) (chain rule)
Simplify according to marginal/conditional independence

* EXpress remaining dependencies as a network
* Eachvaris a node
* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional
probabilities

P (X, ..., X,) =TIP (X | Parents(X))
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BNets: Construction General
Semantics (cont’)
P (X,, ..., X.)=TT._. P (X;| Parents(X))

* Every node Is independent from its non-descendants
given it

@/3{\0@ 37 C(f < \l
/ga\f\@ :

(CPSC 422) Anode is iIndependent from the rest of the
network given its Markov Blanket Slide 18




| ecture Overview

 Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Other Examples: Fire Diagnosis
(textbook 8.3.2)

Suppose you want to diagnose
whether there is a fire in a

building In-class activity:

* you receive a “noisy” report build a Bayesian
about whether everyone is e Gar THE

leaving the building. _
 If everyone is leaving, this may environment and

have been caused by a fire state what

alarm. probability tables
* If there is a fire alarm, it may are needed

have been caused by a fire or

by tampering

 If there is a fire, there may be

smoke raising from the bldg. Slide 20



Other Examples (cont’)

Make sure you explore and understand the p@@@
Fire Diagnhosis example (we'll expand on it to
study Decision Networks)

Electrical Circuit example (textbook ex 6.11,

15t ed.
ed.) p@@@

Patient’s wheezing and coughing example
(ex. 6.14, 1sted.)

Other examples on @space
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Assuming there are ~60 nodes in this Bnet with max
number of parents =4; and assuming all nodes are
binary, ~ 1018 numbers are required for the JPD. How

many are required for the Bnet?
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Belief network summary

* A belief network is a directed acyclic graph (DAG)
that effectively expresses independence
assertions among random variables.

* The parents of a node X are those variables on
which X directly depends.

 Consideration of causal dependencies among
variables typically help in constructing a Bnet
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Next Class

Bayesian Networks Representation
« Additional Dependencies encoded by BNets
 More compact representations for CPT

* Very simple but extremely useful BNet (Naive
Bayes Classifier)
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