Reasoning Under Uncertainty: Belief Networks

CPSC 322 Lecture 26

R&R systems we'll cover in this course

		Enviro	Environment			
Prot	olem	Deterministic	Stochastic			
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search				
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination			
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination			

Representation Reasoning Technique

Key points Recap

- We model the environment as a set of
- Why is the **joint distribution** not an adequate representation ?
- "Representation, reasoning and learning" are exponential in
- Solution: Exploit marginal & conditional independence

 $P(X|Y) = P(X) \qquad P(X|YZ) = P(X|Z)$ But how does independence allow us to simplify the joint? CHAIN RULE

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

~60 binary variables: how large is the JPD?

Learning Goals for today's class

You can:

Build a Belief Network for a simple domain

Classify the types of inference

Compute the representational saving in terms on number of probabilities required

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Belief Nets: Burglary Example

There might be a **Burglar** in my house

The anti-burglar Alarm in my house may go off

I have an agreement with two of my neighbors, **John** and **Mary**, that they **call** me if they hear the alarm go off when I am at work

Minor Earthquakes may occur and sometimes the set off the alarm.

Variables: B, A, J, M, E

Joint has entries/probs

Belief Nets: Simplify the joint

- Typically order vars to reflect causal knowledge (i.e., causes before effects)
 - A burglar (B) can set the alarm (A) off
 - An earthquake (E) can set the alarm (A) off
 - The alarm can cause Mary to call (M)
 - The alarm can cause John to call (J)

P(B, E, A, M, J)

- Apply Chain Rule
 P(B) P(E|B) P(A|B,E) P(M|A,E,B)P(J|M,A,E,B)
- Simplify according to marginal & conditional independence

P(B) P(E) P(A|B,E) P(M|A) P(J|A)

Belief Nets: Structure + Probs P(B) * P(E) * P(A|B,E) * P(M|A) * P(J|A)

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities $E^{P(E)}$ $P(A|B,E)^{L}$

A

Directed Acyclic Graph (DAG)

P(MA)

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?
- (Ex2) I'm at work,
 - Receive message that neighbor John called ,
 - News of minor earthquakes.
 - Is there a burglar?

Set decimal places to monitor to 5

В

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?

The probability of Burglar will:

- A. Go down
- B. Remain the same
- C. Go up

Bayesian Networks – Inference Types

BNnets: Compactness

P(B =T)	P(B=F)							P(E=T)	P(E	=F)			
.001	.999] (Butalaru	1)	(E	orthquake)	.002	.9	98			
				В	E	<i>P(A=T B,E)</i>	<i>P(A</i> =	'(A=F <mark>B,E</mark>)					
				Т	Т	.95		.05		clic	ker		
$(A _{ar}M)$				Т	F	.94		.06					
				F	Т	.29		.71					
			F	F	.001		.999						
		15			X M-	ory Colls		P(M-T)	Δ)	P(M-F	= / _)		
			1	-				<i>''(''='''</i>	~)	" (<i>m</i> –			
A	P(J =)	T <mark>A</mark>)	P(J =F A)				Т	.70		•	.30		
Т		90	.10	1			F	.01		•	99		
F)5	.95					dow		2214	o to		
How many values do we have to													

 $|\mathbf{JPD}| = 2^5 - 1$

A. 5 B. 10 C. 16 D. 20 E. 42 Slide 15

BNets: Compactness

A Conditional Probability Table (CPT) for boolean X_i with k boolean parents has 2^k rows for the combinations of parent values

Each row requires **one number** p_i for $X_i = true$ (the number for $X_i = false$ is just $1-p_i$)

If each variable has no more than k parents, the complete network requires $O(n2^k)$ numbers

For *k*<< *n*, this is a substantial improvement,

 the numbers required grow linearly with n, vs. O(2ⁿ) for the full joint distribution

BNets: Construction General Semantics

The full joint distribution can be defined as the product of conditional distributions:

$$P(X_1, ..., X_n) = \Pi_i P(X_i | X_1, ..., X_{i-1})$$
 (chain rule)

Simplify according to marginal/conditional independence

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities

$$P(X_1, \ldots, X_n) = \pi_i P(X_i | Parents(X_i))$$

BNets: Construction General Semantics (cont')

$$\boldsymbol{P}(X_1, \ldots, X_n) = \boldsymbol{\Pi}_{i=1}^n \boldsymbol{P}(X_i | Parents(X_i))$$

Every node is independent from its non-descendants given it parents

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Other Examples: Fire Diagnosis (textbook 8.3.2)

- Suppose you want to diagnose whether there is a fire in a building
- you receive a "noisy" report about whether everyone is leaving the building.
- if everyone is leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke raising from the bldg.

In-class activity: build a Bayesian network for this environment and state what probability tables are needed

Other Examples (cont')

- Make sure you explore and understand the Fire Diagnosis example (we'll expand on it to study Decision Networks)
- Electrical Circuit example (textbook ex 6.11, 1st ed.)
- Patient's wheezing and coughing example (ex. 6.14, 1st ed.)
- Other examples on

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Assuming there are ~60 nodes in this Bnet with max number of parents =4; and assuming all nodes are binary, ~ 10^{18} numbers are required for the JPD. How many are required for the Bnet?

Belief network summary

- A belief network is a directed acyclic graph (DAG) that effectively expresses independence assertions among random variables.
- The parents of a node X are those variables on which X directly depends.
- Consideration of causal dependencies among variables typically help in constructing a Bnet

Next Class

Bayesian Networks Representation

- Additional Dependencies encoded by BNets
- More compact representations for CPT
- Very simple but extremely useful BNet (Naïve Bayes Classifier)