Marginal Independence and Conditional Independence

CPSC 322 Lecture 25

Lecture Overview

- Recap with Example and Bayes' Rule
- Marginal Independence
- Conditional Independence

Recap Joint Distribution

- •3 binary random variables: **P(H,S,F)**
 - H dom(H)={h, ¬h} has heart disease, does not have...
 - S dom(S)={s, ¬s} smokes, does not smoke
 - $F dom(F)=\{f, \neg f\}$ high fat diet, low fat diet

Recap Joint Distribution (JPD)

•3 binary random variables: P(H,S,F)

- H dom(H)={h, ¬h} has heart disease, does not have...
- S dom(S)={s, ¬s} smokes, does not smoke
- F dom(F)={f, ¬f} high fat diet, low fat diet

Recap Marginalization

$$P(H,S) = \sum_{x \in dom(F)} P(H,S,F=x)$$

P(H,S) **s**
$$\neg$$
 s
h .02 .01
 \neg **h** .28 .69 P(H)?

P(S)?

Recap Conditional Probability

do P(H|S) as an exercise

Recap Conditional Probability (cont.)

$$P(S \mid H) = \frac{P(S, H)}{P(H)}$$

Two key points

- We derived this equality from a "possible world" semantics of probability
- It is not a probability distribution but a set of probability distributions
 - One for each configuration of the conditioning variable(s)

Recap Chain Rule

P(H,S,F) =

Learning Goals for today's class

• You can:

• Define and use Marginal Independence

Define and use Conditional Independence

Lecture Overview

- Recap with Example and Bayes Theorem
- Marginal Independence
- Conditional Independence

Do you <u>always</u> need to revise your beliefs?

NO, not when your knowledge of **Y**'s value doesn't affect your belief in the value of **X**

DEF. A random variable **X** is marginally independent of random variable **Y** if, for all $x_i \in dom(X)$ and all $y_k \in dom(Y)$, P(X= $x_i | Y = y_k$) = P(X= x_i)

Marginal Independence: Example

• X and Y are independent iff:

P(X|Y) = P(X) or P(Y|X) = P(Y) or P(X, Y) = P(X) P(Y)

- That is, new evidence Y (or X) does not affect current belief in X (or Y)
- Ex: P(Toothache, Catch, Cavity, Weather)
 = P(Toothache, Catch, Cavity) P(Weather)
- JPD requiring ____ entries is reduced to two smaller ones (____ and ____)

In our example are Smoking and Heart Disease marginally Independent ?

What are our probabilities telling us....?

X and Y are independent iff:

P(X|Y) = P(X) or P(Y|X) = P(Y) or P(X, Y) = P(X) P(Y)

A. Yes B. No C. It depends D. 42 E. Please make it stop

Lecture Overview

- Recap with Example
- Marginal Independence
- Conditional Independence

Conditional Independence

• With marginal independence, for *n* independent random vars, $O(d^n) \rightarrow O(n^*d)$ space complexity

$$P(x_1, ..., x_n) = P(x_1)^* ... * P(x_n)$$

- Absolute independence is powerful but when you model a particular domain, it is rare
- Dentistry is a large field with hundreds of variables, few of which are independent (e.g., *Cavity, Heart-disease*).
- What to do?

Look for weaker form of independence

Grity

toothache

Catch

- **P**(Toothache, Cavity, Catch)
- Are Toothache and Catch marginally independent?
 P(Toothache | Catch) = P(Toothache) ? NO
- BUT If I have a cavity, does the probability that the probe catches depend on whether I have a toothache? NO
 (1) P(catch | toothache, cavity) = P(catch | cavity)
- What if I haven't got a cavity?
 (2) P(catch | toothache, ¬cavity) = P(catch | ¬cavity)

Each is directly caused by the cavity, but neither has a direct effect on the other

Conditional independence

- In general, *Catch* is conditionally independent of *Toothache* given *Cavity*:
 - $\mathbf{P}(Catch | Toothache, Cavity) = \mathbf{P}(Catch | Cavity)$
- Equivalent statements:
 - $\mathbf{P}(Toothache | Catch, Cavity) = \mathbf{P}(Toothache | Cavity)$

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally independent. However, they *become* independent after we observe some third variable

DEF. Random variable **X** is conditionally independent of random variable **Y** given random variable **Z** if, for all $x_i \in dom(X), y_k \in dom(Y), z_m \in dom(Z)$

$$P(X = x_i | Y = y_k, Z = z_m) = P(X = x_i | Z = z_m)$$

That is, knowledge of **Y**'s value doesn't affect your belief in the value of **X**, given a value of **Z**

Side note: storing distributions

Joint Probability Distribution (JPD): has O(dⁿ) values

- but they have to sum to 1, so do we need to store all of them?
- how many do we need to store?

Conditional Probability Table (CPT): has O(dⁿ) values

- but each row has to sum to 1, so do we need to store all of them?
- how many do we need to store?

Conditional independence: Use

- Write out full joint distribution using chain rule:
 - **P**(*Cavity, Catch, Toothache*)
 - = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
 - = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

how many probabilities?

- The use of conditional independence often reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*, where n is the # of variables
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Conditional Independence Example 2

Given whether there is/isn't power in wire w0, is whether light 1 is lit or not, independent of the position of switch s2?

Conditional Independence Example 3

 Is every other variable in the system independent` of whether light I1 is lit, given whether there is power in wire w0 ?

 $\mathcal{P}(s_1 | \ell_1, w_o) = \mathcal{P}(s_1 | w_o)$ 65 $\mathcal{W}_{\mathbf{0}}$

Where are we? (Summary)

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Queries can be answered by summing over possible worlds
- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Next Class

• Bayesian Networks (Textbook 8.3)