Reasoning under Uncertainty: Marginalization, Conditional Probability, and Bayes

CPSC 322 Lecture 24

Lecture Overview

- Recap Semantics of Probability
 Marginalization
- -Conditional Probability
- -Chain Rule
- -Bayes' Rule

Recap: Possible World Semantics for Probabilities

Probability is a formal measure of subjective uncertainty.

Random variable and probability distribution

$$\begin{array}{ll} X & x_1 \rightarrow P(x_1) \\ dom(X) = \{x_1, x_2, x_3\} & x_2 \rightarrow P(x_2) \\ & x_3 \rightarrow P(x_3) \end{array} \quad sum^{to 1} \end{array}$$

Model Environment with a set of random vars

$$\sum_{w \in W} \mu(w) = 1$$

• Probability of a proposition *f*

$$P(f) = \sum_{w \vDash f} \mu(w)$$

Learning Goals for today's class

• You can:

 Given a joint probability distribution (JPD), compute distributions over any subset of the variables

Derive and use the formula to compute conditional probabilities P(h|e)

Derive the Chain Rule and Bayes' Rule Slide

Joint Distribution and Marginalization

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

P(*cavity*, *toothache*, *catch*)

Given a joint distribution, e.g. P(X, Y, Z) we can compute distributions over any smaller sets of variables

$$P(X,Y) = \sum_{z \in dom(Z)} P(X,Y,Z=z)$$

	toot	thache	⊐ too	othache
	catch ¬ catch		catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

cavity	toothache	P(cavity , toothache)
Т	Т	.12
Т	F	.08
F	Т	.08
F	F	.72

Joint Distribution and Marginalization

				P(cavity,toothe	nche catch)
cavity	toothache	catch	µ(w)		. ,
Т	Т	Т	.108	Given a joint d	istribution, e.g.
Т	Т	F	.012	P(X, Y, Z) we	e can compute
Т	F	Т	.072	distributions	over anv
Т	F	F	.008	smaller sets	•
F	Т	Т	.016		
F	Т	F	.064	$P(X,Z) = \sum I$	P(X, Z, Y = y)
F	F	Т	.144	$y \in dom(Y)$	
F	F	F	.576		i⊧clicker.
		Α	-	В.	C.
cavity	catch	P(cav	rity , catch)	P(cavity , catch)	P(cavity , catch)
Т	Т		.12	.18	.18
Т	F		.08	.02	.72
F	Т				
F	F				

Lecture Overview

- -Recap Semantics of Probability
- -Marginalization
- -Conditional Probability
- -Chain Rule
- -Bayes' Rule
- -Independence

Conditioning (Conditional Probability)

- We model our environment with a set of random variables.
- Assuming we have the joint, we can compute the probability of any formula
- Are we done with reasoning under uncertainty?
- What can happen?
- Think of a patient showing up at the dentist office. Does she have a cavity?

Conditioning (Conditional Probability)

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model (for now the joint) taking all background information into account. This gives the prior probability.
- If evidence e is all of the information obtained subsequently, the conditional probability P(h|e) of h given e is the posterior probability of h.

Conditioning Example

- Prior probability of having a cavity P(cavity = T)
- Should be revised if you know that there is toothache
 P(cavity = T | toothache = T)
- It should be revised again if you were informed that the dental probe did not catch anything
 P(cavity =T | toothache = T, catch = F)
- What about the weather? P(cavity = T | sunny = T)

How can we compute P(h|e)

- What happens in term of possible worlds if we know the value of a random var (or a set of random vars)?
- Some worlds are **ruled out**. The others become **more likely**.

$\mu_e(w)$	μ(w)	catch	toothache	cavity
.54	.108	Т	Т	Т
.06	.012	F	Т	Т
.36	.072	Т	F	Т
.04	.008	F	F	Т
0	.016	Т	Т	F
0	.064	F	Т	F
0	.144	Т	F	F
0	.576	F	F	F

$$e = (cavity = T)$$

$$\mu_e(w) = \frac{\mu(w)}{P(e)} \text{ if } w \models e$$

 $\mu_e(w) = 0$ otherwise

How can we compute P(h|e)

$$P(h | e) = \sum_{w \models h} \mu_e(w)$$

$$P(toothache = F | cavity = T) = \sum_{w \models toothache = F} \mu_{cavity=T}(w)$$

cavity	toothache	catch	μ(w)	$\mu_{cavity=T}(w)$
Т	Т	Т	.108	.54
Т	Т	F	.012	.06
Т	F	Т	.072	.36
Т	F	F	.008	.04
F	Т	Т	.016	0
F	Т	F	.064	0
F	F	Т	.144	0
F	F	F	.576	0

Semantics of Conditional Probability

$$\mu_{\rm e}({\rm w}) = \begin{cases} \frac{1}{P(e)} \times \mu(w) & if \quad w \vDash e \\ 0 & otherwise \end{cases}$$

 The conditional probability of formula *h* given evidence *e* is

$$P(h \mid e) = \sum_{w \models h} \mu_e(w) = \sum_{w \models h^{\wedge}e} \frac{1}{P(e)} \times \mu(w) = \frac{1}{P(e)} \sum_{w \models h^{\wedge}e} \mu(w)$$
$$= \frac{P(h^{\wedge}e)}{P(e)}$$

Semantics of Conditional Prob.: Example

cavity	toothache	catch	μ(w)	$\mu_{e}(w)$
Т	Т	Т	.108	.54
Т	Т	F	.012	.06
Т	F	Т	.072	.36
Т	F	F	.008	.04
F	Т	Т	.016	0
F	Т	F	.064	0
F	F	Т	.144	0
F	F	F	.576	0

e = (cavity = T)

P(h | e) = P(toothache = T | cavity = T) =

A. 0.4 B. 0.6 C. 0 D. 0.12 E. 0.42

Conditional Probability among Random Variables

 $P(X \mid Y) = P(X, Y) \mid P(Y)$

P(X | Y) = P(toothache | cavity)= P(toothache \cavity) / P(cavity)

P(T^C)	Toothache = T	Toothache = F
Cavity = T	.12	.08
Cavity = F	.08	.72

<i>P(T/C)</i>	Toothache = T	Toothache = F
Cavity = T		
Cavity = F		

note that rows sum to 1

Product Rule

- Definition of conditional probability: $-P(X_1 | X_2) = P(X_1, X_2) / P(X_2)$
- Product rule gives an alternative, more intuitive formulation:

 $-\mathsf{P}(\mathsf{X}_1\,,\,\mathsf{X}_2)=\mathsf{P}(\mathsf{X}_2)\;\mathsf{P}(\mathsf{X}_1\mid\mathsf{X}_2)=\mathsf{P}(\mathsf{X}_1)\;\mathsf{P}(\mathsf{X}_2\mid\mathsf{X}_1)$

• Product rule general form:

 $P(X_1, ..., X_n) = P(X_1, ..., X_t, X_{t+1}, ..., X_n)$

 $= \mathbf{P}(X_{1},...,X_{t}) \mathbf{P}(X_{t+1},...,X_{n} | X_{1},...,X_{t})$

Chain Rule

- Product rule general form: $P(X_1, ..., X_n) =$ $= P(X_1, ..., X_t) P(X_{t+1}..., X_n \mid X_1, ..., X_t)$
- Chain rule is derived by the successive application of product rule:

$$\mathbf{P}(X_{1}, \dots, X_{n-1}, X_{n}) = \mathbf{P}(X_{1}, \dots, X_{n-1}) \mathbf{P}(X_{n} \mid X_{1}, \dots, X_{n-1})$$

- $= \mathbf{P}(X_{1},...,X_{n-2}) \mathbf{P}(X_{n-1} \mid X_{1},...,X_{n-2}) \mathbf{P}(X_{n} \mid X_{1},...,X_{n-1}) = \dots$
- $= \mathbf{P}(X_1) \ \mathbf{P}(X_2 \mid X_1) \ \dots \ \mathbf{P}(X_{n-1} \mid X_1, \dots, X_{n-2}) \ \mathbf{P}(X_n \mid X_1, \dots, X_{n-1})$

 $= \prod_{i=1}^{n} \mathbf{P}(X_i \mid X_1, \dots, X_{i-1})$

Chain Rule: Example

P(cavity, toothache, catch) =

P(cavity) * P(toothache | cavity) * P(catch| cavity, toothache)

P(toothache, catch, cavity) =

P(toothache) * P(catch | toothache) * P(cavity | toothache, catch)

In how many other ways can this joint be decomposed using the chain rule?

iclicker. A. 4 B. 1 C. 8 D. 0

Lecture Overview

- -Recap Semantics of Probability
- -Marginalization
- -Conditional Probability
- -Chain Rule
- -Bayes' Rule
- -Independence

Using conditional probability

- Often you have causal knowledge (forward from cause to evidence):
 - For example
 - ✓ P(symptom | disease)
 - ✓ P(light is off | status of switches and switch positions)
 - ✓ P(alarm | fire)
 - In general: P(evidence e | hypothesis h)
- ... and you want to do evidential reasoning (backwards from evidence to cause):
 - For example
 - ✓ P(disease | symptom)
 - \checkmark P(status of switches | light is off and switch positions)
 - ✓ P(fire | alarm)
 - In general: P(hypothesis h | evidence e)

Bayes Rule

- By definition, we know that : $P(h | e) = \frac{P(h \land e)}{P(e)} \qquad P(e | h) = \frac{P(e \land h)}{P(h)}$
- We can rearrange terms to write

 $P(h \wedge e) = P(h \mid e) \times P(e) \qquad (1)$

$$P(e \wedge h) = P(e \mid h) \times P(h)$$
 (2)

But

$$P(h \wedge e) = P(e \wedge h) \qquad (3)$$

• From (1) (2) and (3) we can derive

Bayes Rule $P(h \mid e) = \frac{P(e \mid h)P(h)}{P(e)}$

Example for Bayes rule

- On average, the alarm rings once a year
 P(alarm) = 1/365
- If there is a fire, the alarm will almost always ring
 P(alarm|fire) = 0.999

B. 0.9

A. 0.999

- On average, we have a fire every 10 years
 P(fire) = 1/3650
- The fire alarm rings. What is the probability there is a fire? – Take a few minutes to do the math! $P(h \mid e) = \frac{P(e \mid h)P(h)}{P(e)}$

C. 0.0999

D. 0.1

Conditional probability (irrelevant evidence)

New evidence may be irrelevant, allowing simplification, e.g.,

– P(cavity | toothache, sunny) = P(cavity | toothache)

- We say that Cavity is conditionally independent from Weather (more on this next class)
- This kind of inference, sanctioned by domain knowledge, is crucial in probabilistic inference

Plan for this part of the course

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Probabilistic queries can be answered by summing over possible worlds

---WEAREHERE---

- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Next Class

- Marginal Independence
- Conditional Independence