Reasoning under Uncertainty:
Marginalization, Conditional
Probability, and Bayes

CPSC 322 Lecture 24



| ecture Overview

—Recap Semantics of Probability
—Marginalization



Recap: Possible World Semantics
for Probabilities

Probability is a formal measure of subjective uncertainty.

« Random variable and probability distribution

X X1 2 P(Xy) ©
X, =2 P(X,) €
X3 2 P(X3) o

« Model Environment with a set of random vars

ZH(W)=1

* Probability of a proposition f

A
dom(X) = {x;,X;,Xs}

P() = ) u(w)

wEf



Learning Goals for today’s class

YOu can:

Given a joint probability distribution (JPD),
compute distributions over any subset of the
variables

Derive and use the formula to compute
conditional probabilities P(h|e)

Derive the Chain Rule and Bayes’ Rule

Slide 4



Joint Distribution and Marginalization

cavity | toothache | catch H(W)
T T T .108
T T F 012
T F T 072
T F F .008
F T T .016
F T F .064
F F T 144
F F F D76
roothache 1 roothache
carch | - catch| catch| — caich
caviry | 108 | .012 072 | .008
— caviry | 016 | .064 44 | 576

P(cavity,toothache, catch)

Given a joint distribution, e.g.
P(X,Y, Z) we can compute
distributions over any
smaller sets of variables

P(X,Y)= Y P(X,Y,Z=12)

zedom(Z)
cavity | toothache | P(cavity , toothache)
T T 12
T F .08
F T .08
F F 72




Joint Distribution and Marginalization

caviy | toothache | catch | 11(w) P(cavity,toothache, catch)
T T T | 108 | Given a joint distribution, e.g.
- T F | 012 P(X,Y, Z) we can compute
T F T 072 distributions over any
T F F_| 008 smaller sets of variables
m T T .016
- " F | 064 | IP(X,Z)= ZP(X,Z,Yzy)
= = T 144 yedom(Y)
E E F 576
A. B. =
cavity | catch | P(cavity,catch) | P(cavity,catch) | P(cavity, catch)
T T 12 18 18
08 .02 A2

m|({T |-
M4 | T




| ecture Overview

— Conditional Probability
—Chain Rule



Conditioning
(Conditional Probability)

We model our environment with a set of random
variables.

Assuming we have the joint, we can compute the
probability of any formula

Are we done with reasoning under uncertainty?
What can happen?

Think of a patient showing up at the dentist office.
Does she have a cavity?



Conditioning
(Conditional Probability)

* Probabillistic conditioning specifies how to revise
beliefs based on new information.

 You build a probabilistic model (for now the joint)
taking all background information into account. This

gives the prior probability.

 If evidence e Is all of the information obtained
subsequently, the conditional probability P(h|e) of h
given e Is the posterior probability of h.

P(CB\’\A’D\ =1 l —\‘OO.H’\BCLVC‘:TB 7



Conditioning Example

Prior probabillity of having a cavity
P(cavity = T)

Should be revised if you know that there Is toothache
P(cavity = T | toothache = T)

It should be revised again if you were informed that
the dental probe did not catch anything

P(cavity =T |toothache =T, catch = F)

What about the weather?
P(cavity =T | sunny =T)



How can we compute P(hle)
« What happens in term of possible worlds if we know
the value of a random var (or a set of random vars)?

« Some worlds are ruled out. The others become
more likely.

cavity | toothache | catch H(W) 7l (W)
e -
T T T 108 54 e = (cavity=T)
T T F 012 .06
T F T 072 36 uw)
e (w) = ifwEe
T F F 008 04 ° P(e)
F T T 016 0 ue(w) = 0 otherwise
F T F 064 0
F F T 144 0
F F F 576 0




How can we compute P(h|e)

P(h|e)= Z’_:ﬂe(w)

P(toothache = F [cavity =T) =

Z :ucavity:T (W)

vvf: toothache = F

cavity | toothache | catch H(W) p‘cavity:T(W)
T T T .108 .04
T T F .012 .06
T F T 072 .36
T F F .008 .04
F T T 016 0
F T F .064 0
F F T 144 0
F F F 576 0




Semantics of Conditional Probability

(1

‘ue(w) _ % X ,U(W) lf wEe

\ 0 otherwise

* The conditional probability of formula h given
evidence e is

P(h|e)= Zue(W) |ZP( )X,U(W) b6 )Zﬂ(w)

P(h " e)
P(e)




Semantics of Conditional Prob.: Example

cavity | toothache | catch IJ(W) U (W)
T T T .108 .54
T T F .012 .06
T F T 072 .36
T F F .008 .04
F T T .016 0
F T F .064 0
F F T 144 0
F F F 576 0

e = (cavity =T)

P(h|e) = P(toothache =T |cavity=T) =

A.0.4

B.0.6

C.0

D. 0.12

E. 0.42



Conditional Probability among Random
Variables

P(X|Y)=P(X,Y)/P(Y)

P(X | Y) = P(toothache | cavity)
= P(toothache A cavity) / P(cavity)

P(TAC) Toothache =T Toothache = F

Cavity =T 12 .08

Cavity = F .08 72

P(T|C) Toothache =T Toothache = F

Cavity =T
note that rows sum to 1

Cavity = F




Product Rule

 Definition of conditional probabillity:
— P(Xy | X3) = P(Xy, X3) I P(X,)

* Product rule gives an alternative, more intuitive
formulation:

—P(Xy, X5) = P(Xy) POX [ X5) = POXy) POX, | Xy)
* Product rule general form:
P(Xq, .., X)) = POX, o X XK g XL)
= P(X .. X)) P(Xpqooo X | Xy, X))



Chain Rule

* Product rule general form:
P(Xq, ..., X,) =
= P(Xq,-e0r X)) PKigqoeen Xy | Xg,e0s X))

« Chain rule is derived by the successive application of
product rule:

P(Xy, oo X1y X) = PXqyees Xo ) PO | Xy, Xot)

="_, POK | Xy, .ot X y)



Chain Rule: Example

P(cavity , toothache, catch) =

P(cavity) * P(toothache | cavity) *
P(catch| cavity, toothache)

P(toothache, catch, cavity) =

P(toothache) * P(catch | toothache) *
P(cavity | toothache, catch)

In how many other ways can this joint be decomposed
using the chain rule?



| ecture Overview

—Bayes' Rule
—Independence



Using conditional probability

« Often you have causal knowledge (forward from cause to evidence):
— For example
v P(symptom | disease)
v P(light is off | status of switches and switch positions)
v P(alarm | fire)
— In general: P(evidence e | hypothesis h)

« ... and you want to do evidential reasoning (backwards from evidence
to cause):

— For example
v P(disease | symptom)
v P(status of switches | light is off and switch positions)
v P(fire | alarm)

— In general: P(hypothesis h | evidence e)



Bayes Rule

By definition, we know that :

P(h|e) = P(F'](g)e) P(e|h) =

We can rearrange terms to write
P(hane)=P(h|e)xP(e) (1)

P(eah)=P(e|h)xP(h) (2)
But
P(hae)=P(eah) (3

From (1) (2) and (3) we can derive

Bayes Rule
P(e[h)P(h)

P(h|e) = P(e)

P(e Ah)
P(h)




Example for Bayes rule

- P(alarm|fire) = 0.999

On average, the alarm rings once a year
- P(alarm) =1/365

— Take a few minutes to do the math!

A. 0.999

B. 0.9

C. 0.0999

On average, we have a fire every 10 years
- P(fire) =1/3650

P(hle)=

If there is a fire, the alarm will almost always ring

The fire alarm rings. What is the probability there is a fire?

P(e|h)P(h)
P(e)

D.

0.1




Conditional probability
(irrelevant evidence)

 New evidence may be irrelevant, allowing
simplification, e.g.,
— P(cavity | toothache, sunny) = P(cavity | toothache)

— We say that Cavity is conditionally independent from
Weather (more on this next class)

« This kind of inference, sanctioned by domain
knowledge, Is crucial in probabilistic inference



Plan for this part of the course

Probability Is a rigorous formalism for uncertain
knowledge

Joint probabillity distribution specifies probabillity of
every possible world

Probabilistic queries can be answered by summing
over possible worlds
- - - WE ARE HERE - - -

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional
Independence (frequent) provide the tools



Next Class

* Marginal Independence
« Conditional Independence



