Reasoning under Uncertainty: Introduction to Probability

CPSC 322 Lecture 23

Learning Goals for today's class

You can:

Define and give examples of random variables, their domains and probability distributions.

- Calculate the **probability of a proposition f** given $\mu(w)$ for the set of possible worlds.
- Define a joint probability distribution

Lecture Overview

- Big Transition
- Intro to Probability
- -

R&R systems we'll cover in this course

		Environment		
Problem		Deterministic	Stochastic	
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search		
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination	
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination	

Representation Reasoning Technique

Intro to Probability (Motivation)

- What will the temperature be tomorrow? In 10 days? In 50 years?
- Right now, how many people are in this room? in this building (DMP)? At UBC?Yesterday?
- The fire alarm just went off. Is there a fire?
- AI agents (and humans ☺) are not omniscient
- And the problem is not only predicting the future or "remembering" the past

Intro to Probability (Key points)

- Are agents all ignorant/uncertain to the same degree?
- Should an agent act only when it is certain about relevant knowledge?
 - Can it ever be certain?
 - (not acting often has implications)
- So agents need to represent and reason about their ignorance/ uncertainty

Probability as a formal measure of uncertainty/ignorance

- We can use **probabilities** to represent **belief**
- Consider a simple dice roll
- Suppose we want to know whether we rolled a 6
 - What is the probability P(6)?
- Suppose I tell you that we rolled an even number
 - This evidence forces us to update our beliefs
 - What is the new conditional probability P(6|even)?
- I saw what we rolled
 - What is my conditional probability **P(6|saw_number)**?

Probability as a formal measure of uncertainty/ignorance

- Belief in a proposition f (e.g., *it is raining outside, there are 31 people in this room*) can be measured in terms of a number between 0 and 1 this is the probability of f
 - The probability *f* is 0 means that *f* is believed to be...
 - The probability *f* is 1 means that *f* is believed to be...
 - Using 0 and 1 is purely a convention (though a useful one!)

Random Variables

- A random variable is a variable (like the ones we have seen in CSP and Planning), but the agent can be uncertain about its value.
- As usual
 - The domain of a random variable *X*, written *dom(X)*, is the set of values *X* can take
 - values are mutually exclusive and exhaustive

Examples (Boolean and discrete)

Random Variables (cont')

- A tuple of random variables <X₁,..., X_n> is a complex random variable with domain dom(X₁) × ... × dom(X_n)
- Assignment X = x means X has value x outsideRaining = T
- A proposition is a Boolean formula made from assignments of values to variables

Examples

outsideRaining = T v peopleInRoom = 42 mostUsefulThing = "towel"

Possible Worlds

- A possible world specifies an assignment to each random variable
 - E.g., if we model only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct possible worlds:

 $Cavity = T \land Toothache = T$ $Cavity = T \land Toothache = F$ $Cavity = F \land Toothache = T$ $Cavity = F \land Toothache = F$

cavity	toothache
Т	Т
Т	F
F	Т
F	F

As usual, possible worlds are mutually exclusive and exhaustive

w = X = x means variable X is assigned value x in world w

Semantics of Probability

- The belief of being in each possible world w can be expressed as a probability μ(w)
- For sure, I must be in one of them.....so

$$\sum_{w \in W} \mu(w) = 1$$

µ(w) for possible worlds generated by three Boolean variables:
cavity, toothache, catch (dentist probe catches in the tooth)

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

Probability of proposition

• What is the **probability of a proposition f**?

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any *f*, **sum** the prob. of the worlds where f is **true**: $P(f) = \sum_{w \models f} \mu(w)$ Ex: P(toothache = T) =

Probability of proposition

• What is the **probability of a proposition f**?

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

For any *f*, sum the prob. of the worlds where it is true:

$$P(f) = \sum_{w \neq f} \mu(w)$$

P(cavity=T and toothache=F) = A. 0.2 B. 0.8 C. 0.000576 D. 0.08 E. 0.42

Probability of proposition

• What is the **probability of a proposition f**?

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	т	F	.064
	1		. 144
F	F	F	.576

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any *f*, sum the prob. of the worlds where it is **true**:

$$P(f) = \sum_{w \models f} \mu(w)$$

P(cavity or toothache) = .108 + .012 + .016 + .064 ++ .072 + .08 = .28(= 1- (.144 + .576))

One more example

- *Weather*, with domain {sunny, cloudy)
- Temperature, with domain {hot, mild, cold}
- There are now 6 possible worlds:
- What's the probability of it being cloudy or cold?

i**⊳**licker.

- A. 1 B. 0.3
- C. 0.6 D. 0.7 E. 0.42

Weather	Temperature	μ(w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

• Remember

- The probability of proposition f is defined by: $P(f) = \sum_{w \neq f} \mu(w)$
- sum of the probabilities of the worlds w in which f is true

Probability Distributions

 A probability distribution P on a random variable X is a function *dom(X)* -> [0,1] such that

 $x \rightarrow P(X=x)$

	toothache		⊐ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	Т	.144
F	F	F	.576
		Slide	18

Probability distribution (non binary)

• A probability distribution P on a random variable X is a function dom(X) - > [0,1] such that

 $x \rightarrow P(X=x)$

• Number of people in this room at this time

Probability distribution (non binary)

• A probability distribution P on a random variable X is a function dom(X) - > [0,1] such that

 $x \rightarrow P(X=x)$

- Number of people in this room at this time
- Let's represent 3 different kinds of belief:
 - complete certainty
 - perfect uncertainty
 - some reasonable guess

Joint Probability Distributions

- When we have multiple random variables, their joint distribution is a probability distribution over the variables' Cartesian product
 - E.g., P(<*X*₁,..., *X*_n>)
 - You can think of a joint distribution over *n* variables as an n-dimensional table
 - Each entry, indexed by X_{1 =} x₁,, X_n = x_n corresponds to P(X_{1 =} x₁ ∧ ∧ X_n = x_n)
 - The sum of entries across the whole table is 1

	toothache		⊐ toothache	
	catch	¬ catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Questions

Suppose you have the joint probability distribution of n variables.

- Can you compute the probability distribution for each variable?
- Can you compute the probability distribution for any combination of variables?
- Can you update these probabilities if you know something about some of the variables?
- Is there a downside to the joint probability distribution?

Next Class

More probability theory

- Marginalization
- Conditional Probability
- Chain Rule
- Bayes' Rule
- Independence