
Slide 1

Logic: TD as search, Datalog

(variables)
CPSC 322 Lecture 22

Slide 2

Lecture Overview

• Recap Top Down

• TopDown Proofs as search

• Datalog

Bottom-up vs. Top-down

• Key Idea of top-down: search backward from a

query G to determine if it can be derived from KB.

KB C

G is proved if G  C

When does BU look at the

query G?

• At the end

Bottom-up Top-down

TD performs a backward

search starting at G

KB answer

Query G

Slide 4

Top-down Proof Procedure: Elements

Notation: An answer clause is of the form:

yes ← a1 ∧ a2 ∧ … ∧ am

Rule of inference (called SLD Resolution)

Given an answer clause of the form:

yes ← a1 ∧ a2 ∧ … ∧ am

and the KB clause:

ai ← b1 ∧ b2 ∧ … ∧ bp

You can generate the answer clause
yes ← a1 ∧ … ∧ ai-1 ∧ b1 ∧ b2 ∧ … ∧ bp ∧ ai+1 ∧ … ∧ am

Express query as an answer clause

(e.g., query a1 ∧ a2 ∧ … ∧ am)
yes ←

Slide 5

• Successful Derivation: When by applying the

inference rule you obtain the answer clause yes ← .

Query: a (two ways)

yes ← a. yes ← a.

a ← e ∧ f. a ← b ∧ c. b ← k ∧ f.

c ← e. d ← k. e.

f ← j ∧ e. f ← c. j ← c.

Slide 6

Lecture Overview

• Recap Top Down

• TopDown Proofs as search

• Datalog

Constraint Satisfaction (Problems):

• State: assignments of values to a subset of the variables

• Successor function: assign values to a “free” variable

• Goal test: set of constraints

• Solution: possible world that satisfies the constraints

• Heuristic function: none (all solutions at the same distance from start)

Planning (forward) :

• State possible world

• Successor function states resulting from valid actions

• Goal test assignment to subset of vars

• Solution sequence of actions

• Heuristic function empty-delete-list (solve simplified problem)

Logical Inference (top Down)

• State answer clause

• Successor function states resulting from substituting one
atom with all the clauses of which it is the head

• Goal test empty answer clause

• Solution start state

• Heuristic function ……………….. Slide 7

Systematic Search in different R&R systems

Search Graph

Possible Heuristic?

Number of unique atoms in the answer clause

Admissible?

Prove: ?← a ∧ d.

a ← b ∧ c. a ← g.

a ← h. b ← j.

b ← k. d ← m.

d ← p. f ← m.

f ← p. g ← m.

g ← f. k ← m.

h ←m. p.

KB

A. Yes B. No C. It Depends

Slide 9

Search Graph

a ← b ∧ c. a ← g.

a ← h. b ← j.

b ← k. d ← m.

d ← p. f ← m.

f ← p. g ← m.

g ← f. k ← m.
h ← m. p.

Prove: ?← a ∧ d.

“Heuristic” for clause
selection?

Better Heuristics?

If the body of an answer clause contains a symbol

that does not match the head of any clause in the

KB what should the most informative heuristic

value for that answer clause be ?

A. Zero

B. Infinity

C. Twice the number of clauses in the KB

D. The number of atoms in that body

E. 42

Slide 10

Slide 11

Lecture Overview

• Recap Top Down

• TopDown Proofs as search

• Datalog

Slide 12

Representation and Reasoning in

Complex domains
• In complex domains

expressing knowledge

with propositions can be

quite limiting
up_s2
up_s3
ok_cb1
ok_cb2
live_w1
connected_w1_w2

up(s2)
up(s3)
ok(cb1)
ok(cb2)
live(w1)
connected(w1 , w2)

• It is often natural to

consider individuals and

their properties

There is no notion that
up_s2
up_s3

live_w1
connected_w1_w2

Slide 13

What do we gain….

…by turning propositions into relations applied to

individuals?

• Express knowledge that holds for set of

individuals (by introducing variables)

live(W) <- connected_to(W,W1) ∧ live(W1) ∧
wire(W) ∧ wire(W1).

• We can ask generic queries (i.e., containing

variables)

? connected_to(W, w1)

Slide 14

Datalog vs PDCL (better with colors)

Datalog: a relational rule language

A variable is a symbol starting with an upper case letter

A constant is a symbol starting with lower-case letter or a

sequence of digits.

A predicate symbol is a symbol starting with a lower-case

letter.

A term is either a variable or a constant.

Datalog expands the syntax of PDCL….

Examples: X, Y

Examples: alan, w1

Examples: live, connected, part-of, in

Examples: X, Y, alan, w1

Datalog Syntax (cont’d)

An atom is a symbol of the form p or p(t1 …. tn) where p is a

proposition or predicate symbol and ti are terms

A definite clause is either an atom (a fact) or of the form:

h ← b1 ∧… ∧ bm

where h and the bi are atoms (Read this as ``h if b.'')

A knowledge base is a set of definite clauses

Examples: sunny, in(alan,X)

Example: in(X,Z) ← in(X,Y) ∧ part-of(Y,Z)

Datalog: Top Down Proof Procedure

• Extension of Top-Down procedure for PDCL.

How do we deal with variables?

• Idea:

- Find a clause with head that matches the query

- Substitute variables in the clause with their matching constants

• Example:

in(alan, r123).

part_of(r123,cs_building).

in(X,Y)  part_of(Z,Y) ∧ in(X,Z).

Query: yes  in(alan, cs_building).

yes  part_of(Z,cs_building) ∧ in(alan, Z).

in(X,Y)  part_of(Z,Y) ∧ in(X,Z).

with Y = cs_building

X = alan

Example proof of a Datalog query
in(alan, r123).

part_of(r123,cs_building).

in(X,Y)  part_of(Z,Y) ∧ in(X,Z).

Query: yes  in(alan, cs_building).

yes  part_of(Z,cs_building) ∧ in(alan, Z).

B. yes  in(alan, r123).

A. yes  part_of(Z, r123) ∧ in(alan, Z).

C. yes .

Using clause: in(X,Y) 

part_of(Z,Y) ∧ in(X,Z),

with Y = cs_building

X = alan

Using clause:

part_of(r123,cs_building)

with Z = r123

D. None of the above

E. You’d need a babelfish in your ear to figure this out

??????

Example proof of a Datalog query
in(alan, r123).

part_of(r123,cs_building).

in(X,Y)  part_of(Z,Y) ∧ in(X,Z).

Query: yes  in(alan, cs_building).

yes  part_of(Z,cs_building) ∧ in(alan, Z).

yes  in(alan, r123).

yes  part_of(Z, r123) ^ in(alan, Z).yes .

Using clause: in(X,Y) 

part_of(Z,Y) ∧ in(X,Z),

with Y = cs_building

X = alan

Using clause:

part_of(r123,cs_building)

with Z = r123

Using clause:

in(alan, r123).

Using clause: in(X,Y) 

part_of(Z,Y) ∧ in(X,Z).

With X = alan

Y = r123

fail

No clause with

matching head:

part_of(Z,r123).

Tracing Datalog proofs in AIspace

• You can trace the example from the last slide in

the AIspace Deduction Applet at

http://aispace.org/deduction/ using file ex-Datalog

available in course schedule

• Question 4 of Assignment 3 will ask you to use

this applet

http://aispace.org/deduction/

Datalog: queries with variables

What would the answer(s) be?

Query: in(alan, X1).

in(alan, r123).

part_of(r123,cs_building).

in(X,Y)  part_of(Z,Y) & in(X,Z).

yes(X1)  in(alan, X1).

Datalog: queries with variables

What would the answer(s) be?

yes(r123).

yes(cs_building).

Query: in(alan, X1).

in(alan, r123).

part_of(r123,cs_building).

in(X,Y)  part_of(Z,Y) & in(X,Z).

yes(X1)  in(alan, X1).

Again, you can trace the SLD derivation for this

query

in the AIspace Deduction Applet

Slide 23

Logics in AI

Propositional

Logics

First-Order

Logics

Propositional Definite

Clause Logics

Semantics and Proof

Theory

Satisfiability Testing (SAT)

Description

Logics

Cognitive Architectures

Video Games

Hardware Verification

Product Configuration

Ontologies

Semantic Web

Information

Extraction

Summarization

Production Systems

Tutoring Systems

R&R systems we’ll cover in this course

Slide 24

Environment

Problem Deterministic Stochastic

Static

Constraint

Satisfaction

Variables + Constraints

Search

Arc Consistency

Local Search

Query
Logics

Search

Bayesian (Belief) Networks

Variable Elimination

Sequential Planning
STRIPS

Search

Decision Networks

Variable Elimination

Representation

Reasoning Technique

Slide 25

Next Up

Intro to probability

• Random Variable

• Prob. Distribution

• Marginalization

• Conditional Probability

• Chain Rule

• Bayes' Rule

• Marginal and Conditional Independence

INFERENCE:

• Convert all formulas in KB and in CNF

• Apply Resolution Procedure (at each step combine

two clauses containing complementary literals into

a new one)

• Termination

• No new clause can be added

• Two clause resolve into an empty clause
26

Full Propositional Logics (not for 322)
DEFs.

Literal: an atom or a negation of an atom

Clause: is a disjunction of literals

Conjunctive Normal Form (CNF): a conjunction of clauses

27

Propositional Logics: Satisfiability (SAT

problem)

Does a set of formulas have a model? Is there an

interpretation in which all the formulas are true?

(Stochastic) Local Search Algorithms can be used

for this task!

Evaluation Function: number of unsatisfied clauses

WalkSat: One of the simplest and most effective

algorithms:

Start from a randomly generated interpretation

• Pick an unsatisfied clause

• Pick an proposition to flip (randomly 1 or 2)

1. To minimize # of unsatisfied clauses

2. Randomly

28

Full First-Order Logics (FOLs)
We have constant symbols, predicate symbols and

function symbols

So interpretations are much more complex (but the

same basic idea – one possible configuration of the

world)

INFERENCE:

• Semidecidable: algorithms exists that says yes for

every entailed formulas, but no algorithm exists that

also says no for every non-entailed sentence

• Resolution Procedure can be generalized to FOL

constant symbols => individuals, entities

predicate symbols => relations

function symbols => functions

