# Bottom-Up: Soundness and Completeness

CPSC 322 Lecture 20

- Recap
- Soundness and Completeness
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

# (Propositional) Logic: Key ideas

Given a domain that can be represented with **n propositions** you have \_\_\_\_\_\_ interpretations (possible worlds)

If you do not know anything, then you can be in any of those possible worlds

If you know that some **facts** and some **logical formulas** are true (i.e. you have a \_\_\_\_\_\_), then you know that you can be only in interpretations that \_\_\_\_\_

It would be nice to know what else is true (i.e. what is \_\_\_\_\_ by the knowledge base)

# **PDCL syntax / semantics / proofs**

Consider a domain represented by three propositions: *p*, *q*, *r* 

$$KB = \begin{cases} q.\\ r.\\ p \leftarrow q \wedge r. \end{cases}$$

What are the models? What is logically entailed?

### Interpretations



Prove  $G = (q \land p)$  is entailed by the KB

# **PDCL syntax / semantics / proofs**

$$KB = \begin{cases} p \leftarrow q \land r. \\ q. \end{cases}$$

### What are the models? What is logically entailed ?

#### Interpretations



Prove  $G = (q \land p)$  is entailed by the KB? We can't

## **The Bottom-Up Proof Procedure**

Based on generalized modus ponens

*KB* ⊢ *G* if  $G \subseteq C$  at the end of this procedure:

- C :={};
- repeat
- **select** clause " $h \leftarrow b_1 \land \dots \land b_m$ " in *KB* such that  $b_i \in C$  for all *i*, and  $h \notin C$ ;
- C := C U { h };

until no more clauses can be selected.

## **Learning Goals for this class**

### You can:

 Prove that the Bottom-Up proof procedure is sound

 Prove that the Bottom-Up proof procedure is complete

- Recap
- Soundness and Completeness
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

### **Soundness and Completeness**

Generic Soundness of proof procedure: If G can be proved by the procedure (KB  $\vdash$  G) then G is logically entailed by the KB (KB  $\models$  G)

Generic Completeness of proof procedure: If G is logically entailed by the KB (KB  $\models$  G) then G can be proved by the procedure (KB  $\vdash$  G)

In other words:

- Everything derived from a sound proof procedure is entailed by the KB
- Everything entailed by the KB can be derived from a complete proof procedure

### An exercise for you Compare two "proof procedures" for PDCL

- X.  $C_X = \{AII \text{ clauses in KB with empty bodies}\}$
- Y.  $C_Y = \{AII \text{ atoms in } KB\}$





A. Both X and Y are sound and complete

B. Both X and Y are neither sound nor complete

C. X is sound only and Y is complete only

D. X is complete only and Y is sound only

E. I only care if it's on the final exam

- Recap
- Soundness and Completeness
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

# Soundness of bottom-up proof procedure

*KB* ⊢ *G* if  $G \subseteq C$  at the end of this procedure:

 $C := \{\};$ 

#### repeat

- **select** clause " $h \leftarrow b_1 \land \dots \land b_m$ " in *KB* such that  $b_i \in C$  for all *i*, and  $h \notin C$ ;
- C := C U { h };

until no more clauses can be selected.

# So BU is sound, if all the atoms in C are logically entailed by the KB

# Soundness of bottom-up proof procedure

### Suppose this is not the case.

- Let h be the first atom added to C that is not entailed by KB (i.e., that's not true in every model of KB)
- 2. Suppose *h* isn't true in model *M* of *KB*.
- Since *h* was added to C, there must be a clause in KB of the form: h ← b<sub>1</sub> ^ ... ^ b<sub>m</sub>
- 4. Each *b<sub>i</sub>* is true in *M* (*because of 1.*). *h* is false in *M*. So the clause is false in *M*.
- 5. Therefore *M* is not a model
- 6. Contradiction! thus no such h exists.

- Recap
- Soundness and Completeness
- Soundness of Bottom-up Proofs
- Completeness of Bottom-up Proofs

## **Completeness of Bottom Up**

Generic Completeness of proof procedure: If G is logically entailed by the KB (KB ⊧ G) then G can be proved by the procedure (KB ⊦ G)

### Sketch of our proof:

- 1. Suppose  $KB \models G$ . Then G is true in all models of KB.
- 2. Thus G is true in any particular model of KB.
- 3. We will define a particular model such that if G is true in that model, G is proved by the bottom up algorithm.
- 4. Thus  $KB \vdash_{BU} G$ .

### Let's work on step 3

- 3. We will define a model such that if G is true in that model, G is proved by the bottom up algorithm.
- 3.1 We will define a particular interpretation *I* such that iff G is true in *I*, G is proved by the bottom up algorithm.
- 3.2 We will then show that *I* is a model

## Let's work on step 3.1

3.1 Define interpretation I so that if G is true in I, Then  $G \subseteq C$ .

Let *I* be the interpretation in which every element of *C* is **true** and every other atom is **false**.



## Let's work on step 3.2

Claim: I is a model of KB (we'll call it the minimal model).

**Proof:** Assume that *I* is not a model of *KB*.

- Then there must exist some clause h ← b<sub>1</sub> ∧ ... ∧ b<sub>m</sub> in KB (having zero or more b<sub>i</sub>'s) which is false in I.
- The only way this can occur is if b<sub>1</sub> ... b<sub>m</sub> are true in I (i.e., are in C) and h is false in I (i.e., is not in C)
- But if each *b<sub>i</sub>* belonged to *C*, Bottom Up would have added *h* to *C* as well.
- So, there can be no clause in the KB that is false in interpretation *I* (which implies the claim :-)

### Completeness of Bottom Up (proof summary)

### If $KB \models G$ then $KB \models_{BU} G$

- Suppose  $KB \models G$ .
- Then G is true in all models of KB
- Thus *G* is true in the minimal model
- Thus  $G \subseteq C$
- Thus *G* is proved by BU
- i.e., KB Hau G

### **Next class**

- Using PDC Logic to model the electrical domain
- Reasoning in the electrical domain
- Top-down proof procedure (as Search!)
- Datalog