Representational Dimensions

CPSC 322 Lecture 2

Lecture Overview

- Recap from last lecture
- Representation and Reasoning
- An Overview of This Course
- Further Dimensions of Representational Complexity

Agents acting in an environment

Lecture Overview

- Recap from last lecture
- Representation and Reasoning
- An Overview of This Course
- Further Dimensions of Representational Complexity

What do we need to represent ?

What do we need to represent ?

- The environment /world : What different configurations (states / possible worlds) can the world be in, and how do we denote them?
- Chessboard, Info about a patient, Robot Location
- How the world works (we will focus on)
 - **Constraints:** can only write one exam at once
 - **Causal:** what are the causes and the effects of brain disorders?
 - Actions: preconditions and effects: when can I press this button? What happens if I press it?

Corresponding Reasoning Tasks / Problems

- Constraint Satisfaction Find state that satisfies set of constraints. E.g., What is a feasible schedule for final exams?
- Answering Query Is a given proposition true/likely given what is known? E.g., Does this patient suffer from chicken pox?
- Planning Find sequence of actions to reach a goal state / maximize utility. E.g., Navigate through an environment to reach a particular location. Collect gems and avoid monsters

Representation and Reasoning System

- A (**representation**) **language** in which the environment and how it works can be described
- Computational (reasoning) procedures to compute a solution to a problem in that environment (an answer, a sequence of actions)

The choice of an appropriate R&R system depends on a key property of the environment and of the agent's knowledge

Deterministic vs. Stochastic (Uncertain) Domains

- **Sensing Uncertainty**: Can the agent fully observe the current state of "the world"?
- Effect Uncertainty: Does the agent know for sure what the direct effects of its actions are?

Poker

Chess

Doctor Diagnosis/Treatment

Clicker Question: Chess and Poker

Stochastic if the answer to at least one of these is "No"

- Sensing Uncertainty: Can the agent fully observe the current state of the world?
- Effect Uncertainty: Does the agent know for sure what the direct effects of its actions are?
- A. Poker and Chess are both stochastic
- B. Chess is stochastic and Poker is deterministic
- C. Poker and Chess are both deterministic
- D. Chess is deterministic and Poker is stochastic
- E. Quit trying to make me think about stuff

Deterministic vs. Stochastic Domains

Historically, AI has been divided into two camps: those who prefer representations based on **logic** and those who prefer **probability**.

A few years ago, **CPSC 322** covered logic, while **CPSC 422** introduced probability:

- now we introduce both representational families in 322, and 422 goes into more depth
- this should give you a better idea of what's included in AI

Some of the most exciting current research in AI is actually building bridges between these camps

Lecture Overview

- Recap from last lecture
- Representation and Reasoning
- An Overview of This Course
- Further Dimensions of Representational Complexity

R&R systems we'll cover in this course

		Environment	
Problem		Deterministic	Stochastic
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search	
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination

Representation Reasoning Technique

Lecture Overview

- Recap from last lecture
- Representation
- An Overview of This Course
- Further Dimensions of Representational Complexity

Dimensions of Representational Complexity

We've already discussed:

- Static (constraints, query) vs. Sequential (planning)
- Deterministic versus stochastic domains

Some other important dimensions of complexity:

- Explicit states, features/propositions, or relations
- Flat or hierarchical
- Knowledge given versus knowledge learned from experience
- Goals versus complex preferences
- Single-agent vs. multi-agent

Explicit State or features/propositions

How do we model the environment?

- You can enumerate the **states** of the world.
- A state can be described in terms of **features**
 - Often it is more natural to describe states in terms of assignments of values to features (variables).
 - 30 binary features (also called propositions) can represent 2³⁰= 1,073,741,824 states.

Mars Explorer Example

{*Weather, Temperature, LocX, LocY*} *How many states?*

Relations

- States can be described in terms of **objects** and **relationships**.
- There is a feature/proposition for each relationship on each "possible" tuple of individuals.

University Example

Registered(S,C) = { T, F } \leftarrow relationship

Students = { s1, s2, s3, s4 } \leftarrow objects

Courses = { c1, c2, c3 } \leftarrow objects

Number of propositions:

Number of possible states:

Relations (cont.)

One binary relation, *likes(x,y)*, and 9 individuals. How many states?

- A. 81²
- B. 2⁹
- C. 2⁸¹
- D. 10⁹
- E. 42

Flat or hierarchical

- Is it useful to model the whole world at the same level of abstraction?
- One level of abstraction: flat
- Multiple levels of abstraction: hierarchical
- Example: Planning a trip to a resort in Cancun, Mexico

Knowledge given vs. knowledge learned from experience

• The agent is provided with a model of the world once and for all

OR

- The agent can learn how the world works based on experience
 - in this case, the agent often still does start out with some prior knowledge

Goals versus (complex) preferences

An agent may have a goal that it wants to achieve

- e.g., there is some state or set of states of the world that the agent wants to be in
- e.g., there is some proposition or set of propositions that the agent wants to make true
- An agent may have **preferences**
 - e.g., there is some preference/utility function that describes how happy the agent is in each state of the world; the agent's task is to reach a state which makes it as happy as possible
- Preferences can be **complex**...

What beverage to order?

- The sooner I get one the better
- Cappuccino better than Espresso
- But Espresso is faster to make

Single-agent vs. Multiagent domains

- Does the environment include other agents?
- Everything we've said so far presumes that there is only one agent in the environment.
- If there are other agents whose actions affect us, it can be useful to explicitly model their goals and beliefs rather than considering them to be part of the environment
- Other Agents can be: cooperative, competitive, or a bit of both

Dimensions of Representational Complexity in CPSC322

- Reasoning tasks (Constraint Satisfaction / Logic&Probabilistic Inference / Planning)
- Deterministic versus stochastic domains
 Some other important dimensions of complexity:
- Explicit state or features or relations
- Flat or hierarchical
- Knowledge given versus knowledge learned from experience
- Goals vs. (complex) preferences
- Single-agent vs. multi-agent

