Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs

CPSC 322 Lecture 19

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

Logics as a R&R system

live_wire1 ← on_switch1 ^ live_wire3

reason about it

if the agent knows on_switch1 and live_wire3, it should be able to infer on_l1

Propositional (Definite Clauses) Logic: Syntax

We start from a restricted form of Prop. Logic

Only two kinds of statements

- that a proposition is true
- that a proposition is true if one or more other propositions are true

Learning Goals for today's class

You can:

- Verify whether an **interpretation** is a **model** of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a knowledge base.
- Define/read/write/trace/debug the bottom-up proof procedure.

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

Propositional Definite Clauses Semantics: Interpretation

Semantics allows you to relate the symbols in the logic to the domain you're trying to model. An **atom** can be **T** or **F**

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

So an interpretation is just a **possible world**

PDC Semantics: Body

We can use the **interpretation** to determine the truth value of **clauses** and **knowledge bases**:

Definition (truth values of statements): A body $b_1 \wedge b_2$ is true in *I* if and only if b_1 is true in *I* and b_2 is true in *I*.

	р	q	r	S	p ^ r	p ^ r ^ s
I ₁	true	true	true	true	Т	Т
l ₂	false	false	false	false	F	F
l ₃	true	true	false	false	F	F
I_4	true	true	true	false		
I_5	true	true	false	true		

PDC Semantics: definite clause

Definition (truth values of statements cont'): A rule $h \leftarrow b$ is false in *I* if and only if *b* is true in *I* and *h* is false in *I*.

	р	q	r	S	p ← s	$s \leftarrow q^r$
I ₁	true	true	true	true	Ť	Т
I_2	false	false	false	false	Т	Т
I_3	true	true	false	false	Т	Т
I_4	true	true	true	false	Т	F

In other words: "if b is true I am claiming that h must be true, otherwise I am not making any claim"

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

	р	q	r	S	
I ₁	true	true	false	false	i ⊳licker .

Which of the three KB below are True in I_1 ?

Example: Models

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

Т

Definition (model) A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

	р	q	r	S
I ₁	true	true	true	true
I_2	false	false	false	false
l ₃	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Which interpretations are models?

A. 1 only
B. 1, 3 and 5
C. 3 and 4
D. 1, 3 and 4
E. none

i⊧clicker.

Logical Consequence

Definition (logical consequence)

If *KB* is a set of clauses and *G* is a conjunction of atoms, *G* is a logical consequence of *KB*, written $KB \models G$, if *G* is *true* in every model of *KB*.

- we also say that *G* logically follows from *KB*, or that *KB* entails *G*.
- In other words, $KB \models G$ if there is no interpretation in which KB is *true* and G is *false*.

Example: Logical Consequences

Т

···· / ···· ··· ··· ···

	р	q	r	S	
I ₁	true	true	true	true	$ \sum_{VP} p \leftarrow q. $
I ₂	true	true	true	false	$MODe^{-} \qquad KD = \begin{cases} q. \\ r < r \end{cases}$
I_3	true	true	false	false	$(\land \leftarrow S.$
I_4	true	true	false	true	
I_5	false	true	true	true	
I_6	false	true	true	false	Of the 2 ⁴ interpretations,
I ₇	false	true	false	false	Unity 5 are models
1 8	false	true	false	true	

Which of the following is/are true?

• *KB* ⊧ *p*, *KB* ⊧ *q*, *KB* ⊧ *r*, *KB* ⊧ *s*

Slide 14

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

One simple way to prove that G logically follows from a KB

- Collect all the models of the KB
- Verify that G is true in all those models

Any problem with this approach?

 The goal of proof theory is to find proof procedures that allow us to prove that a logical formula follows from (i.e. is logically entailed by) a KB while avoiding the above

Soundness and Completeness

- Suppose I tell you I have a proof procedure for PDCL; what do I need to show you in order for you to trust my procedure?
 - KB
 G means G can be derived by my proof procedure from KB.
 - Recall KB & G means G is true in all models of KB.

Definition (soundness)

A proof procedure is sound if $KB \vdash G$ implies $KB \models G$.

Definition (completeness)

A proof procedure is complete if $KB \models G$ implies $KB \vdash G$.

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of *modus ponens*:

If " $h \leftarrow b_1 \land \dots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then h can be derived.

You are forward chaining on this clause.

(This rule also covers the case when *m=0* - i.e., when the entire clause consists only of an atom)

Bottom-up proof procedure

KB ⊢ *G* if $G \subseteq C$ at the end of this procedure:

- *C* :={};
- repeat
- **select** clause " $h \leftarrow b_1 \land \dots \land b_m$ " in KB such that $b_i \in C$ for all *i*, and $h \notin C$;
- C := C U { h };

until no more clauses can be selected.

$$\begin{array}{lll} \mathsf{KB:} & \mathsf{e} \leftarrow a \land b \\ & \mathsf{e} \leftarrow d \\ & a \\ & b \leftarrow a \\ & d \leftarrow g \end{array}$$

← in-class Activity

Bottom-up proof procedure: Example KB

$$z \leftarrow f \land e$$

 $q \leftarrow f \land g \land z$

 $e \leftarrow a \land b$

a

b

r

f

C :={}; repeat select clause " $h \leftarrow b_1 \land ... \land b_m$ " in KB such that $b_i \in C$ for all *i*, and $h \notin C$; C := C ∪ { h } until no more clauses can be selected.

i⊧clicker.

Next class

(still section 5.3)

- Soundness and Completeness of Bottom-up Proof Procedure
- Using PDC Logic to model the electrical domain
- Reasoning in the electrical domain