Stochastic Local Search

CPSC 322 Lecture 14

Successful application of SLS

Scheduling of Hubble Space Telescope

"multistart stochastic repair"

Johnston, Mark D., and Glenn Miller. "Spike: Intelligent scheduling of hubble space telescope observations." *Intelligent Scheduling* (1994): 391-422.

Lecture Overview

- Recap Local Search in CSPs
- Stochastic Local Search (SLS)
- Comparing SLS algorithms

Local Search: Summary

- A useful method for large CSPs
 - Start from a possible world (often randomly chosen)
 - Generate some neighbors ("similar" possible worlds)
 - Move from current node to a neighbor, selected to minimize/maximize a scoring function which combines:

 Information about how many constraints are violated
 Information about the cost/quality of the solution (you want the best solution, not just a solution)

Problems with Hill Climbing

- Local Maxima
- Plateaus & Shoulders

Learning Goals for today's class

You can:

- Implement SLS with
 - random steps (1-step, 2-step versions)
 - random restart
- Compare SLS algorithms with runtime distributions

Lecture Overview

- Recap Local Search in CSPs
- Stochastic Local Search (SLS)
- Comparing SLS algorithms

Stochastic Local Search

GOAL: We want our local search

- to be guided by the scoring function
- Not to get stuck in local maxima/minima, plateaus etc.

SOLUTION: We can alternate

- a) Hill-climbing steps
- b) Random steps: move to a random neighbor.
- C) Random restart: reassign random values to all variables.

Which randomized variant of Greedy Descent would work best in each of these two search spaces?

Which randomized method would work best in each of the these two search spaces?

- But these examples are simplified extreme cases for illustration
 - in practice, you don't know what your search space looks like
- Usually integrating both kinds of randomization works best

Random Steps (Walk): one-step

Let's assume that neighbors are generated as

- assignments that differ in one variable's value
- How many neighbors there are given n variables with domains with d values? *n(d-1)*
- One strategy to add randomness to the selection of the variable-value pair. Sometimes choose the pair:
- 1. According to the scoring function
- 2. A random one
- Eg. in 8-queen
- How many neighbors?
- 1. Choose one of the best neighbors
- 2. Choose a random neighbor

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

- Sometimes select variable:
 - 1. that participates in the largest number of conflicts.
 - 2. at random, any variable that participates in some conflict
 - 3. at random
- Sometimes choose value

 a) That minimizes # of conflicts
 b) at random

Example: SLS for RNA secondary structure design

RNA strand made up of four bases: cytosine (C), guanine (G), adenine (A), and uracil (U) 2D/3D structure RNA strand folds into is important for its function

Predicting structure for a strand is "easy": O(n³)

But what if we want a strand that folds into a certain structure?

- Local search over strands
 - ✓ Search for one that folds into the right structure
- Evaluation function for a strand
 - ✓ Run O(n^3) prediction algorithm
 - Evaluate how different the result is from our target structure
 - Only defined implicitly, but can be evaluated by running the prediction algorithm

External base

Example: Local search algorithm RNA-SSD developed at UBC [Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

CSP/logic: formal verification

Hardware verification (e.g., IBM)

Software verification (small to medium programs)

Most progress in the last 10 years based on: Encodings into propositional satisfiability (SAT)

Stochastic Local search (SLS) advantage: Online setting

- When the problem can change (particularly important in scheduling)
- E.g., schedule for airline: thousands of flights and thousands of personnel assignment
 - Storm can render the schedule infeasible
- Goal: Repair with minimum number of changes
- This can be easily done with a local search starting form the current schedule
- Other techniques usually:
 - require more time
 - might find solution requiring many more changes Slide 15

SLS Advantage: anytime algorithms

- When should the algorithm be stopped?
 - When a solution is found (e.g. no constraint violations)
 - Or when we are out of time: you have to act NOW
 - Anytime algorithm:
 - ✓ maintain the node with best h found so far (the "incumbent")
 - \checkmark given more time, can improve its incumbent

SLS limitations

- Typically no guarantee to find a solution even if one exists
 - SLS algorithms can sometimes stagnate
 ✓ Get caught in one region of the search space and never terminate
 - Very hard to analyze theoretically
- Not able to show that no solution exists
 - SLS simply won't terminate
 - You don't know whether the problem is infeasible or the algorithm has stagnated

Lecture Overview

- Recap Local Search in CSPs
- Stochastic Local Search (SLS)
- Comparing SLS algorithms

Evaluating SLS algorithms

- SLS algorithms are randomized
 - The time taken until they solve a problem is a random variable
 - It is entirely normal to have runtime variations of 2 orders of magnitude in repeated runs!
 - \checkmark E.g. 0.1 seconds in one run, 10 seconds in the next one
 - ✓ On the same problem instance (only difference: random seed)
 - Sometimes SLS algorithm doesn't even terminate at all: stagnation
- If an SLS algorithm sometimes stagnates, what is its mean runtime (across many runs)?
 - Infinity!
 - In practice, one often counts timeouts as some fixed large value X
 - Still, summary statistics, such as **mean** run time or **median** run time, don't tell the whole story
 - E.g. would penalize an algorithm that often finds a solution quickly but sometime stagnates

First attempt at SLS algorithm evaluation

- How can you compare three algorithms (A, B, C) when
 - A. solves the problem 30% of the time very quickly but doesn't halt for the other 70% of the cases
 - B. solves 60% of the cases reasonably quickly but doesn't solve the rest
 - C. solves the problem in 100% of the cases, but slowly?

% of solved runs

100%

Mean runtime / steps of solved runs Slide 21

Runtime Distributions are even more effective

Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.

• log scale on the x axis is commonly used

Comparing runtime distributions

x axis: runtime (or number of steps) y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Comparing runtime distributions

- Which algorithm has the best median performance?
 - i.e., which algorithm takes the fewest number of steps to be successful in 50% of the cases?
 A blue Device C groop

Comparing runtime distributions

x axis: runtime (or number of steps) y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Runtime distributions in Alspace

- Let's look at some algorithms and their runtime distributions:
 - 1. Greedy Descent
 - 2. Random Sampling
 - 3. Random Walk
 - 4. Greedy Descent with random walk

• Scheduling problem 2 in Alspace:

What are we going to look at in Alspace

During two-stage selection:

- Sometimes select variable:
 - that participates in the largest number of conflicts.
 - at random, any variable that participates in some conflict.
 - 3) at random
- Sometimes choose value:
 - a) That minimizes # of conflicts
 - b) at random

Alspace terminology

Random sampling	restarts
Random walk	3b
Greedy Descent	1a
Greedy Descent Min Conflict	2a
Greedy Descent with random walk	1-2 a-b

Stochastic Local Search

- Key Idea: combine greedily improving moves with randomization
 - As well as improving steps we can allow a "small probability" of:
 - Random steps: move to a random neighbor.
 - Random restart: reassign random values to all variables.
 - Always keep best solution found so far
 - Stop when
 - Solution is found (in vanilla CSP, all constraints satisfied)
 - Run out of time (return best solution so far)

Next:

Finish CSPs: More SLS variants Ch. 4.7.3, 4.8