
Slide 1

Stochastic Local Search
CPSC 322 Lecture 14

Slide 2

Successful application of SLS

Scheduling of Hubble Space Telescope

“multistart stochastic repair”

Johnston, Mark D., and Glenn Miller. "Spike: Intelligent

scheduling of hubble space telescope observations.“

Intelligent Scheduling (1994): 391-422.

Slide 3

Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

Slide 4

Local Search: Summary

• A useful method for large CSPs

• Start from a possible world (often randomly chosen)

• Generate some neighbors (“similar” possible worlds)

• Move from current node to a neighbor, selected to

minimize/maximize a scoring function which combines:

o Information about how many constraints are violated

o Information about the cost/quality of the solution (you want the

best solution, not just a solution)

CPSC 322, Lecture 5 Slide 5

Problems with Hill Climbing

• Local Maxima

• Plateaus & Shoulders

(Plateau)

Slide 6

Learning Goals for today’s class

You can:

• Implement SLS with

• random steps (1-step, 2-step versions)

• random restart

• Compare SLS algorithms with runtime

distributions

Slide 7

Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

Slide 8

Stochastic Local Search

GOAL: We want our local search

• to be guided by the scoring function

• Not to get stuck in local maxima/minima, plateaus etc.

SOLUTION: We can alternate
a) Hill-climbing steps

b) Random steps: move to a random neighbor.

c) Random restart: reassign random values to all
variables.

Which randomized variant of Greedy Descent would work
best in each of these two search spaces?

A. random steps best on X

random restart best on Y

B. random steps best on Y

random restart best on X

C. The two methods are equivalent on X and Y

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

X Y

D. Use the Force, Luke

Which randomized method would work best in each of the
these two search spaces?

• But these examples are simplified extreme cases
for illustration

- in practice, you don’t know what your search
space looks like

• Usually integrating both kinds of randomization
works best

Evaluation function

State Space (1 variable)

Evaluation function

State Space

(1 variable)

X Y

Slide 11

Random Steps (Walk): one-step

Let’s assume that neighbors are generated as
• assignments that differ in one variable's value

How many neighbors there are given n variables with
domains with d values? n(d-1)

One strategy to add randomness to the
selection of the variable-value pair.
Sometimes choose the pair:

1. According to the scoring function

2. A random one

Eg. in 8-queen

• How many neighbors?

1. Choose one of the best neighbors

2. Choose a random neighbor

Slide 12

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

• Sometimes select variable:
1. that participates in the largest number of conflicts.

2. at random, any variable that participates in some
conflict

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

0

2

2

3

3

2

3

13

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function

Predicting structure for a
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure?

• Local search over strands

✓ Search for one that folds
into the right structure

• Evaluation function for a strand

✓ Run O(n3) prediction algorithm

✓ Evaluate how different the result is
from our target structure

✓ Only defined implicitly, but can be
evaluated by running the prediction algorithm

RNA strand
GUCCCAUAGGAUGUCCCAUAGGA

Secondary structure

Easy Hard

Example: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

CSP/logic: formal verification

14

Hardware verification Software verification

(e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:

Encodings into propositional satisfiability (SAT)

• This can be easily done with a local search starting

form the current schedule

• Other techniques usually:

• require more time

• might find solution requiring many more changesSlide 15

Stochastic Local search (SLS)

advantage: Online setting

• When the problem can change (particularly

important in scheduling)

• E.g., schedule for airline: thousands of flights and

thousands of personnel assignment

• Storm can render the schedule infeasible

• Goal: Repair with minimum number of changes

SLS Advantage: anytime algorithms

• When should the algorithm be stopped ?

• When a solution is found

(e.g. no constraint violations)

• Or when we are out of time: you have to act NOW

• Anytime algorithm:

✓maintain the node with best h found so far (the “incumbent”)

✓given more time, can improve its incumbent

SLS limitations

• Typically no guarantee to find a solution even if one

exists

• SLS algorithms can sometimes stagnate

✓Get caught in one region of the search space and never terminate

• Very hard to analyze theoretically

• Not able to show that no solution exists

• SLS simply won’t terminate

• You don’t know whether the problem is infeasible or the

algorithm has stagnated

Slide 18

Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms

Evaluating SLS algorithms
• SLS algorithms are randomized

• The time taken until they solve a problem is a random variable

• It is entirely normal to have runtime variations of 2 orders of

magnitude in repeated runs!

✓E.g. 0.1 seconds in one run, 10 seconds in the next one

✓On the same problem instance (only difference: random seed)

✓Sometimes SLS algorithm doesn’t even terminate at all:

stagnation

• If an SLS algorithm sometimes stagnates, what is its mean

runtime (across many runs)?

• Infinity!

• In practice, one often counts timeouts as some fixed large value X

• Still, summary statistics, such as mean run time or median run

time, don't tell the whole story

✓ E.g. would penalize an algorithm that often finds a solution quickly but

sometime stagnates

Slide 21

First attempt at SLS algorithm evaluation

• How can you compare three algorithms (A, B, C) when

A. solves the problem 30% of the time very quickly but doesn't halt

for the other 70% of the cases

B. solves 60% of the cases reasonably quickly but doesn't solve the

rest

C. solves the problem in 100% of the cases, but slowly?

100%

Mean runtime / steps

of solved runs

% of solved runs

Slide 22

Runtime Distributions are even more

effective
Plots runtime (or number of steps) and the proportion (or

number) of the runs that are solved within that runtime.

• log scale on the x axis is commonly used

Fraction of

solved runs,

i.e.

P(solved in n steps)

n (# of steps)

Comparing runtime distributions

x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Which algorithm is most likely to

solve the problem within 7 steps? A. blue C. greenB. red

Fraction of

solved runs,

i.e.

P(solved in n steps)

n (# of steps)

Comparing runtime distributions
• Which algorithm has the best median performance?

• i.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?

Fraction of

solved runs, i.e.

P(solved by

this # of

steps/time)

of steps

A. blue C. greenB. red

Comparing runtime distributions

x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

28% solved

after 10 steps,

then stagnate

57% solved

after 80 steps,

then stagnate

Slow, but does

not stagnateCrossover point:

if we run longer than 80

steps, green is the

best algorithm

If we run fewer than

10 steps, red is the

best algorithm

Fraction of

solved runs,

i.e.

P(solved in n steps)

n (# of steps)

Runtime distributions in AIspace

• Let’s look at some algorithms and their runtime

distributions:

1. Greedy Descent

2. Random Sampling

3. Random Walk

4. Greedy Descent with random walk

• Scheduling problem 2 in AIspace:

Slide 27

What are we going to look at in AIspace

AIspace terminology

Random sampling

Random walk

Greedy Descent

Greedy Descent Min
Conflict

Greedy Descent with
random walk

…..

restarts

3b

1a

2a

1-2 a-b

During two-stage selection:
• Sometimes select variable:

1) that participates in the
largest number of conflicts.

2) at random, any variable
that participates in some
conflict.

3) at random

• Sometimes choose value:
a) That minimizes # of

conflicts
b) at random

Slide 28

Stochastic Local Search

• Key Idea: combine greedily improving moves with

randomization

• As well as improving steps we can allow a “small

probability” of:

• Random steps: move to a random neighbor.

• Random restart: reassign random values to all

variables.

• Stop when

• Solution is found (in vanilla CSP, all constraints satisfied)

• Run out of time (return best solution so far)

• Always keep best solution found so far

Slide 29

Next:

• Finish CSPs: More SLS variants Ch. 4.7.3,
4.8

