
Slide 1

CSPs: Arc Consistency

& Domain Splitting
CPSC 322 Lecture 12

Slide 2

Lecture Overview

• Recap (CSP as search & Constraint

Networks)

• Arc Consistency Algorithm

• Domain splitting

Slide 3

Standard Search vs. Specific R&R

Constraint Satisfaction (Problems):
• State: assignments of values to a subset of the variables

• Successor function: assign values to a “free” variable

• Goal test: set of constraints

• Solution: possible world that satisfies the constraints

• Heuristic function: none (all solutions at the same distance
from start)

Planning :

• State

• Successor function

• Goal test

• Solution

• Heuristic function

Query

• State

• Successor function

• Goal test

• Solution

• Heuristic function

Slide 4

Recap: We can do much better..

• Build a constraint network:

• Enforce domain and arc consistency

Slide 5

Learning Goals for today’s class

You can:

• Define/read/write/trace/debug the arc consistency

algorithm. Compute its complexity and assess its

possible outcomes

• Define/read/write/trace/debug domain splitting

and its integration with arc consistency

Slide 6

Lecture Overview

• Recap

• Arc Consistency Algorithm

• Abstract strategy

• Details

• Complexity

• Interpreting the output

• Domain Splitting

Slide 7

Arc Consistency Algorithm: high level

strategy

• Consider the arcs in turn, making each arc
consistent.

• BUT, arcs may need to be revisited when….?

• NOTE - Regardless of the order in which arcs are
considered, we will terminate with the same result

Slide 8

What arcs need to be revisited?

When we reduce the domain of a variable X to make

an arc X,c arc consistent, we add……

You do not need to add other arcs X,c' , c  c’

• If an arc X,c' was arc consistent before, it will still be arc

consistent (in the “for all” we'll just check fewer values)

every arc Z,c' where c'

involves Z and X:

Z1

Z2

Z3

X
{x1,x2,x3,x4}

Yc

c1

c2

c3

not this

one

Slide 9

TDA  all arcs in constraint network

while TDA is not empty:

• select arc a from TDA

• if a is not consistent:

• make a consistent

• add arcs to TDA that may now be

inconsistent

Arc Consistency Pseudocode

Arc consistency algorithm (for binary

constraints)
Procedure GAC(V,dom,C)

Inputs

V: a set of variables

dom: a function such that dom(X) is the domain of variable X

C: set of constraints to be satisfied

Output

arc-consistent domains for each variable

Local

DX is a set of values for each variable X

TDA is a set of arcs

1: for each variable X do

2: DX ←dom(X)

3: TDA ←{〈X,c〉| X ∈ V, c ∈ C and X ∈ scope(c)}

4: while (TDA  {})

5: select 〈X,c〉 ∈TDA

6: TDA ←TDA \ {〈X,c〉}
7: NDX ←{x| x ∈ DX and  y ∈ DY s.t. (x, y) satisfies c}

8: if (NDX  DX) then

9: TDA ←TDA ∪ { 〈Z,c'〉 | X ∈ scope(c'), c'  c, Z ∈ scope(c') \ {X} }

10: DX ←NDX

11: return {DX| X is a variable}

Scope of constraint c is

the set of variables

involved in that

constraint

NDX: values x for X for

which there is a value for

y supporting x

X’s domain changed:

 arcs (Z,c’) for variables

Z sharing a

constraint c’ with X are

added to TDA

TDA:

ToDoArcs,

blue arcs

in AIspace

If arc was

inconsistent
Domain is reduced

Arc Consistency Algorithm:

Complexity
• Let’s determine Worst-case complexity of this

procedure
• let the max size of a variable domain be d

• let the number of variables be n

• Let all constraints be binary

• The max number of binary constraints is ?

A. n * d

B. d * d

C. (n * (n-1)) / 2

D. (n * d) / 2

Arc Consistency: Complexity

• Let’s determine Worst-case complexity of this
procedure (compare with DFS, which is dn)
• let the max size of a variable domain be d

• let the number of variables be n

• Let all constraints be binary

• How many times can the same arc be inserted in
the ToDoArc list?

A. n B. d C. n * d D. d2

• How many steps are involved in checking the
consistency of an arc?

A. n2 B. d C. n * d D. d2

Slide 13

Arc Consistency Algorithm:

Complexity

• Let’s determine worst-case complexity of this
procedure
• let the max size of a variable domain be d

• let the number of variables be n

• The max number of binary constraints is ________

• How many times can the same arc be inserted in
the ToDoArc list? _________

• How many steps are involved in checking the
consistency of an arc? ________

• Overall complexity: O(n2d3)

Slide 14

Arc Consistency Algorithm:

Interpreting Outcomes

• Three possible outcomes (when all arcs are arc

consistent):

• One domain is empty → no solution

• Each domain has a single value → unique solution

• Some domains have more than one value → zero or

more solutions

• in this case, arc consistency isn't enough to solve the problem:

we still need to perform search

Slide 15

Lecture Overview

• Recap

• Arc Consistency

• Domain splitting

Slide 16

Domain splitting (or case analysis)

• Arc consistency ends: Some domains have more

than one value → may or may not be a solution

A. Apply Depth-First Search with Pruning

B. Split the problem in a number of (eg. two) disjoint

cases

• The set of all solutions is….

• Disadvantage : you need to keep all these

CSPs around (vs. simpler/smaller states of DFS)

Slide 17

But what is the advantage?

• Simplify the problem using arc consistency

• No unique solution i.e., for at least one var, |dom(X)|>1

• Split X

• For all the splits

✓Restart arc consistency on arcs <Z, r(Z,X)>

these are the ones that are possibly inconsistent

By reducing dom(X) we may be able to run AC again

Slide 18

Searching by domain splitting

CSP; apply AC
some domains have multiple values

split X

CSP1; apply AC
some domains have multiple…

split Y

CSP2; apply AC
some domains have multiple…

split Z

More formally: Arc consistency with domain splitting

as another formulation of CSP as search

• Start state: run AC on vector of original domains (dom(V1),

…, dom(Vn))

• States: “remaining” domains (D(V1), …, D(Vn)) for the vars

with D(Vi)  dom(Vi) for each Vi

• Successor function:

• split one of the domains + run arc consistency

• Goal state: vector of unary domains that satisfies all

constraints

• That is, only one value left for each variable

• The assignment of each variable to its single value is a model

• Solution: any goal state

19

• 3 variables: A, B, C

• Domains: all {1,2,3,4}

• A=B, B=C, AC

• Let’s trace

arc consistency + domain splitting

for this network for “Simple Problem 2” in AIspace

Domain Splitting in Action:

20

• Local search:

• Many search spaces for CSPs are simply too big

for systematic search (but solutions are densely

distributed).

• Keep only the current state (or a few)

• Use very little memory / often find reasonable solution

• ….. Local search for CSPs Slide 21

Next Class (Chpt. 4.7)

• Work on CSP Practice Ex:
• Exercise 4.A: arc consistency

• Exercise 4.B: constraint satisfaction problems

http://www.aispace.org/exercises/exercise4-a-1.shtml
http://www.aispace.org/exercises/exercise4-b-1.shtml

Slide 22

K-ary vs. binary constraints

• Not a topic for this course but if you are curious about

it…

• Wikipedia example clarifies basic idea…

• http://en.wikipedia.org/wiki/Constraint_satisfaction_dual_problem

• The dual problem is a reformulation of a constraint

satisfaction problem expressing each constraint of the original

problem as a variable. Dual problems only contain binary

constraints, and are therefore solvable by algorithms tailored

for such problems.

• See also: hidden transformations

http://en.wikipedia.org/wiki/Constraint_satisfaction_problem
http://en.wikipedia.org/wiki/Binary_constraint
http://en.wikipedia.org/wiki/Algorithm

