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CSPs: Search and Arc 

Consistency
CPSC 322 Lecture 11
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Lecture Overview

• Recap CSPs

• Generate-and-Test

• Search

• Consistency

• Arc Consistency
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Constraint Satisfaction Problems: 

definitions

Definition (Constraint Satisfaction Problem)

A constraint satisfaction problem consists of

• a set of variables

• a domain for each variable

• a set of constraints

Definition (model / solution)

A model of a CSP is an assignment of values 

to variables (i.e. possible worlds) that 

satisfies all of the constraints.
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Learning Goals for today’s class

You can:

• Implement  the Generate-and-Test Algorithm. 

Explain its disadvantages.

• Solve a CSP by search  (specify neighbors, 

states, start state, goal state). Compare strategies 

for CSP search. Implement pruning for DFS 

search in a CSP.  

• Build a constraint network for a set of constraints.

• Verify whether a network is arc-consistent.

• Make an arc arc-consistent.
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Lecture Overview

• Recap CSPs

• Generate-and-Test

• Search 

• Consistency

• Arc Consistency
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Generate-and-Test Algorithm
• Algorithm:

• Generate possible worlds one at a time

• Test them to see if they violate any constraints

• This procedure is able to solve any CSP

• However, the running time is proportional to the number 

of possible worlds

• always exponential in the number of variables

• far too long for many CSPs 

for a in domA

for b in domB

for c in domC

if (abc) satisfies all constraints      

return (abc)

return NULL
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Lecture Overview

• Recap

• Generate-and-Test 

• Search

• Consistency

• Arc Consistency
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CSPs as search problems

• states: assignments of values to a subset of the variables

• start state: the empty assignment (no variables assigned 
values)

• neighbours of a state: nodes in which values are assigned 
to one additional variable

• goal state: a state which assigns a value to each variable, 
and satisfies all of the constraints

Note: the path to a goal node is not important



So which search strategy is better?

A. BFS

B. IDS 

C. A*

D. DFS Slide 9

CSPs as Search Problems

What search strategy will work well for a CSP?

If there are n variables, every solution is at depth n

Is there  a role for a heuristic function?

A. Yes B. No 

The search space is always…

A. Finite with cycles          B. Infinite without cycles

C. Finite without cycles     D. Infinite with cycles
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CSPs as search problems

Simplified notation
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CSPs as Search Problems

How can we avoid exploring some sub-trees i.e.,

prune the DFS Search tree? 

• once we consider a path whose end node violates one or 

more constraints, we know that a solution cannot exist 

below that point

• thus we should remove that path rather than continuing to 

search
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Solving CSPs by DFS: Example

Problem:

• Variables: A,B,C

• Domains: {1, 2, 3, 4}

• Constraints: A < B, B < C
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Solving CSPs by DFS: Example 

Efficiency

Problem:

• Variables: A,B,C

• Domains: {1, 2, 3, 4}

• Constraints: A < B, B < C

Note: the algorithm's 

efficiency depends on 

the order in which 

variables are expanded

A=1

A=2 A=3

A=4

C=1 C=2 C=3 C=4

C=1 C=2 C=3 C=4 C=1 C=2 C=3 C=4

C=1 C=2 C=3 C=4

Degree “Heuristics”



Constraint Satisfaction (Problems):
• State: assignments of values to a subset of the variables

• Successor function: assign values to a “free” variable

• Goal test: set of constraints

• Solution: possible world that satisfies the constraints

• Heuristic function: none (all solutions at the same distance from start)

Planning : 

• State

• Successor function

• Goal test

• Solution

• Heuristic function

Inference

• State

• Successor function

• Goal test

• Solution

• Heuristic function Slide 14

Standard Search vs. Specific R&R 

systems
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Lecture Overview

• Recap

• Generate-and-Test Recap

• Search

• Consistency

• Arc Consistency
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Can we do better than Search?

Key ideas:

• prune the domains as much as possible before 

“searching” for a solution.

Simple when using constraints involving single variables 

(technically enforcing domain consistency)

Definition: A variable is domain consistent if no value of its 

domain is ruled impossible by any unary constraints.

• Example: if we have the constraint B ≠ 3, then                

DB = {1, 2, 3, 4} ___________ domain consistent.
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How do we deal with constraints 

involving  multiple variables?

Definition (constraint network)

A constraint network is defined by a graph, with

• one node for every variable

• one node for every constraint

and undirected edges running between variable nodes and 

constraint nodes whenever a given variable is involved in a 

given constraint.

Note: strictly speaking, when all of the constraints are binary, constraint nodes are not 

necessary: we can drop constraint nodes and use edges to indicate that a constraint holds 

between a pair of variables.  However, in this course we will always show constraint 

nodes.
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Example Constraint Network

Recall Example: 

• Variables: A,B,C

• Domains: {1, 2, 3, 4}

• Constraints: A < B, B < C, B=1

What would a constraint network for this example look 

like?
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Example: Constraint Network for

Map Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red,green,blue}

Constraints: adjacent regions must have different colors

Group activity: draw a constraint network for this example
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Lecture Overview

• Recap

• Generate-and-Test Recap

• Search

• Consistency

• Arc Consistency
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Arc Consistency

Definition (arc consistency)

An arc                 is arc consistent if for each value         in           there is 

some value    in           such that           is satisfied.

),(, YXrX x ( )Xdom

y )(Ydom ),( yxr

1,2 2,3

A B
A!= B
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Arc Consistency

Definition (arc consistency)

An arc                 is arc consistent if for each value         in           there is 

some value    in           such that           is satisfied.

),(, YXrX x ( )Xdom

y )(Ydom ),( yxr

1,2,3 2,3
A B

A< B

)(, BAA  )(, BAB 

A. Both arcs are consistent

B. Left consistent, right inconsistent

C. Right consistent, left inconsistent

D. Both arcs are inconsistent

E. I consistently fall asleep in this class
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How can we enforce Arc Consistency?

• If an arc               is not arc consistent, all values       in            for which 

there is no corresponding value in          may be deleted from               

to make the arc                 consistent.

• This removal can never rule out any models/solutions

x ( )Xdom

)(Ydom ( )Xdom

2,3,4 1,2,3
X Y

X< Y

• A network is arc consistent if all its arcs are arc consistent.

),(, YXrX

),(, YXrX


