Constraint Satisfaction Problems (CSPs)

Introduction

CPSC 322 Lecture 10

Slide 1

Something to think about

Suppose you were tasked with coming up with the UBC final exam schedule this term

- Can we set every exam to happen at the same time and in the same place?
- What constraints would you have to take into account?
- You could set the exam for course C consisting of the set of students S on day D at time T in location L if...
 - Do all the constraints involve the same "variables"?

Learning Goals for today's class

- Define **possible worlds** in term of variables and their domains.
- Compute number of possible worlds on real examples
- Specify constraints to represent real world problems differentiating between:
 - Unary and k-ary constraints
 - List vs. function format.
- Verify whether a possible world satisfies a set of constraints (i.e., whether it is a model, a solution)

Lecture Overview

- Generic Search vs. Constraint Satisfaction Problems
- Variables
- Constraints
- CSPs

Standard Search

To learn about **search** we have used it as the reasoning strategy for a **simple goal-driven planning agent**.....

vacuum cleaner 8-puzzle delivery robot Solution? start -> path -> goal

Standard search problem: An agent can solve a problem by searching in a space of states

 state is a "black box" – any arbitrary data structure that supports three problem-specific routines

(1) neighbors(n) (2) heuristic(n) (3) goal(n)

Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):

- State
- Successor function
- Goal test
- Solution
- Planning :
 - State
 - Successor function
 - Goal test
 - Solution

Inference

- State
- Successor function
- Goal test
- Solution

coming weeks

R&R systems we'll cover in this course

		Environment			
Problem		Deterministic	Stochastic		
Static	Constraint Satisfaction	Variables + Constraints Search Arc Consistency Local Search			
	Query	<i>Logics</i> Search	Bayesian (Belief) Networks Variable Elimination		
Sequential	Planning	STRIPS Search	Decision Networks Variable Elimination		

Representation Reasoning Technique

Lecture Overview

- Generic Search vs. Constraint Satisfaction Problems
- Variables/Features
- Constraints
- CSPs

Variables/Features, domains and Possible Worlds

• Variables / features

- we denote variables using capital letters
- each variable V has a domain *dom*(V) of possible values
- Variables can be of several main kinds:
 - Boolean: |*dom*(V)| = 2
 - Finite: the domain contains a finite number of values
 - Infinite but Discrete: the domain is countably infinite
 - Continuous: e.g., real numbers between 0 and 1
 - Possible world: a complete assignment of values to a set of variables

not in this

course

Example (from a previous lecture) Mars Explorer Example

Examples

- Crossword Puzzle:
 - variables are words that have to be filled in (63 in this case)
 - domains are valid English words of required length
 - possible worlds: all ways of assigning words

- Number of English words? (~150,000)
- Number of words of length k ? (~15,000)
- So, (roughly) how many possible worlds?
- A. 15,000*63 B. 63^{15,000} C. 15,000⁶³ D. 1,563⁶³ E. 42

More Examples

- Crossword 2:
 - variables are cells (individual squares) in the 15x15 grid
 - domains are letters of the alphabet
 - possible worlds: all ways of assigning letters to cells
 - So, how many possible worlds?
- Sudoku:
 - variables are empty cells
 - domains are numbers between 1 and 9
 - possible worlds: all ways of assigning numbers to cells
- So, how many possible worlds?

More examples

- n-Queens problem
 - variable: location of a queen on a chess board
 - there are *n* of them in total, hence the name
 - domains: grid coordinates (n²)
 - possible worlds: locations of all queens $(n^2)^n$

no overlaps, indistinguishable queens

$$\binom{n^2}{n} = \frac{n^2!}{(n^2 - n)! \, n!}$$

More examples

- Scheduling Problem:
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
 - domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
 - possible worlds: time/location assignments for each task

Scheduling possible world

How many possible worlds?

<possible assignments to a variable><number of variables>

More examples....

- Map Coloring Problem
 - variable: regions on the map
 - domains: possible colors
 - possible worlds: color assignments for each region

How many possible worlds?

- A. 2^{num_regions}
- B. 2^{num_colors}
- C. num_colors * num_regions
- D. num_regions^{num_colors}
- E. num_colors^{num_regions}

Queensland

Northern Territory

Western

Australia

Lecture Overview

- Generic Search vs. Constraint Satisfaction Problems
- Variables/Features
- Constraints
- CSPs

Constraints

Constraints are restrictions on the values that one or more variables can take

- Unary constraint: restriction involving a single variable
- k-ary constraint: restriction involving the domains of k different variables
 - it turns out that k-ary constraints can always be represented as binary constraints, so we'll *mainly* only talk about this case

• Constraints can be specified by

- giving a function that returns true when given values for each variable satisfy the constraint
- giving a list of valid domain values for each variable participating in the constraint

Example: Map Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains D_i = {red, green, blue}

Constraints: adjacent regions must have different colors e.g., WA \neq NT

or, (WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Constraints (cont.)

- A possible world satisfies a set of constraints if the set of variables involved in each constraint take values that are consistent with that constraint
- Variables: A,B,C domains [1..10]
- Possible world W: $\{A=1, B=2, C=10\}$
- **Constraint set1** {A = B, C>B}
- Constraint set2 {A \neq B, C>B, (A,C) in {(10,1),(1,10)}
 - A. W satisfies both set1 and set2
 - B. W satisfies set1 but not set2
 - C. W does not satisfy any of the two constraint sets
 - D. W satisfies set2 but not set1
 - E. It's okay, I know where my towel is

Examples

Crossword Puzzle:

- variables are words that have to be filled in
- domains are valid English words
- *constraints:* words have the same letters at points where they intersect

- Crossword 2:
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - constraints: sequences of letters form valid English words

Examples

• Sudoku:

- variables are cells
- domains are numbers between 1 and 9
- constraints: rows, columns, boxes contain all different numbers

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

More examples

n-Queens problem

- variable: location of a queen on a chess board
 - there are *n* of them in total, hence the name
- domains: grid coordinates

• constraints: no queen can attack another

• Scheduling Problem:

- variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
- domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)

• constraints:

- \checkmark tasks can't be scheduled in the same location at the same time;
- ✓ certain tasks can be scheduled only in certain locations;
- \checkmark some tasks must come earlier than others; etc.

Lecture Overview

- Generic Search vs. Constraint Satisfaction Problems
- Variables/Features
- Constraints
- CSPs

Constraint Satisfaction Problems: definitions

Definition (Constraint Satisfaction Problem)

A constraint satisfaction problem consists of

- a set of variables
- a domain for each variable
- a set of constraints

Definition (model / solution)

A model of a CSP is an assignment of values to variables (i.e. a **possible world**) that satisfies all of the constraints.

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains $D_i = \{\text{red}, \text{green}, \text{blue}\}$

Constraints: adjacent regions must have different colors

e.g., WA \neq NT, or

(WA,NT) in {(red,green),(red,blue),(green,red), (green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

Models / Solutions are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

Constraint Satisfaction Problem: Variants

We may want to solve the following problems using a CSP

- A. determine whether or not a model exists
- B. find a model
- C. find all of the models
- D. count the number of the models
- E. find the best model given some model quality
 - this is now an optimization problem
- F. determine whether some properties of the variables hold in all models

To summarize

- Need to think of search beyond simple goal driven planning agent.
- We started exploring the first AI Representation and Reasoning framework: CSPs

Next class

CSPs: Search and Arc Consistency (Textbook Chpt 4.3-4.5)