

## Graphical Newton for Huge-Block Coordinate Descent on Sparse Graphs

Issam Laradji, Julie Nutini and Mark Schmidt

| Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Greedy Selection of Forest-Structured Blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Motivation:</li> <li>Block coordinate descent is widely-used in machine learning.</li> <li>Easy to implement, cheap iteration cost, low memory requirements.</li> <li>Especially useful for problems with sparse dependencies between variables.</li> <li>Recent works use Newton updates on the blocks.</li> <li>Makes more progress per iteration than gradient steps.</li> <li>This is the optimal update for quadratic objectives.</li> <li>But this costs O( b <sup>3</sup>) even for sparse problems.</li> <li>So standard methods are forced to use small blocks.</li> <li>Contribution:</li> <li>For sparse problems we propose to use forest-structured blocks.</li> <li>Allows us to implement the Newton step in O( b ).</li> <li>We propose random and greedy rules for selecting forests.</li> <li>Results in more progress per iteration than standard rules.</li> </ul> | <ul> <li>The General Gauss-Southwell rule chooses the "best" block b to update using argmin{  ∇f(x<sup>k</sup>)  <sup>2</sup>}.</li> <li>We can solve this problem by sorting the  ∇f(x<sup>k</sup>)  values and taking τ largest.</li> <li>But this ignores the structure, so the Newton update costs O(τ<sup>3</sup>)</li> <li>We need to choose τ = <sup>3</sup>√n for Newton update to have linear cost in n.</li> <li>The Tree Gauss-Southwell rule chooses the "best" block among all forests F, argmin{  ∇f(x<sup>k</sup>)  <sup>2</sup>}.</li> <li>For sparse graphs some forests may have O(n) nodes ("huge blocks").</li> <li>But the cost of the update is always in O(n).</li> <li>This is NP-hard to compute so we use a greedy approximation: <ol> <li>Initialize b with the node i corresponding to the largest gradient,  ∇<sub>i</sub>f(x<sup>k</sup>) .</li> <li>Add to b the node i with largest gradient that maintains the forest property.</li> <li>Repeat until no nodes can be added to b.</li> <li>This can be implemented in O(n log n +  E ) by sorting and hashing.</li> </ol> </li> </ul> |
| <ul> <li>Consider a quadratic objective,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Alternatives are random forests or cycling through a partition into trees.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} x^T A x - c^T x.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comparison of Forest-Structured Blocks with Lattice Dependency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • The optimal update for block $b$ is given by the solution of the linear system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comparison of red-black ordering, tree partition, and greedy forest rules:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

for  $\tilde{c} = c_b - A_{bb} x_b$ 

- If  $A_{bb}$  is unstructured solving this linear system costs  $O(|b|^3)$ .
- Classic approach ("red-black ordering") chooses b so that  $A_{bb}$  is diagonal.
  - Because of sparsity pattern we can solve the linear system in O(|b|).
- We consider more general case where  $A_{bb}$  has a forest structure.
  - $\blacktriangleright$  We can still solve it in O(|b|) update, but it allows dependencies within the block.

 $A_{bb}x_b = \tilde{c}_b,$ 

► For non-quadratic updates, we need to solve the Newton system,

 $\nabla_{bb}^2 f(x^k)d = -\nabla_b f(x^k).$ 

- If we pick b so  $\nabla_{bb}^2 f(x^k)$  forms a forest, we can solve it in O(|b|) instead of  $O(|b|^3)$ .
  - ► We can update "huge" blocks.

## Message Passing for Forest-Structured Linear Systems

- Let G be the graph representing the sparsity pattern of the matrix  $\nabla^2 f(x^k)$ .
  - And let  $G_b$  be the graph representing the sparsity pattern of  $\nabla_{bb}^2 f(x^k)$ .
- If  $G_b$  forms a forest, we can solve the linear system in linear time:
  - Divide the nodes in each tree in b into sets  $L\{1\}, L\{2\}, \ldots, L\{T\}$ .
    - $L\{1\}$  is an arbitrary node in the graph chosen as the "root" node
    - $\blacktriangleright$   $L\{2\}$  is the set of the root node neighbours
    - $\blacktriangleright$   $L\{3\}$  is the set of the  $L\{2\}$  neighbours excluding parent nodes
    - ▶ The process continues until all nodes are assigned to a set

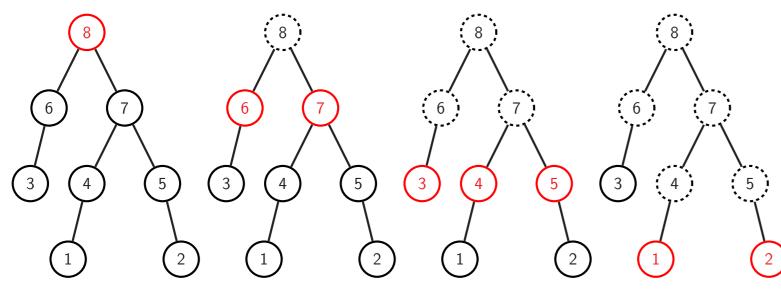
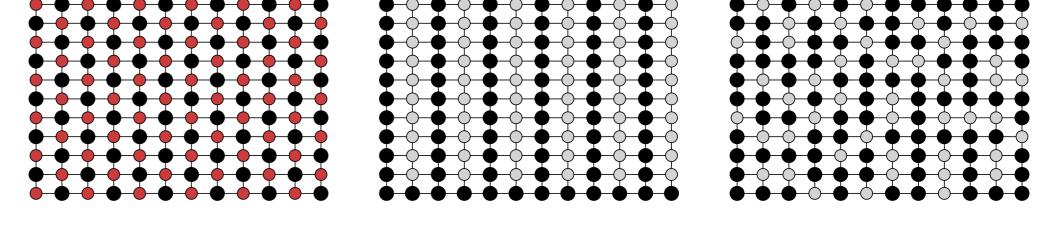
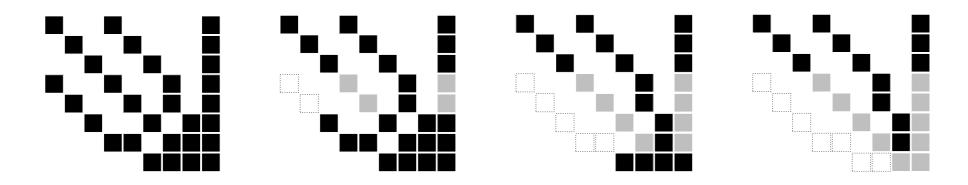




Figure: Process of partitioning nodes into level sets. For the above graph we have the following sets:  $L\{1\} = \{8\}, L\{2\} = \{6,7\}, L\{3\} = \{3,4,5\}$  and  $L\{4\} = \{1,2\}$ .



- $\blacktriangleright$  Red-black and tree-partition methods update n/2 nodes.
  - $\blacktriangleright$  Red-black takes  $O(\sqrt{n})$  iterations to propagate information between all nodes.
  - ► Tree-partition and greedy only need 2 iterations.
- $\blacktriangleright$  Greedy method tends to update around 2n/3 nodes.

## **Empirical Evaluation**


► We compared BCD methods with different selection on label propagation problems,

$$\min_{y_i | i \notin S} \frac{1}{2} \sum_{i=1}^{b} \sum_{j=1}^{n} w_{ij} (y_i - y_j)$$

► We considered lattice-structured problem and a semi-supervised learning:



- **Row operations** 
  - Select the nodes furthest from the root node,  $L\{T\}$ .
  - Carry out the row operations of Gaussian elimination on  $L\{T\}$ ,  $L\{T-1\}$ ,...



Forest structure and this elimination order guarantees there is no fill-in.
Total cost is O(|b|).