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Setting

We assume that our problem is of the form

mXin f(x) where f(x) =max{fi:i=1,... N},

where each f; is continuously differentiable, i.e., f, € C1,
BUT we cannot compute V.



Introduction
(o] lele]e]

Active Set/Gradients

We define the active set of f at a point x to be the set of indices

The set of active gradients of f at x is denoted by

{VH(X)}icax)-
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Clarke Subdifferential for Finite Max Function

Proposition (Proposition 2.3.12, Clarke ‘90)

Letf=max{fi:i=1,...,N}.
Iff, € C! for each i € A(X), then

Of(X) = conv{V fi(X)}icax)-
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Method of Steepest Descent

1. Initialize: Set d° = —Proj(0|0f).
2. Step Length: Find t by solving ;nig{f(xk + tdf)}.
>

3. Update: Set x**' = xk 4 t,dX. Increase k = k + 1. Loop.

)
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AGS Algorithm - General |dea

@ Replace 9f with an approximate subdifferential
@ Find an approximate direction of steepest descent

@ Minimize along nondifferentiable ridges
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Approximate Gradient Sampling Algorithm
(AGS Algorithm)
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AGS Algorithm

@ Initialize

@ Generate Approximate Subdifferential:
Sample Y = [x*, y',..., y™] from around x* such that

Calculate an approximate gradient V 4f; for each i € A(x¥) and set
G* = conv{V afi(x) }icacxr)-
© Direction: Set dX= —Proj(0|G).
© Check Stopping Conditions
© (Armijo) Line Search

© Update and Loop
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Convergence
AGS Algorithm
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We define the approximate subdifferential of f at x as

G(x) = conv{V afi(X) }icax);

where V 4fi(X) is the approximate gradient of f; at x.

11/33



AGS Algorithm
00008000

Lemma

Suppose there exists an e > 0 such that |V afi(x) — Vi(x)| <e.

Then
Q forallw € G(x), 3 v € 9f(x) such that |w — v| < ¢, and

Q forallv € 9f(x), 3w € G(X) such that |w — v| < e.
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1. By definition, for all w € G(X) there exists a set of «; such
that

w= > aVaf(X), where a; >0, »  a;j=1.
i€A(X) i€A(X)

Using the same «; as above, we see that

v= Y o;iVf(X) € 9f(X).
icA(X)
Then lw—v|=| > «aVafi(X))— > «oVFi(X)| <e.
icA(X) icA(X)
Hence, for all w € G(X), there exists a v € 0f(x) such that

lw—v|<e.

—
—
o=
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Convergence

Theorem

Let {x* teeo be generated by the AGS algorithm.

Suppose there exists a K such that given any set Y generated in
Step 1 of the AGS algorithm, ¥V fi(x*) satisfies

|V afi(xK) — V£i(x¥)| < KAK, where AK = max |y’ — xX|.
yiey
Suppose t* is bounded away from 0.
Then either
Q@ f(x¥)] —o0, 0Or

Q |d¥| — 0, AK | 0 and every cluster point x of the sequence
{xk}2 , satisfies 0 € Of(x).

14/33



AGS Algorithm
0000000@

Convergence - Proof

Proof - Outline.
1. The direction of steepest descent is —Proj(0|0f(x)).

2. By previous lemma, G(x*) is a good approximate of 9f(x¥).

3. So we can show that —Proj(0|G(x¥)) is still a descent
direction (approximate direction of steepest descent).

4. Thus, we can show that convergence holds. Ol
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Robust Approximate Gradient Sampling
Algorithm
(Robust AGS Algorithm)
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Visual

Consider the function

f(x) = max{fi(x), f(x), (x)}
where fi(x) = x2 + x2
fz(X) = (2 — Xq )2 + (2 . X2)2
f3(x) = 2 x exp(x2 — X1).
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Visual Representation

Contour plot - ‘nondifferentiable ridges’
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Visual Representation

Regular AGS algorithm:
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Visual Representation

Robust AGS algorithm:
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Robust Approximate Gradient Sampling Algorithm

Let Y =[xk, y',y?,...,y™] be a set of sampled points.
The robust active set of fon Y is

AY)= U A

yley
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Robust Approximate Gradient Sampling Algorithm

@ Initialize

@ Generate Approximate Subdifferential:
Calculate an approximate gradient V 4f; for each i € A(Y) and set

Gk = COﬂV{VAfi(Xk)}ieA(xk)’

and GI; = ConV{vAf,‘(Xk)},'eA(y).
@ Direction: Set dX = —Proj(0|G¥) and df = —Proj(0|GY).
@ Check Stopping Conditions: Use d* to check stopping conditions.
© (Armijo) Line Search: Use d{‘, for the search direction.

Q Update and Loop
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Convergence
Robust AGS Algorithm
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Robust Convergence

Let {x¥}%2, be generated by the robust AGS algorithm.

Suppose there exists a K such that given any set Y generated in
Step 1 of the robust AGS algorithm, ¥V 5f,(x¥) satisfies

|Vafi(x¥) = VE(xF)| < KAK, where A = mayx ly' — xX|.
y'e
Suppose t¢ is bounded away from 0.
Then either
Q 7(x¥) ] —oo, or
@ |d¥| — 0, Ak | 0 and every cluster point x of the sequence
{xk}22 , satisfies 0 € 9f(X).
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Numerical Results
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Approximate Gradients

In order for convergence to be guaranteed in the AGS algorithm,
V afi(xX) must satisfy an error bound for each of the active f;:

Vafi(xK) — V(x¥)| < KA,
where K > 0 and is bounded above.

We used the following 3 approximate gradients:

@ Simplex Gradient (see Lemma 6.2.1, Kelley ‘99)
© Centered Simplex Gradient (see Lemma 6.2.5, Kelley ‘99)
© Gupal Estimate (see Theorem 3.8, Hare and Nutini ‘11)
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Numerical Results - Overview

@ Implementation was done in MATLAB

@ 24 nonsmooth test problems (LukSan-VI¢ek, ‘00)

@ 25 trials for each problem

@ Quality (improvement of digits of accuracy) measured by

|Fmin - F*|>
—lo LELL L
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Numerical Results - Goal

Determine any notable numerical differences between:

@ Version of the AGS Algorithm
1. Regular
2. Robust

© Approximate Gradient

1. Simplex Gradient
2. Centered Simplex Gradient
3. Gupal Estimate

Thus, 6 different versions of our algorithm were compared.
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Performance Profile

Performance Profile on AGS Algorithm (successful improvement of 1 digit)

—— Simplex
09 - - - Robust Simplex
—— Centered Simplex
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Performance Profile on AGS Algorithm (successful improvement of 3 digits)

—— Simplex

- - -Robust Simplex

—— Centered Simplex

- - -Robust Centered Simplex
— Gupal

= = - Robust Gupal
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Conclusion

Conclusion

@ Approximate gradient sampling algorithm for finite minimax
problems

@ Robust version
@ Convergence (0 € 9f(X))
@ Numerical tests

Notes:

@ We have numerical results for a robust stopping condition.
There is future work in developing the theoretical analysis.

@ We are currently working on an application in seismic retrofitting.
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