
Outline Introduction AGS Algorithm Robust AGS Algorithm Numerical Results Conclusion

A Derivative-Free Approximate Gradient
Sampling Algorithm for Finite Minimax

Problems

Speaker: Julie Nutini
Joint work with Warren Hare

University of British Columbia (Okanagan)

III Latin American Workshop on Optimization and Control
January 10-13, 2012

1 / 33



Outline Introduction AGS Algorithm Robust AGS Algorithm Numerical Results Conclusion

Table of Contents

1 Introduction

2 AGS Algorithm

3 Robust AGS Algorithm

4 Numerical Results

5 Conclusion

2 / 33



Outline Introduction AGS Algorithm Robust AGS Algorithm Numerical Results Conclusion

Setting

We assume that our problem is of the form

min
x

f (x) where f (x) = max{fi : i = 1, . . . ,N},

where each fi is continuously differentiable, i.e., fi ∈ C1,
BUT we cannot compute ∇fi .
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Active Set/Gradients

Definition
We define the active set of f at a point x̄ to be the set of indices

A(x̄) = {i : f (x̄) = fi(x̄)}.

The set of active gradients of f at x̄ is denoted by

{∇fi(x̄)}i∈A(x̄).
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Clarke Subdifferential for Finite Max Function

Proposition (Proposition 2.3.12, Clarke ‘90)

Let f = max{fi : i = 1, . . . ,N}.
If fi ∈ C1 for each i ∈ A(x̄), then

∂f (x̄) = conv{∇fi(x̄)}i∈A(x̄).
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Method of Steepest Descent

1. Initialize: Set d0 = −Proj(0|∂f ).

2. Step Length: Find tk by solving min
tk>0
{f (xk + tkdk )}.

3. Update: Set xk+1 = xk + tkdk . Increase k = k + 1. Loop.
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AGS Algorithm - General Idea

Replace ∂f with an approximate subdifferential

Find an approximate direction of steepest descent

Minimize along nondifferentiable ridges
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Approximate Gradient Sampling Algorithm
(AGS Algorithm)
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AGS Algorithm

1 Initialize

2 Generate Approximate Subdifferential:
Sample Y = [xk , y1, . . . , ym] from around xk such that

max
i=1,...,m

|y i − xk | ≤ ∆k .

Calculate an approximate gradient ∇Afi for each i ∈ A(xk ) and set

Gk = conv{∇Afi(xk )}i∈A(xk ).

3 Direction: Set dk = −Proj(0|Gk ).

4 Check Stopping Conditions

5 (Armijo) Line Search

6 Update and Loop
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Convergence
AGS Algorithm
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Remark
We define the approximate subdifferential of f at x̄ as

G(x̄) = conv{∇Afi(x̄)}i∈A(x̄),

where ∇Afi(x̄) is the approximate gradient of fi at x̄ .
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Lemma

Suppose there exists an ε > 0 such that |∇Afi(x̄)−∇fi(x̄)| ≤ ε.

Then
1 for all w ∈ G(x̄), ∃ v ∈ ∂f (x̄) such that |w − v | ≤ ε, and

2 for all v ∈ ∂f (x̄), ∃ w ∈ G(x̄) such that |w − v | ≤ ε.
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Proof.
1. By definition, for all w ∈ G(x̄) there exists a set of αi such
that

w =
∑

i∈A(x̄)

αi∇Afi(x̄), where αi ≥ 0,
∑

i∈A(x̄)

αi = 1.

Using the same αi as above, we see that

v =
∑

i∈A(x̄)

αi∇fi(x̄) ∈ ∂f (x̄).

Then |w − v | = |
∑

i∈A(x̄)

αi∇Afi(x̄))−
∑

i∈A(x̄)

αi∇fi(x̄)| ≤ ε.

Hence, for all w ∈ G(x̄), there exists a v ∈ ∂f (x̄) such that

|w − v | ≤ ε. (1)
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Convergence

Theorem

Let {xk}∞k=0 be generated by the AGS algorithm.
Suppose there exists a K̄ such that given any set Y generated in
Step 1 of the AGS algorithm, ∇Afi(xk ) satisfies

|∇Afi(xk )−∇fi(xk )| ≤ K̄ ∆k , where ∆k = max
y i∈Y
|y i − xk |.

Suppose tk is bounded away from 0.
Then either

1 f (xk ) ↓ −∞, or
2 |dk | → 0, ∆k ↓ 0 and every cluster point x̄ of the sequence
{xk}∞k=0 satisfies 0 ∈ ∂f (x̄).
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Convergence - Proof

Proof - Outline.

1. The direction of steepest descent is −Proj(0|∂f (xk )).

2. By previous lemma, G(xk ) is a good approximate of ∂f (xk ).

3. So we can show that −Proj(0|G(xk )) is still a descent
direction (approximate direction of steepest descent).

4. Thus, we can show that convergence holds.

15 / 33



Outline Introduction AGS Algorithm Robust AGS Algorithm Numerical Results Conclusion

Robust Approximate Gradient Sampling
Algorithm

(Robust AGS Algorithm)
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Visual

Consider the function

f (x) = max{f1(x), f2(x), f3(x)}
where f1(x) = x2

1 + x2
2

f2(x) = (2− x1)2 + (2− x2)2

f3(x) = 2 ∗ exp(x2 − x1).
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Visual Representation

Contour plot - ‘nondifferentiable ridges’
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Visual Representation

Regular AGS algorithm:
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Visual Representation

Robust AGS algorithm:
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Robust Approximate Gradient Sampling Algorithm

Definition

Let Y = [xk , y1, y2, . . . , ym] be a set of sampled points.
The robust active set of f on Y is

A(Y ) =
⋃

y i∈Y

A(y i).
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Robust Approximate Gradient Sampling Algorithm

1 Initialize

2 Generate Approximate Subdifferential:
Calculate an approximate gradient ∇Afi for each i ∈ A(Y ) and set

Gk = conv{∇Afi(xk )}i∈A(xk ),

and Gk
Y = conv{∇Afi(xk )}i∈A(Y ).

3 Direction: Set dk = −Proj(0|Gk ) and dk
Y = −Proj(0|Gk

Y ).

4 Check Stopping Conditions: Use dk to check stopping conditions.

5 (Armijo) Line Search: Use dk
Y for the search direction.

6 Update and Loop
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Convergence
Robust AGS Algorithm
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Robust Convergence

Theorem

Let {xk}∞k=0 be generated by the robust AGS algorithm.
Suppose there exists a K̄ such that given any set Y generated in
Step 1 of the robust AGS algorithm, ∇Afi(xk ) satisfies

|∇Afi(xk )−∇fi(xk )| ≤ K̄ ∆k , where ∆k = max
y i∈Y
|y i − xk |.

Suppose tk is bounded away from 0.
Then either

1 f (xk ) ↓ −∞, or
2 |dk | → 0, ∆k ↓ 0 and every cluster point x̄ of the sequence
{xk}∞k=0 satisfies 0 ∈ ∂f (x̄).
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Numerical Results
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Approximate Gradients

Requirement
In order for convergence to be guaranteed in the AGS algorithm,
∇Afi(xk ) must satisfy an error bound for each of the active fi :

|∇Afi(xk )−∇fi(xk )| ≤ K̄ ∆,

where K̄ > 0 and is bounded above.

We used the following 3 approximate gradients:

1 Simplex Gradient (see Lemma 6.2.1, Kelley ‘99)

2 Centered Simplex Gradient (see Lemma 6.2.5, Kelley ‘99)

3 Gupal Estimate (see Theorem 3.8, Hare and Nutini ‘11)
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Numerical Results - Overview

Implementation was done in MATLAB

24 nonsmooth test problems (Lukšan-Vlček, ‘00)
25 trials for each problem
Quality (improvement of digits of accuracy) measured by

− log
(
|Fmin − F ∗|
|F0 − F ∗|

)
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Numerical Results - Goal

Determine any notable numerical differences between:

1 Version of the AGS Algorithm
1. Regular
2. Robust

2 Approximate Gradient
1. Simplex Gradient
2. Centered Simplex Gradient
3. Gupal Estimate

Thus, 6 different versions of our algorithm were compared.
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Performance Profile
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Performance Profile
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Conclusion

Approximate gradient sampling algorithm for finite minimax
problems

Robust version

Convergence (0 ∈ ∂f (x̄))

Numerical tests

Notes:

We have numerical results for a robust stopping condition.
There is future work in developing the theoretical analysis.

We are currently working on an application in seismic retrofitting.

31 / 33



Outline Introduction AGS Algorithm Robust AGS Algorithm Numerical Results Conclusion

Thank you!
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