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What is PCA?

o Principal Component Analysis (PCA) is a statistical procedure that allows

better analysis and interpretation of unstructured data.
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What is PCA?

o Principal Component Analysis (PCA) is a statistical procedure that allows

better analysis and interpretation of unstructured data.

o Uses an orthogonal linear transformation to convert a set of observations to a

new coordinate system that maximizes the variance.

o The new coordinates are called principal components. Individuals factor map - PCA

|

Example:
o Fit n-dimensional ellipsoid to data.

Dim2 (22.9%)

o By omitting axis with smallest variance (smallest

principal component), we lose smallest amount of

info.

0
Dim1 (73%)
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Principal Component Analysis (PCA) aka...

Signal processing: discrete Kosambi-Karhunen-Loeéve transform (KLT)

Multivariate quality control: the Hotelling transform

Mechanical engineering: proper orthogonal decomposition (POD)

Linear algebra: singular value decomposition (SVD) of X (Golub and Van Loan, 1983)

Linear algebra: eigenvalue decomposition (EVD) of X” X

© 06 6 06 o o

Psychometrics: factor analysis, Eckart-Young theorem (Harman, 1960), or Schmidt-Mirsky
theorem

©

Meteorological science: empirical orthogonal functions (EOF)

@ Noise and vibration: empirical eigenfunction decomposition (Sirovich, 1987), empirical
component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al., 1988), spectral

decomposition

@ Structural dynamics: empirical modal analysis
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Applications of PCA

Dimension construction ¥

©

©

Feature extraction

o Data visualization

©

Image compression

©

Medical imaging

©

Lossy data compression
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Application: 2D Data Analysis

O Data matrix X can be rotated to align principal axes with x and y axis.
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Application: 2D Data Analysis

O Data matrix X can be rotated to align principal axes with x and y axis.

Raw 2D data distribution Rotated 2D data distribution
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Application: Data Visualization

o Scattered set of points, presumably forms coherent surface.

o Display point cloud data in a pleasing way.

(a) Point cloud. (b) With normals.

Figure 4.9. Example 4.18: a point cloud representing (a) a surface in three-dimensional
space, and (b) together with its unsigned normals.
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Application: Image Compression

o Effectively represent image with limited number of principal components.
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Application: Image Compression

o Effectively represent image with limited number of principal components.

w10 Eigenvalues

Eigenvalue

o Do not know # of principal components needed for successful reconstruction.
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Application: Image Compression

(a) 1 principal component (c) ¢ principal component

(€) 17 principal component (f) 21 principal component

(g) 25 principal component (h) 29 principal component

8/40



The Problem

Let X be a D-dimensional random vector with covariance matrix S.
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The Problem

Let X be a D-dimensional random vector with covariance matrix S.

o Problem: Consecutively find the unit vectors uy, us, ..., up such that
Y; = X"y

satisfies:
Q var(Y7) is the maximum.
Q var(Y2) is the maximum subject to cov (Y, Y1) = 0.
Q var(Yy) is the maximum subject to cov(Y},Y;) = 0, where k = 3,4,..., D and
k> 1.
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The Solutions

o Let (\;, u;) be the pairs of eigenvalues and eigenvectors of the covariance
matrix S such that
A1> XA > > Ap(=0)

and
|luil]o =1, foralll <i<D.
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The Solutions

o Let (\;, u;) be the pairs of eigenvalues and eigenvectors of the covariance
matrix S such that
A1> XA > > Ap(=0)

and
|luil]o =1, foralll <i<D.

o Thenvar(Y;) = \; for1 <i < D.

— The principal components of X are the eigenvectors of S.
— The variance will be a maximum when we set u; to the eigenvector having the
largest eigenvalue.

— The proportion of variance each eigenvector represents is given by the ratio of

the given eigenvalue to the sum of all the eigenvalues.
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Restrictions of PCA

o Linear, nonparametric analysis that cannot incorporate prior knowledge.
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Restrictions of PCA

o Linear, nonparametric analysis that cannot incorporate prior knowledge.
o Important that variance can be used to differentiate/imply similarity.

o If the given data set is nonlinear or multimodal distribution, PCA fails to

provide meaningful data reduction.

o To incorporate the prior knowledge of data to PCA, researchers have
proposed dimension reduction techniques as extensions of PCA:

o e.g., kernel PCA, multilinear PCA, and independent component analysis (ICA).
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General: How to do PCA?

Goal: Find the axes of the ellipse (i.e., the principal components).
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General: How to do PCA?

Goal: Find the axes of the ellipse (i.e., the principal components).

Consider a data matrix X.
Q Subtract the sample mean from each column of X (data has mean 0).
@ Compute covariance matrix of the data.

O Calculate the eigenvalues/corresponding eigenvectors of covariance matrix,
Xv =M

* Xv does not change direction of v.

O Orthogonalize the set of eigenvectors, normalize each to unit vectors.
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Formulations of PCA

There are two main formulations of PCA:
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Formulations of PCA

There are two main formulations of PCA:
o Maximum variance formulation: The orthogonal projection of the data onto
a lower dimensional linear space (principal subspace) such that the variance
of the projected data is maximized.
© Minimume-error formulation: The linear projection that minimizes the
average projection cost, defined as the mean squared distance between the

data points and their projections.

ut

P
N

Xz

X1
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Maximum Variance Formulation

Goal: Project data onto space having dimensionality M < D while maximizing
variance of projected data.
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Maximum Variance Formulation

Goal: Project data onto space having dimensionality M < D while maximizing
variance of projected data.

(]

Consider a data set of observations {z,} wheren =1,..., N.

(]

Each z,, is a Euclidean variable with dimensionality D.

(]

Assume projecting onto a one-dimensional space (M = 1).

(7]

Define the direction of this space using u;.

©

Assume u; is a unit vector (ufu; = 1).
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Maximum Variance Formulation

o The mean of the projected data is u? z where 7 is the sample set mean

1 N
= — x
N 2
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Maximum Variance Formulation

o The mean of the projected data is u? z where 7 is the sample set mean
N
T = N Z In
n=1
o The variance of the projected data is given by

N
% Z (ufxn — ulT:Z")2 = ul Suy

n=1

where S is the covariance matrix of the data,
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Maximum Variance Formulation

o To maximize the variance, we solve the following constrained problem

maximize u!Su; st ulu; =1
u
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Maximum Variance Formulation

o To maximize the variance, we solve the following constrained problem

maximize u!Su; st ulu; =1
u

o The Lagrangian of this problem is given by

L(ug, M) =uf Suy + M (1 —uluy).

o Differentiating with respect to u;, we have a stationary point when

Slll = )\1111.
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Maximum Variance Formulation

o By left-multiplying by u; and using u?u; = 1, we have

ufSul = )\1.

17 /40



Maximum Variance Formulation

o By left-multiplying by u; and using u?u; = 1, we have

ufSul = )\1.

o Thus, the maximum variance will occur when we set u; to the eigenvector

having the largest eigenvalue \;.

17 /40



Maximum Variance Formulation

o By left-multiplying by u; and using u?u; = 1, we have

ufSul = )\1.

o Thus, the maximum variance will occur when we set u; to the eigenvector

having the largest eigenvalue \;.

o Additional principal components can be defined in an incremental fashion.
o A similar problem can be formed for the minimum error formulation.

o Solution is in terms of the D — M smallest eigenvalues of the eigenvectors that
are orthogonal to the principal subspace.
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SVD and PCA

o The singular value decomposition of a matrix A € IR™*" is given by
A=Uzv?

where

o UeR™™and V € R" " are orthogonal matrices (i.e., UTU = UUT = I)
o D e R™”" diagonal matrix with the singular values of A along the diagonal.
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SVD and PCA

o The singular value decomposition of a matrix A € IR™*" is given by
A=Uzv?

where

o UeR™™and V € R" " are orthogonal matrices (i.e., UTU = UUT = I)
o D e R™”" diagonal matrix with the singular values of A along the diagonal.

o The largest variance is in the direction of the first column of U (the first

principal component)

o The largest variance on the subspace orthogonal to the first principal

component is the direction of the second column of U
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SVD and PCA

o Therefore,
B=UTA=xv"

represents a better alignment than the given A in terms of variance

differentiation.
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o Covariance matrix of A is a positive semi-definite matrix,
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SVD and PCA

o Therefore,
B=UTA=3xV"
represents a better alignment than the given A in terms of variance

differentiation.

o Covariance matrix of A is a positive semi-definite matrix,
C =AAT =Usy'U"

and the eigenvectors are the columns of U (namely, the singular vectors
which are the principal components).
o Application of PCA with respect to SVD:
o Solving almost singular linear systems
o If the problem is too ill-conditioned, then regularize it.
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Computing the Principal Components

Eigenvalues:
o QR algorithm: costs O(D?).
o Power Method: Finds first M principal components, costs O(M D?).
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Computing the Principal Components

Eigenvalues:

o QR algorithm: costs O(D?).

o Power Method: Finds first M principal components, costs O(M D?).
Singular values:

@ SVD costs O(m?n + mn? + n?) for general matrix A of dimension m x n.

— When D is large, a direct application of PCA will be computationally infeasible.
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PCA for High-Dimensional Data

Let X be an (N x D)-dimensional centered matrix.
o The nthrow is (z,, — )7

o The covariance matrix can be written as S = %X Tx.
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PCA for High-Dimensional Data

o The corresponding eigenvector equation becomes

1
NXTXlli = )\lul
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PCA for High-Dimensional Data

o The corresponding eigenvector equation becomes

1
NXTXlli = )\lul

o Multiply both sides by X,
1
NXXT(Xui) = \i(Xw;).
o Letv; = Xu, to get
1
NXXTVZ‘ = )\Z‘Vz‘,

which is the eigenvector equation for the N x N matrix X X7
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PCA for High-Dimensional Data

o The corresponding eigenvector equation becomes

1
NXTXlli = )\lul

o Multiply both sides by X,

1
NXXT(Xui) = \i(Xw;).

o Letv; = Xu, to get
%XXTvi = \ivi,
which is the eigenvector equation for the N x N matrix X X7
o This has the same N — 1 eigenvalues as the original covariance matrix.

o We can solve the eigenvalue problem for cost of O(N?). )
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Discussion

o PCA is a statistical procedure that uses an orthogonal linear transformation to

reduce the dimension of a dataset while maximizing the variance.
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Discussion

o PCA is a statistical procedure that uses an orthogonal linear transformation to

reduce the dimension of a dataset while maximizing the variance.

©

PCs of a dataset X are the eigenvectors of its covariance matrix.

o Formulated as a maximum variance problem or a minimum error problem.

(]

Transformation for high-dimensional data.
o Allows you to find principal components in smaller subspace.
Extensions:
o Probabilistic PCA
o Maximum likelihood PCA, EM algorithm for PCA, Bayesian PCA, Factor analysis
o Kernel PCA

©
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Independent Component Analysis

o PCA focuses on models with latent variables based on linear-Gaussian
distributions.

o The PCs represent a rotation of the coordinate system in data space.
o Data distribution in the new coordinates is uncorrelated.
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Independent Component Analysis

o PCA focuses on models with latent variables based on linear-Gaussian
distributions.
o The PCs represent a rotation of the coordinate system in data space.
o Data distribution in the new coordinates is uncorrelated.

o This is a necessary condition for independence, but not a sufficient condition.
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Independent Component Analysis

o Independent Component Analysis (ICA):

o Similar to PCA, finds a new basis to represent data.
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Independent Component Analysis

o Independent Component Analysis (ICA):

o Similar to PCA, finds a new basis to represent data.

o Computational method for separating multivariate signal into additive
subcomponents that are maximally independent.

o Observed variables are linear combination of the latent variables.

o Assumes subcomponents are non-Gaussian signals and are statistically

independent.
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Example: blind source separation

Example: blind source separation

True Sources

500 1000 1500 2000
4 Observations (mixed signal)
3
2
i
ok
1t
sy
3t
o 500 1000 1500 2000
ICA estimated sources
0.06 -

o 500 1000 1500 7000

o ICA isused to recover the sources. i
6



Example: blind source separation

o Consider some data s € IR" that is generated via n independent sources
x = As,

where A is an unknown matrix (mixing matrix), x received signal.
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Example: blind source separation

o Consider some data s € IR" that is generated via n independent sources
r = As,

where A is an unknown matrix (mixing matrix), x received signal.
o Repeated observations gives a data set {z® i=1,...,m}.

o Goal: Recover s,
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ICA

o Given no prior knowledge about the sources or the mixing matrix, some

inherent ambiguities in A are impossible to recover.

o Permutation of the sources is ambiguous.
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ICA

o Given no prior knowledge about the sources or the mixing matrix, some

inherent ambiguities in A are impossible to recover.

True Sources

2
1
0
a
|
7000

£ o
Observations (mixed signal)

o Permutation of the sources is ambiguous.
o Scalings of W = A~! cannot be recovered.

o Might not matter depending on the application.

o We cannot determine the order of the independent , .

components.

00 500
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ICA

o Given no prior knowledge about the sources or the mixing matrix, some

inherent ambiguities in A are impossible to recover.

True Sources

o Permutation of the sources is ambiguous. = - -

o Scalings of W = A~! cannot be recovered. o

o Might not matter depending on the application.

£ 00 500 2000
ICA estimated sources

o We cannot determine the order of the independent i , .

components. Bt |
o These are the ONLY ambiguities assuming the sources s; are non-Gaussian.

o Aslong as the data is non-Gaussian, we can recover the n independent

sources.

28 /40



ICA Algorithm (Bell and Sejnowski)

o Suppose the distribution of each source s; is given by a density p;.

o The joint distribution of the sources s is given by

n

p(s) = [ [ ps(s0)-

i=1
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ICA Algorithm (Bell and Sejnowski)

o Suppose the distribution of each source s; is given by a density p,.

o The joint distribution of the sources s is given by

n

p(s) = [ [ ps(s0)-

i=1

— By modelling the joint distribution as a product of the marginal, we capture
the assumption that the sources are independent.

o This implies the following density on z = As = W1s:

p(z) = [ [ ps(w]a)- W],
i=1

o Need to specify a density for the individual sources p;.
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ICA Algorithm

o We need to specify a cdf for it that slowly increases from 0 to 1.
o Reasonable default: the sigmoid function
1
96) = T ey
o This yields ps(s) = ¢'(s).

30 /40



ICA Algorithm

o We need to specify a cdf for it that slowly increases from 0 to 1.

o Reasonable default: the sigmoid function

1
96) = T ey
o This yields ps(s) = ¢'(s).
o Given a training set {20 i =1,...,m}, the log likelihood for our parameter

matrix W is

—Z(Zlogg T (Z —i—logW).

i=1
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ICA Algorithm

o Maximizing this in terms of IV, we derive a stochastic gradient ascent

learning rule for training example z(:

1 2g(w]z)

1—2g(wlz® )
W =W +a g(_ 220 o, (w1

1 —2g(wyz®)

where « is the learning rate.
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ICA Algorithm

o Maximizing this in terms of IV, we derive a stochastic gradient ascent

learning rule for training example z(:

1 2g(w]x)

1—2g(wlz® )
W =W +a g(_ 220 o, (w1

1 —2g(wyz®)

where « is the learning rate.

o After the algorithm converges, we compute s() = Wz to recover the

original sources.
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FastICA Algorithm

o FastICA [http:/ /research.ics.aalto.fi/ica/fastica/]
o Implements the fast fixed-point algorithm for ICA and projection pursuit.

o Can download (for R, C++, Python and Matlab)
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FastICA Algorithm

SIGNALS JOINT DENSITY

o
I A AR

Separated signals after 1 step of FastiCA

Y

33 /40



FastICA Algorithm

SIGNALS JOINT DENSITY
5 |
-5 J d - ..
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Separated signals after 2 steps of FastiCA
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FastICA Algorithm

SIGNALS JOINT DENSITY

5
D
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Separated signals after 3 steps of FastiCA
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FastICA Algorithm

SIGNALS JOINT DENSITY
7]
i
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Separated signals after 4 steps of FastiCA
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FastICA Algorithm

SIGNALS JOINT DENSITY

D I Lﬁl"‘r! 7 ﬂ

Separated signals after 5 steps of FastiCA

37 /40



FastICA Algorithm

o The source signals were sinusoidal
and impulsive noise.

o The joint density is the product of
the marginal densities.

o Definition of independence.

= ==

SIGNALS

JOINT DENSITY

e

Separated signals after 5 steps of FastiICA
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Discussion

o ICA is a statistical and computational technique used to reveal hidden factors

that underlie sets of random variables, measurements, or signals.
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Discussion

o ICA is a statistical and computational technique used to reveal hidden factors

that underlie sets of random variables, measurements, or signals.

(7]

Data assumed to be linear combinations of some unknown latent variables.

©

Latent variables are assumed to be non-Gaussian and independent.

©

ICA finds these independent components.

©

Stochastic gradient ascent learning rule for training example z(?).

FastICA

(7]
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©

©

©

Thank you!

U. M. Ascher and C. Greif, A First Course in Numerical Methods, SIAM, 2011.
C. M. Bishop. Pattern Recognition and Machine Learning, Springer, 2006.

A. Hyvérinen. What is Independent Component Analysis?
https://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml

S. Jang. Basics and Examples of Principal Component Analysis (PCA), slecture, 2014

https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples.

A. Ng. Independent Component Analysis, C5299 Lecture Notes.

FastICA, http://research.ics.aalto.fi/ica/fastica/.
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