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Most common algorithm is gradient descent (GD) and variants:
o e.g., stochastic gradient, quasi-Newton, coordinate descent, etc.
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Standard global convergence rate result for GD:

Smoothness + Strong-Convexity = Linear Convergence

o Error on iteration k is O(p*).

o But even simple models are often not strongly-convex.
o e.g., least-squares, logistic regression, etc.

* This talk: How much can we relax strong-convexity?
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Smoothness + s c . = Linear Convergence
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A special case of Lojasiewicz’ inequality [1963].
o We call this the Polyak-tojasiewicz (PL) inequality.

©

Using the PL inequality, we show

PL Inequality
Strong-Convexity

Smoothness + = Linear Convergence
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Linear Convergence of GD under the PL Inequality

o Consider the basic unconstrained smooth optimization problem,
min f(x),
z€IR4
where f satisfies the PL inequality and V f is Lipschitz continuous,

F) < F@) + (Vi ),y —a) + 5y — ol

o Applying GD with a constant step-size of 1/L,

LHHL ok %Vf(wk)’

we have
FEH) < F@F) + (V) = ot 4 Dl o
= f@*) = 5719 5EH)IP

ky M ky _ px
< f@h -2 rah -]
o Subtracting f* and applying recursively gives global linear rate,

-1 < (1= [0 - ).
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o Proof is simple (simpler than with strong-convexity).
@ Does not require uniqueness of solution (unlike strong-convexity).

o Does not imply convexity (unlike strong-convexity).
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o How does the PL inequality [1963] relate to more recent conditions?

o EB: error bounds [Luo & Tseng, 1993].
o QG: quadratic growth [Anitescu, 2000].
@ QG + convexity is “optimal strong convexity” [Liu & Wright, 2015].

o ESC: essential strong convexity [Liu et al., 2013].
o RSI: restricted secant inequality [Zhang & Yin, 2013].
@ RSI + convexity is “restricted strong convexity”.

©

WSC: weak strong convexity [Necoara et al., 2015].
@ Also sometimes used for QG + convexity.

o Proofs are more complicated under these conditions.

o Are they more general?

17



Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QG).

7117



Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:
(SC) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QG).
If we further assume that f is convex, then

(RSI) = (EB) = (PL) = (QG).




Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QG).

If we further assume that f is convex, then

(RSI) = (EB) = (PL) = (QG).

@ QG is the weakest condition but allows non-global local minima.



Relationships Between Conditions

For a function f with a Lipschitz-continuous gradient, we have:

(SC) — (ESC) — (WSC) — (RSI) — (EB) = (PL) — (QG).

If we further assume that f is convex, then

(RSI) = (EB) = (PL) = (QG).

@ QG is the weakest condition but allows non-global local minima.
o PL = EB are most general conditions.
o Allow linear convergence to global minimizer.
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PL Inequality for Invex and Non-Convex Functions

o While PL inequality does not imply convexity, it implies invexity.
o For smooth f, invexity <= all stationary points are global optimum.
o Example of invex but non-convex function satisfying PL:

f(z) = 2% + 3sin?(z)

fix)

x

@ Many important models don’t satisfy invexity.
o For these problems we often divide analysis into two phases:

o Global convergence: iterations needed to get “close” to minimizer.
o Local convergence: how fast does it converge near the minimizer?

@ Usually, local convergence assumes strong-convexity near minimizer.

o If we assume PL, then local convergence phase may be much earlier.

17
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Convergence for Huge-Scale Methods

o For large datasets, we typically don’'t use GD.
o But the PL inequality can be used to analyze other algorithms.

o We will use PL for coordinate descent and stochastic gradient.
o Garber & Hazan [2015] consider Franke-Wolfe.
o Reddi et al. [2016] consider other stochastic algorithms.
o In Karimi et al. [2016], we consider sign-based gradient methods.
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Random and Greedy Coordinate Descent

o For randomized coordinate descent under PL we have

ebenr-r< - ) -

where L. is coordinate-wise Lipschitz constant of V f.

o Faster than GD rate if iterations are d times cheaper.

o For greedy coordinate descent under PL we have a faster rate

k
ra) - < (1= ) e - 1),
where u, is the PL constant in the L..-norm,

HIVI@IE > m (f@) — 7).

o Gives rate for some boosting variants [Meir and Ratsch, 2003].
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Stochastic Gradient Methods

o Stochastic gradient (SG) methods apply to general problems
argmin f(z) = E[f:(z)],
zERY

and we usually focus on the special case of a finite sum,

fa) = > fil)

@ SG methods use the iteration
2FH =k arVfi, (xk),

where V f;, is an unbiased gradient approximation.
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Stochastic Gradient Methods

With a, = Qf(ﬁﬁ)z the SG method satisfies

EV@%‘f}ﬁ%%w

while with oy, set to constant o we have
Lo

dp

E [f(z") - 1] < (1= 2u0)* [1°) - 1] +

o O(1/k) rate without strong-convexity (or even convexity).

o Fast reduction of sub-optimality under small constant step-size.
o Our work and Reddi et al. [2016] consider finite sum case:

o Analyze stochastic variance-reduced gradient (SVRG) method.
o Obtain linear convergence rates.
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PL Generalizations for Non-Smooth Problems

o What can we say about non-smooth problems?
o Well-known generalization of PL is the KL inequality.

o Attouch & Bolte [2009] show linear rate for proximal-point.
o But proximal-gradient methods are more relevant for ML.
o KL inequality has been used to show local rate for this method.

o We propose a different PL generalization giving a simple global rate.
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Proximal-PL Inequality

@ Proximal-gradient methods apply to the problem

argmin F(z) = f(z) + g(z),
z€IR4

where V£ is L-Lipschitz and g is a potentially non-smooth convex function.
o E.g., ¢1-regularization, bound constraints, etc.
o We say that F satisfies the proximal-PL inequality if

5 Dol 1) 2 p(Fl) — F),

where
Dy(w,0) = ~2amin {(VS(x).y = 2) + 5 Iy — o + 9(u) — g(2) }.
o Condition yields extremely-simple proof:
F(@"*h) = f(@*) + g(2*) + g(") — g(=")

L
< F(a®) + (Vf(ah), 2"+ —a¥) + 5||xk+1 — 2| + g(a") — g(a")

< F(z®) — iDg(xk,L)

= 2L
< F(z%) — % [F(a*) - F*] = F(ab) - F* < (1 - %)k [F(2°) — F*]
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o We also analyze proximal coordinate descent under PL.
o Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.
o Proximal PL is satisfied when:
o f is strongly-convex.
o f satisfies PL and g is constant.
o f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
o F'is convex and satisfies QG.
o F satisfies the proximal-EB condition or KL inequality
o Includes dual support vector machines (SVM) problem:
o Implies linear rate of SDCA for SVMs.
o Includes ¢;-regularized least-squares (LASSO) problem:
o No need for RIP, homotopy, modified restricted strong convexity,...
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o In 1963, Polyak proposed a condition for linear rate of gradient descent.

o Gives trivial proof and is weaker than more recent conditions.
o Weakest condition that guarantees global minima.
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o In 1963, Polyak proposed a condition for linear rate of gradient descent.

o Gives trivial proof and is weaker than more recent conditions.
o Weakest condition that guarantees global minima.

@ We can use the inequality to analyze huge-scale methods:
o Coordinate descent, stochastic gradient, SVRG, etc.

o We give proximal-gradient generalization:
o Standard algorithms have linear rate for SVM and LASSO.
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Thank you!



