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Linear Convergence of Gradient-Based Methods

Fitting most machine learning models involves optimization.

Most common algorithm is gradient descent (GD) and variants:
e.g., stochastic gradient, quasi-Newton, coordinate descent, etc.

Standard global convergence rate result for GD:

Smoothness + Strong-Convexity ⇒ Linear Convergence

Error on iteration k is O(ρk).

But even simple models are often not strongly-convex.
e.g., least-squares, logistic regression, etc.

? This talk: How much can we relax strong-convexity?

Smoothness + ???
Strong-Convexity ⇒ Linear Convergence
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Polyak-Łojasiewicz Inequality

Polyak [1963] showed linear convergence of GD assuming

1

2
‖∇f(x)‖2 ≥ µ (f(x)− f∗) ,

i.e., the gradient grows as a quadratic function of sub-optimality.

Holds for strongly-convex problem, but also problems of the form

f(x) = g(Ax), for strongly-convex g.

Includes least-squares, logistic regression (on compact set), etc.

A special case of Łojasiewicz’ inequality [1963].
We call this the Polyak-Łojasiewicz (PL) inequality.

Using the PL inequality, we show

Smoothness +
PL Inequality

Strong-Convexity ⇒ Linear Convergence
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Linear Convergence of GD under the PL Inequality

Consider the basic unconstrained smooth optimization problem,

min
x∈IRd

f(x),

where f satisfies the PL inequality and ∇f is Lipschitz continuous,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L

2
‖y − x‖2.

Applying GD with a constant step-size of 1/L,

xk+1 = xk − 1

L
∇f(xk),

we have
f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L

2
‖xk+1 − xk‖2

= f(xk)− 1

2L
‖∇f(xk)‖2

≤ f(xk)− µ

L

[
f(xk)− f∗

]
.

Subtracting f∗ and applying recursively gives global linear rate,

f(xk)− f∗ ≤
(
1− µ

L

)k [
f(x0)− f∗

]
.
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Linear Convergence under the PL Inequality

Proof is simple (simpler than with strong-convexity).

Does not require uniqueness of solution (unlike strong-convexity).

Does not imply convexity (unlike strong-convexity).
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Weaker Conditions than Strong Convexity

How does the PL inequality [1963] relate to more recent conditions?

EB: error bounds [Luo & Tseng, 1993].

QG: quadratic growth [Anitescu, 2000].
QG + convexity is “optimal strong convexity” [Liu & Wright, 2015].

ESC: essential strong convexity [Liu et al., 2013].

RSI: restricted secant inequality [Zhang & Yin, 2013].
RSI + convexity is “restricted strong convexity”.

WSC: weak strong convexity [Necoara et al., 2015].
Also sometimes used for QG + convexity.

Proofs are more complicated under these conditions.

Are they more general?
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Relationships Between Conditions

Theorem

For a function f with a Lipschitz-continuous gradient, we have:

(SC)→ (ESC)→ (WSC)→ (RSI)→ (EB) ≡ (PL)→ (QG).

If we further assume that f is convex, then

(RSI) ≡ (EB) ≡ (PL) ≡ (QG).

QG is the weakest condition but allows non-global local minima.

PL ≡ EB are most general conditions.
Allow linear convergence to global minimizer.
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PL Inequality for Invex and Non-Convex Functions

While PL inequality does not imply convexity, it implies invexity.

For smooth f , invexity ⇐⇒ all stationary points are global optimum.
Example of invex but non-convex function satisfying PL:

f(x) = x2 + 3 sin2(x)

x

f(x) 

Many important models don’t satisfy invexity.
For these problems we often divide analysis into two phases:

Global convergence: iterations needed to get “close” to minimizer.
Local convergence: how fast does it converge near the minimizer?

Usually, local convergence assumes strong-convexity near minimizer.
If we assume PL, then local convergence phase may be much earlier.
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Convergence for Huge-Scale Methods

For large datasets, we typically don’t use GD.
But the PL inequality can be used to analyze other algorithms.

We will use PL for coordinate descent and stochastic gradient.
Garber & Hazan [2015] consider Franke-Wolfe.

Reddi et al. [2016] consider other stochastic algorithms.

In Karimi et al. [2016], we consider sign-based gradient methods.
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Random and Greedy Coordinate Descent

For randomized coordinate descent under PL we have

E
[
f(xk)− f∗

]
≤
(
1− µ

dLc

)k [
f(x0)− f∗

]
,

where Lc is coordinate-wise Lipschitz constant of ∇f .

Faster than GD rate if iterations are d times cheaper.

For greedy coordinate descent under PL we have a faster rate

f(xk)− f∗ ≤
(
1− µ1

Lc

)k [
f(x0)− f∗

]
,

where µ1 is the PL constant in the L∞-norm,

1

2
‖∇f(x)‖2∞ ≥ µ1 (f(x)− f∗) .

Gives rate for some boosting variants [Meir and Rätsch, 2003].
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Stochastic Gradient Methods

Stochastic gradient (SG) methods apply to general problems

argmin
x∈Rd

f(x) = E[fi(x)],

and we usually focus on the special case of a finite sum,

f(x) =
1

n

n∑
i=1

fi(x).

SG methods use the iteration

xk+1 = xk − αk∇fik (x
k),

where ∇fik is an unbiased gradient approximation.
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Stochastic Gradient Methods

Theorem

With αk = 2k+1
2µ(k+1)2

the SG method satisfies

E
[
f(xk)− f∗

]
≤ Lσ2

2kµ2
,

while with αk set to constant α we have

E
[
f(xk)− f∗

]
≤ (1− 2µα)k

[
f(x0)− f∗

]
+
Lσ2α

4µ
.

O(1/k) rate without strong-convexity (or even convexity).

Fast reduction of sub-optimality under small constant step-size.

Our work and Reddi et al. [2016] consider finite sum case:
Analyze stochastic variance-reduced gradient (SVRG) method.
Obtain linear convergence rates.
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PL Generalizations for Non-Smooth Problems

What can we say about non-smooth problems?
Well-known generalization of PL is the KL inequality.

Attouch & Bolte [2009] show linear rate for proximal-point.

But proximal-gradient methods are more relevant for ML.
KL inequality has been used to show local rate for this method.

We propose a different PL generalization giving a simple global rate.
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We propose a different PL generalization giving a simple global rate.
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Proximal-PL Inequality

Proximal-gradient methods apply to the problem

argmin
x∈IRd

F (x) = f(x) + g(x),

where ∇f is L-Lipschitz and g is a potentially non-smooth convex function.
E.g., `1-regularization, bound constraints, etc.

We say that F satisfies the proximal-PL inequality if

1

2
Dg(x, L) ≥ µ (F (x)− F ∗) ,

where

Dg(x, α) ≡ −2αmin
y

{
〈∇f(x), y − x〉+

α

2
‖y − x‖2 + g(y)− g(x)

}
.

Condition yields extremely-simple proof:

F (xk+1) = f(xk+1) + g(xk) + g(xk+1)− g(xk)

≤ F (xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 + g(xk+1)− g(xk)

≤ F (xk)−
1

2L
Dg(xk, L)

≤ F (xk)−
µ

L

[
F (xk)− F ∗

]
⇒ F (xk)− F ∗ ≤

(
1−

µ

L

)k [
F (x0)− F ∗

]
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Relevant Problems for Proximal-PL

We also analyze proximal coordinate descent under PL.
Reddi et al. [2016] analyze proximal-SVRG and proximal-SAGA.

Proximal PL is satisfied when:
f is strongly-convex.
f satisfies PL and g is constant.
f = h(Ax) for strongly-convex h and g is indicator of polyhedral set.
F is convex and satisfies QG.
F satisfies the proximal-EB condition or KL inequality

Includes dual support vector machines (SVM) problem:
Implies linear rate of SDCA for SVMs.

Includes `1-regularized least-squares (LASSO) problem:
No need for RIP, homotopy, modified restricted strong convexity,...
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Summary

In 1963, Polyak proposed a condition for linear rate of gradient descent.
Gives trivial proof and is weaker than more recent conditions.
Weakest condition that guarantees global minima.

We can use the inequality to analyze huge-scale methods:
Coordinate descent, stochastic gradient, SVRG, etc.

We give proximal-gradient generalization:
Standard algorithms have linear rate for SVM and LASSO.
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Thank you!
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