Coordinate descent converges faster with the Gauss-Southwell rule than random selection
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OVERVIEW: Revisiting the Gauss-Southwell Rule Convergence Analysis Randomized Coordinate Descent B Gauss-Southwell with Exact Coordinate Optimization Proximal Gauss-Southwell

» Nesterov [2012] shows random selection has same rate as Expectation of (1) when choosing 7 with uniform sampling gives Rates for randomized and GS still hold with exact optimization as | An important application of coordinate descent is for problems
Gauss-Southwell (GS) rule. kil k 1 N k . 1 min F(x) = f(x) + Z (x;)
E|lf(x < f(x V f(x™)||". +y — k_ AT Mo 1 < k Z. kN2 L 9i\%;),
» Empirically, if costs are similar, GS is faster. | [f( )] - f( ) 2LnH f( )H f(x ) mO}n{f(:L’ &Vzkf(m )62’“} _ f(x ) 2L;, [V kf(m >] | relt i
- thie work we present- Using (2) and subtracting f(x*) from both sides we get Faster rates for sparse problems, since exact update restricts order: . Where f is smooth, but g; may be non-smooth.
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Coordinate descent is faster than eradient descent when coordinate va<xk>u2 > lef(ﬂfk)W; (4) > ,022 maximizes \/(1 — /Ll/LZ')(l — ,LL1/L]') among neighbours; Three Proximal Generalizations of the GS Rule
update is n faster than gradient calculation. Key problem classes: which together with (2) implies th? same rate as random. > py maximizes/ (1 — p1/L;i)(1 — g /L) (1 — 1/ Ly), when i » GS-s: Minimize directional derivative,
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where f is smooth and cheap, f;; are smooth, g; are convex, {V, E'} Refined Convergence Analysis of Gauss-Southwell Rules Depending on Lipschitz Constants and GSL Rule — Commonly-used for /;-regularization, ||z — 2| could be
is a graph, A is a matrix. tiny.

. . ] L . h l ional to L; yields: -
Avoid using (4) by measuring strong-convexity in £;-norm, i.e., Nesterov showed that sampling proportional to L; yields » GS-r- Maximize how far we move.

» hy includes least squares, logistic regression, lasso, and SVMs. 1 , y
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— Or can formulate as a maximum inner-product search (MIPS). 1, = argmax
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. . . Minimizing both sides with respect to y we get We propose a Gauss-Southwell-Lipschitz (GSL) rule using the L;: ; L9
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Combining this with (3), " — Least intuitive, but has the best theoretical properties.
. fl@*h) — f(a*) < (1 - _) f(a") = fz")]. (5) — Generalizes GSL if you use L; instead of L (not true of GS-r).
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. This also yields a tighter bound on "'maximum improvement’ rule.
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We consider coordinate descent with a constant step-size, Separable Quadratic: L VS. [

We consider the convex optimization problem

where strong-convexity constant py, for ||z||, = > v/Li|z;| has

Gauss-Southwell-Lipschitz as Nearest Neighbour
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o=t va’ff(x )€iy- Consider a quadratic f with diagonal Hess%n: . If hy has no g; functions, GS rule has the form: argmax; |a!r(z")]. For the GS-or rule. we show a rate of
GS chooses the coordinate with largest directional derivative: 4 =min);, and gy = (Z i) Dhillon et al. [2011] approximate GS as nearest neighbour, q :
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Under any rule, we have the following upper bound on progress, » One small \;: GS almost n times faster than random. argmin || () a; || _ argmin {]sz(g;k)’} where €, — 0 measures non-linearity of g; that are not updated.
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