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OVERVIEW: Revisiting the Gauss-Southwell Rule

I Nesterov [2012] shows random selection has same rate as
Gauss-Southwell (GS) rule.

I Empirically, if costs are similar, GS is faster.

In this work, we present:

? new analysis of GS (can be much faster than random);
? improved GS rate with exact coordinate optimization;
? faster rule: Gauss-Southwell-Lipschitz;
? analysis for approximate GS rules; and
? analysis for proximal-gradient GS rules.

Problems for Coordinate Descent and Gauss-Southwell

Coordinate descent is faster than gradient descent when coordinate
update is n faster than gradient calculation. Key problem classes:

h1(x) := f (Ax)+

n∑
i=1

gi(xi), or h2(x) :=
∑
i∈V

gi(xi)+
∑

(i,j)∈E

fij(xij),

where f is smooth and cheap, fij are smooth, gi are convex, {V,E}
is a graph, A is a matrix.

I h1 includes least squares, logistic regression, lasso, and SVMs.
→ Often solvable in O(cr log n) with c and r non-zeros per column/row.
→ Or can formulate as a maximum inner-product search (MIPS).

I h2 includes graph-based label propagation and graphical
models.
→ GS efficient if maximum degree similar to average degree.
→ E.g., lattice-structured graphs and complete graphs.

Assumptions, Algorithm, and Basic Bounds

We consider the convex optimization problem

min
x∈Rn

f (x),

where ∇f is coordinate-wise L-Lipschitz continuous

|∇if (x + αei)−∇if (x)| ≤ L|α|, ∀x ∈ Rn and α ∈ R.

We consider coordinate descent with a constant step-size,

xk+1 = xk − 1

L
∇ikf (xk)eik.

GS chooses the coordinate with largest directional derivative:

ik = argmax
i

|∇if (xk)| x1 x2 x3
Gauss-Southwell

Under any rule, we have the following upper bound on progress,

f (xk+1) ≤ f (xk) +∇ikf (xk)(xk+1 − xk)ik +
L

2
(xk+1 − xk)2

ik

= f (xk)− 1

L
(∇ikf (xk))2 +

L

2

[
1

L
∇ikf (xk)

]2

= f (xk)− 1

2L
[∇ikf (xk)]2.

(1)
We also assume f is strongly convex with constant µ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉 +
µ

2
‖y − x‖2, ∀x, y ∈ Rn,

which minimizing both sides in terms of y gives the lower bound

f (x∗) ≥ f (x)− 1

2µ
‖∇f (x)‖2. (2)

Convergence Analysis Randomized Coordinate Descent

Expectation of (1) when choosing ik with uniform sampling gives

E[f (xk+1)] ≤ f (xk)− 1

2Ln
‖∇f (xk)‖2.

Using (2) and subtracting f (x∗) from both sides we get

E[f (xk+1)]− f (x∗) ≤
(

1− µ

Ln

)
[f (xk)− f (x∗)].

Classic Convergence Analysis of Gauss-Southwell

Choosing ik using GS rule. Using (∇ikf (xk))2 = ‖∇f (xk)‖2
∞ in (1)

we have
f (xk+1) ≤ f (xk)− 1

2L
‖∇f (xk)‖2

∞. (3)

Now use that
‖∇f (xk)‖2

∞ ≥
1

n
‖∇f (xk)‖2, (4)

which together with (2) implies the same rate as random,

f (xk+1)− f (x∗) ≤
(

1− µ

Ln

)
[f (xk)− f (x∗)].

Refined Convergence Analysis of Gauss-Southwell

Avoid using (4) by measuring strong-convexity in `1-norm, i.e.,

f (y) ≥ f (x) + 〈∇f (x), y − x〉 +
µ1

2
‖y − x‖2

1.

Minimizing both sides with respect to y we get

f (x∗) ≥ f (x)− sup
y
{〈−∇f (x), y − x〉 − µ1

2
‖y − x‖2

1}

= f (x)−
(µ1

2
‖ · ‖2

1

)∗
(−∇f (x))

= f (x)− 1

2µ1
‖∇f (x)‖2

∞.

Combining this with (3),

f (xk+1)− f (x∗) ≤
(

1− µ1

L

)
[f (xk)− f (x∗)]. (5)

Using norm inequalities we can show that
µ

n
≤ µ1 ≤ µ.

Separable Quadratic: µ vs. µ1

Consider a quadratic f with diagonal Hessian:

µ = min
i
λi, and µ1 =

( n∑
i=1

1

λi

)−1

.

Constant µ1 is the harmonic mean of λi divided by n:

I All λi equal: GS and random have same rates.

I One large λi: GS only slightly faster than random.

I One small λi: GS almost n times faster than random.

‘Time need when working together’ is µ1 (dominated by smallest).

Gauss-Southwell with Different Lipschitz Constants

With a different Lipschitz constant Li for each coordinate, we have

xk+1 = xk − 1

Lik
∇ikf (xk)eik.

This gives a rate of

E[f (xk)]− f (x∗) ≤

 k∏
j=1

(
1− µ1

Lij

) [f (x0)− f (x∗)].

I As L = maxiLi, this is faster if Lik < L for any ik.

Gauss-Southwell with Exact Coordinate Optimization

Rates for randomized and GS still hold with exact optimization as

f (xk+1) = min
α
{f (xk−α∇ikf (xk)eik} ≤ f (xk)− 1

2Lik
[∇ikf (xk)]2.

Faster rates for sparse problems, since exact update restricts order:
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GS with exact optimization under a chain-structured graph has rate

f (xk)− f (x∗) ≤ O

(
max{ρG2 , ρG3 }k

)
[f (x0)− f (x∗)],

I ρG2 maximizes
√

(1− µ1/Li)(1− µ1/Lj) among neighbours;

I ρG3 maximizes
√

(1− µ1/Li)(1− µ1/Lj)(1− µ1/Lk), when i
is neighbour of j and j is neighbour of k.

This is much faster if the large Li are not neighbours.

Rules Depending on Lipschitz Constants and GSL Rule

Nesterov showed that sampling proportional to Li yields:

E[f (xk+1)]− f (x∗) ≤
(

1− µ

nL̄

)
[f (xk)− f (x∗)].

We propose a Gauss-Southwell-Lipschitz (GSL) rule using the Li:

ik = argmax
i

|∇if (xk)|√
Li

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

For this rule we have

f (xk+1)− f (x∗) ≤ (1− µL)[f (xk)− f (x∗)],

where strong-convexity constant µL for ‖x‖L =
∑n

i=1

√
Li|xi| has

max

{
µ

nL̄
,
µ1

L

}
≤ µL ≤

µ1

mini{Li}
.

This also yields a tighter bound on ‘maximum improvement’ rule.

Gauss-Southwell-Lipschitz as Nearest Neighbour

If h1 has no gi functions, GS rule has the form: argmaxi |aTi r(xk)|.
Dhillon et al. [2011] approximate GS as nearest neighbour,

argmin
i
‖r(xk)− ai‖ = argmin

i

{
|∇if (xk)| − 1

2
‖ai‖2

}
.

When Li = γ‖ai‖2, exact GSL is a nearest neighbour problem,

argmin
i

∥∥∥∥r(xk)− ai
‖ai‖

∥∥∥∥ = argmin
i

{
|∇if (xk)|√

Li

}
.

Approximate Gauss-Southwell

I For multiplicative error |∇ik f (xk)| ≥ ‖∇f (xk)‖∞(1− εk),

f (xk+1)− f (x∗) ≤
[ k∏
i=1

(
1− µ1(1− εk)2

L

)]
[f (x0)− f (x∗)],

and we do not need εk → 0.

I For additive error |∇ik f (xk)| ≥ ‖∇f (xk)‖∞ − εk,

f (xk+1)− f (x∗) ≤
(

1− µ1

L

)k
[f (x0)− f (x∗) + Ak],

where Ak depends on εk, and rate depends on how fast
εk → 0.

Proximal Gauss-Southwell

An important application of coordinate descent is for problems

min
x∈IRn

F (x) ≡ f (x) +
∑
i

gi(xi),

where f is smooth, but gi may be non-smooth.
Examples include bound-constraints and `1-regularization.

We can use a proximal-gradient style update,

xk+1 = prox 1
Lgik

[
xk − 1

L
∇ikf (xk)eik

]
,

where
proxαg[y] = argmin

x∈IRn

1

2
‖x− y‖2 + αg(x).

Three Proximal Generalizations of the GS Rule

I GS-s: Minimize directional derivative,

ik = argmax
i

{
min
s∈∂gi
|∇if (xk) + s|

}
→ Commonly-used for `1-regularization, ‖xk+1 − xk‖ could be

tiny.

I GS-r: Maximize how far we move,

ik = argmax
i

{∣∣∣∣xki − prox 1
Lgik

[
xki −

1

L
∇ik f (xk)

]∣∣∣∣}
→ Effective for bound constraints, but ignores gi(x

k+1
i )− gi(xki ).

I GS-q: Maximize progress under quadratic approximation of f .

ik=argmin
i

{
min
d
f (xk)+∇if (xk)d+

L

2
d2+gi(x

k
i + d)−gi(xki )

}
→ Least intuitive, but has the best theoretical properties.

→ Generalizes GSL if you use Li instead of L (not true of GS-r).

Proximal GS-q Convergence Rate

Richtárik and Takáč [2014] show for randomized ik selection that

E[F (xk+1)]− F (x∗) ≤
(

1− µ

Ln

)
[F (xk)− F (x∗)].

For the GS-q rule, we show a rate of

F (xk+1)− F (x∗) ≤ min

{(
1− µ

Ln

)
[F (xk)− F (x∗)],(

1− µ1

L

)
[F (xk)− F (x∗)] + εk

}
,

where εk → 0 measures non-linearity of gi that are not updated.

Experiments for Instances of Problem h1
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