Let's Make Block Coordinate Descent Go Fast!

Julie Nutini, Issam Laradji, Mark Schmidt and Warren Hare University of British Columbia

EUROPT Workshop on Advances in Continuous Optimization Montreal, Canada July 12th, 2017 • Block coordinate descent methods are key tools in large-scale optimization.

- \rightarrow Easy to implement.
- \rightarrow Low memory requirements.
- \rightarrow Cheap iteration costs.
- \rightarrow Adaptability to distributed settings.

• Block coordinate descent methods are key tools in large-scale optimization.

- \rightarrow Easy to implement.
- \rightarrow Low memory requirements.
- \rightarrow Cheap iteration costs.
- \rightarrow Adaptability to distributed settings.
- Used for almost two decades to solve LASSO and SVMs.

• Block coordinate descent methods are key tools in large-scale optimization.

- \rightarrow Easy to implement.
- \rightarrow Low memory requirements.
- \rightarrow Cheap iteration costs.
- \rightarrow Adaptability to distributed settings.
- Used for almost two decades to solve LASSO and SVMs.
- → **Any** improvements on convergence will affect many applications.

- We propose 4 ways to speed up Block Coordinate Descent (BCD) methods:
 - 1. New greedy block selection rules.
 - 2. New second-order update rule.
 - 3. New exact update rule for LASSO and SVMs.
 - 4. New exact update rule for graph-structured problems.

• We consider the basic convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x),$

where f is differentiable and n is large.

• We consider the basic convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x),$

where f is differentiable and n is large.

- At each iteration of the BCD algorithm, we
 - Select a block $b_k \subseteq \{1, 2, \ldots, n\}$.

• We consider the basic convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x),$

where f is differentiable and n is large.

- At each iteration of the BCD algorithm, we
 - Select a block $b_k \subseteq \{1, 2, \ldots, n\}$.
 - Update iterate according to

$$x^{k+1} = x^k + U_{b_k} d^k,$$

• We consider the basic convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x),$

where f is differentiable and n is large.

- At each iteration of the BCD algorithm, we
 - Select a block $b_k \subseteq \{1, 2, \ldots, n\}$.
 - Update iterate according to

$$x^{k+1} = x^k + U_{b_k} d^k,$$

where $d^k \in \mathbb{R}^M$ is a descent direction of the reduced dimensional subproblem, argmin $f(x^k + U_{b_k}d)$.

• We consider the basic convex optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x),$

where f is differentiable and n is large.

- At each iteration of the BCD algorithm, we
 - Select a block $b_k \subseteq \{1, 2, \ldots, n\}$.
 - Update iterate according to

$$x^{k+1} = x^k + U_{b_k} d^k,$$

where $d^k \in \mathbb{R}^M$ is a descent direction of the reduced dimensional subproblem, argmin $f(x^k + U_{b_k}d)$.

 \rightarrow E.g., gradient descent update $d^k = -\alpha_k \nabla_{b_k} f(x^k)$ for some $\alpha_k > 0$.

- There are 4 common block selection strategies:
 - \rightarrow **Cyclic**: Repeatedly cycle through blocks in order.

- There are 4 common block selection strategies:
 - \rightarrow **Cyclic**: Repeatedly cycle through blocks in order.
 - \rightarrow **Random**: Uniformly sample the blocks (tries to avoid bad ordering).

- There are 4 common block selection strategies:
 - \rightarrow **Cyclic**: Repeatedly cycle through blocks in order.
 - \rightarrow **Random**: Uniformly sample the blocks (tries to avoid bad ordering).
 - → **Greedy**: Choose "best" block according to criteria (too expensive in general).

- There are 4 common block selection strategies:
 - \rightarrow **Cyclic**: Repeatedly cycle through blocks in order.
 - \rightarrow **Random**: Uniformly sample the blocks (tries to avoid bad ordering).
 - → **Greedy**: Choose "best" block according to criteria (too expensive in general).
 - → **Lipschitz**: Use Lipschitz constants of gradients to improve over random.

- There are 4 common block selection strategies:
 - \rightarrow **Cyclic**: Repeatedly cycle through blocks in order.
 - \rightarrow **Random**: Uniformly sample the blocks (tries to avoid bad ordering).
 - → **Greedy**: Choose "best" block according to criteria (too expensive in general).
 - → **Lipschitz**: Use Lipschitz constants of gradients to improve over random.
- Assume that f is L_b -block-wise Lipschitz continuous,

$$\|\nabla_b f(x+U_b d) - \nabla_b f(x)\| \le L_b \|d\|, \text{ for all } d.$$

 \rightarrow If f is twice-differentiable, this is equivalent to $\nabla^2_{bb} f(x) \preceq L_b \mathbb{I}$ for each block b.

- There are 2 common greedy selection rules:
 - → Gauss-Southwell (GS): Choose block with biggest gradient.

- There are 2 common greedy selection rules:
 - → Gauss-Southwell (GS): Choose block with biggest gradient.
 - → Maximum improvement (MI): Choose block that makes the most progress.

- There are 2 common greedy selection rules:
 - → Gauss-Southwell (GS): Choose block with biggest gradient.
 - \rightarrow Maximum improvement (MI): Choose block that makes the most progress.
- MI is usually too costly.

- There are 2 common greedy selection rules:
 - → Gauss-Southwell (GS): Choose block with biggest gradient.
 - → Maximum improvement (MI): Choose block that makes the most progress.
- MI is usually too costly.
- Nutini et. al. (2015) showed GS can be efficiently calculated for some problem structures and also introduced the **Gauss-Southwell-Lipschitz** (GSL) rule.

- There are 2 common greedy selection rules:
 - → Gauss-Southwell (GS): Choose block with biggest gradient.
 - → Maximum improvement (MI): Choose block that makes the most progress.
- MI is usually too costly.
- Nutini et. al. (2015) showed GS can be efficiently calculated for some problem structures and also introduced the **Gauss-Southwell-Lipschitz** (GSL) rule.

- \rightarrow Incorporates Lipschitz information in the rule.
- \rightarrow Equivalent to MI for quadratics.

 As an obvious extension of the GSL rule to the block setting, we propose the Block Gauss-Southwell-Lipschitz (BGSL) rule:

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} rac{\|
abla_b f(x^k)\|_2}{\sqrt{L_b}}$$

 As an obvious extension of the GSL rule to the block setting, we propose the Block Gauss-Southwell-Lipschitz (BGSL) rule:

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} rac{\|
abla_b f(x^k)\|_2}{\sqrt{L_b}}$$

• Derived by minimizing quadratic bound from block-wise Lipschitz continuity.

• Guarantees more progress than the block GS rule.

 As an obvious extension of the GSL rule to the block setting, we propose the Block Gauss-Southwell-Lipschitz (BGSL) rule:

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} rac{\|
abla_b f(x^k)\|_2}{\sqrt{L_b}}$$

- Derived by minimizing quadratic bound from block-wise Lipschitz continuity.
- Guarantees more progress than the block GS rule.
- \rightarrow Unlike GSL, not equivalent to the MI rule for quadratic functions.

Experiment: L2-Regularized Logistic Regression

• Comparing block selection rules using fixed blocks.

$$\|\nabla_b f(x+U_b d) - \nabla_b f(x)\|_{H_b^{-1}} \le \|d\|_{H_b} = \sqrt{d^T H_b d},$$

where $H_b = \beta H$ for any positive definite matrix H, sufficiently large β .

$$\|\nabla_b f(x+U_b d) - \nabla_b f(x)\|_{H_b^{-1}} \le \|d\|_{H_b} = \sqrt{d^T H_b d},$$

where $H_b = \beta H$ for any positive definite matrix H, sufficiently large β .

• Simply changes measure of continuity \rightarrow no new assumptions.

$$\|\nabla_b f(x+U_b d) - \nabla_b f(x)\|_{H_b^{-1}} \le \|d\|_{H_b} = \sqrt{d^T H_b d},$$

where $H_b = \beta H$ for any positive definite matrix H, sufficiently large β .

- Simply changes measure of continuity \rightarrow no new assumptions.
- Block Gauss-Southwell-Quadratic (BGSQ):

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \| \nabla_b f(x^k) \|_{H_b^{-1}} \right\}$$

 \rightarrow *H*^{*b*} is a global upper bound on Hessian $\nabla^2_{bb} f$.

$$\|\nabla_b f(x+U_b d) - \nabla_b f(x)\|_{H_b^{-1}} \le \|d\|_{H_b} = \sqrt{d^T H_b d},$$

where $H_b = \beta H$ for any positive definite matrix H, sufficiently large β .

- Simply changes measure of continuity \rightarrow no new assumptions.
- Block Gauss-Southwell-Quadratic (BGSQ):

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \| \nabla_b f(x^k) \|_{H_b^{-1}} \right\}$$

- \rightarrow *H*^{*b*} is a global upper bound on Hessian $\nabla^2_{bb} f$.
- $\rightarrow\,$ Equivalent to the MI rule for quadratics.

$$\|\nabla_b f(x+U_b d) - \nabla_b f(x)\|_{H_b^{-1}} \le \|d\|_{H_b} = \sqrt{d^T H_b d},$$

where $H_b = \beta H$ for any positive definite matrix H, sufficiently large β .

- Simply changes measure of continuity \rightarrow no new assumptions.
- Block Gauss-Southwell-Quadratic (BGSQ):

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \| \nabla_b f(x^k) \|_{H_b^{-1}} \right\}$$

- \rightarrow *H*^{*b*} is a global upper bound on Hessian $\nabla^2_{bb} f$.
- \rightarrow Equivalent to the MI rule for quadratics.
- \rightarrow May be difficult to find Hessian bounds H_b , depends on how we define blocks.

Blocking Strategy

• There are 2 main strategies used to define a set of possible blocks:

- There are 2 main strategies used to define a set of possible blocks:
 - \rightarrow **Fixed**: Partition variables into groups, select amongst these groups.

- There are 2 main strategies used to define a set of possible blocks:
 - \rightarrow **Fixed**: Partition variables into groups, select amongst these groups.
 - → **Variable**: Choose "best" M variables at each step, no pre-defined groups.

- There are 2 main strategies used to define a set of possible blocks:
 - \rightarrow **Fixed**: Partition variables into groups, select amongst these groups.
 - → **Variable**: Choose "best" M variables at each step, no pre-defined groups.
- Variable blocks guarantee more progress.
 - We show it is NP-hard to compute BGSL, BGSQ.

- There are 2 main strategies used to define a set of possible blocks:
 - \rightarrow **Fixed**: Partition variables into groups, select amongst these groups.
 - → **Variable**: Choose "best" M variables at each step, no pre-defined groups.
- Variable blocks guarantee more progress.
 - We show it is NP-hard to compute BGSL, BGSQ.
 - In practice, use approximate Block Gauss-Southwell-Diagonal rule,

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \sum_{i \in b} \left(\frac{\nabla_i f(x^k)}{D_i} \right)^2 \right\}$$

- There are 2 main strategies used to define a set of possible blocks:
 - \rightarrow **Fixed**: Partition variables into groups, select amongst these groups.
 - → **Variable**: Choose "best" M variables at each step, no pre-defined groups.
- Variable blocks guarantee more progress.
 - We show it is NP-hard to compute BGSL, BGSQ.
 - In practice, use approximate Block Gauss-Southwell-Diagonal rule,

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \sum_{i \in b} \left(\frac{\nabla_i f(x^k)}{D_i} \right)^2 \right\}$$

 \rightarrow Each coordinate has its own step size $1/D_i$ (same across all blocks b).
- There are 2 main strategies used to define a set of possible blocks:
 - \rightarrow **Fixed**: Partition variables into groups, select amongst these groups.
 - \rightarrow **Variable**: Choose "best" M variables at each step, no pre-defined groups.
- Variable blocks guarantee more progress.
 - We show it is NP-hard to compute BGSL, BGSQ.
 - In practice, use approximate Block Gauss-Southwell-Diagonal rule,

$$b_k \in \operatorname*{argmax}_{b \in \mathcal{B}} \left\{ \sum_{i \in b} \left(\frac{\nabla_i f(x^k)}{D_i} \right)^2 \right\}$$

 \rightarrow Each coordinate has its own step size $1/D_i$ (same across all blocks b).

• Fixed blocks we could use Lipschitz constants to help determine the partition.

Experiment: L2-Regularized Logistic Regression

• Comparing block partitioning strategies using BGSD rule.

- Assume that we have selected a block b_k .
- We now focus on how we define our update d^k .

- Assume that we have selected a block b_k .
- We now focus on how we define our update d^k .

→ Gradient-style update:

$$d^k = -\alpha_k \nabla_{b_k} f(x^k),$$

where $\alpha_k > 0$ is either constant or determined using a line search.

- Assume that we have selected a block b_k .
- We now focus on how we define our update d^k .

→ Gradient-style update:

$$d^k = -\alpha_k \nabla_{b_k} f(x^k),$$

where $\alpha_k > 0$ is either constant or determined using a line search.

→ Hessian-bound udpate:

$$d^{k} = -(H_{b_{k}})^{-1} \nabla_{b_{k}} f(x^{k}),$$

where H_{b_k} is a positive-definite global upper bound on the Hessian $\nabla_{bb}^2 f$.

- Assume that we have selected a block b_k .
- We now focus on how we define our update d^k .

→ Gradient-style update:

$$d^k = -\alpha_k \nabla_{b_k} f(x^k),$$

where $\alpha_k > 0$ is either constant or determined using a line search.

→ Hessian-bound udpate:

$$d^{k} = -(H_{b_{k}})^{-1} \nabla_{b_{k}} f(x^{k}),$$

where H_{b_k} is a positive-definite global upper bound on the Hessian $\nabla_{bb}^2 f$.

Do better updates exist?

- Assume that we have selected a block b_k .
- We now focus on how we define our update d^k .

→ Gradient-style update:

$$d^k = -\alpha_k \nabla_{b_k} f(x^k),$$

where $\alpha_k > 0$ is either constant or determined using a line search.

→ Hessian-bound udpate:

$$d^{k} = -(H_{b_{k}})^{-1} \nabla_{b_{k}} f(x^{k}),$$

where H_{b_k} is a positive-definite global upper bound on the Hessian $\nabla_{bb}^2 f$.

Do better updates exist? Yes!

• Why do we expect to develop better updates than the Hessian-bound update?

 \rightarrow Uses an upper-bound on the Hessian everywhere.

Why Not Newton?

- Why do we expect to develop better updates than the Hessian-bound update?
 - $\rightarrow\,$ Uses an upper-bound on the Hessian everywhere.
 - \rightarrow For non-quadratic functions, potentially make more progress by using instantaneous Hessian \rightarrow cheap for a block.

Why Not Newton?

- Why do we expect to develop better updates than the Hessian-bound update?
 - \rightarrow Uses an upper-bound on the Hessian everywhere.
 - \rightarrow For non-quadratic functions, potentially make more progress by using instantaneous Hessian \rightarrow cheap for a block.
- Classic Newton-style steps need line-search or trust-region method.

Why Not Newton?

- Why do we expect to develop better updates than the Hessian-bound update?
 - $\rightarrow\,$ Uses an upper-bound on the Hessian everywhere.
 - \rightarrow For non-quadratic functions, potentially make more progress by using instantaneous Hessian \rightarrow cheap for a block.
- Classic Newton-style steps need line-search or trust-region method.
- \rightarrow However, these:
 - Require more implementation effort.
 - Have tuning parameters.
 - Require extra evaluations of the function, which may be expensive.

- Why do we expect to develop better updates than the Hessian-bound update?
 - \rightarrow Uses an upper-bound on the Hessian everywhere.
 - \rightarrow For non-quadratic functions, potentially make more progress by using instantaneous Hessian \rightarrow cheap for a block.
- Classic Newton-style steps need line-search or trust-region method.
- \rightarrow However, these:
 - Require more implementation effort.
 - Have tuning parameters.
 - Require extra evaluations of the function, which may be expensive.

 \rightarrow We consider a Newton-style method based on a cubic regularization framework.

• While gradient-style methods are based on a quadratic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + \frac{L}{2} ||d^k||^2,$$

• While gradient-style methods are based on a quadratic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + \frac{L}{2} ||d^k||^2,$$

Newton-like cubic regularization methods are based on a cubic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + (d^k)^T \nabla^2 f(x^k) d^k + \frac{M}{6} \| d^k \|^3.$$

• While gradient-style methods are based on a quadratic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + \frac{L}{2} ||d^k||^2,$$

Newton-like cubic regularization methods are based on a cubic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + (d^k)^T \nabla^2 f(x^k) d^k + \frac{M}{6} \| d^k \|^3.$$

• By defining next iterate as minimizer of the bound (or minimum among both), we can incorporate the instantaneous Hessian.

• While gradient-style methods are based on a quadratic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + \frac{L}{2} ||d^k||^2,$$

Newton-like cubic regularization methods are based on a cubic upper-bound,

$$f(x^{k+1}) \le f(x^k) + \langle \nabla f(x^k), d^k \rangle + (d^k)^T \nabla^2 f(x^k) d^k + \frac{M}{6} \| d^k \|^3.$$

- By defining next iterate as minimizer of the bound (or minimum among both), we can incorporate the instantaneous Hessian.
 - → Guaranteed to decrease the objective without needing extra objective function evaluations required for a line search.

Experiment: Multi-class Logistic Regression

• Comparing update rules using variable blocks with greedy block selection.

• Looks like Newton's method, which has superlinear convergence!

- Looks like Newton's method, which has superlinear convergence!
- Can we achieve superlinear convergence in general?

- Looks like Newton's method, which has superlinear convergence!
- Can we achieve superlinear convergence in general?
- No, not even with exact updates.
 - E.g., 2-variable non-separable quadratic

- Looks like Newton's method, which has superlinear convergence!
- Can we achieve superlinear convergence in general?
- No, not even with exact updates.
 - E.g., 2-variable non-separable quadratic
- \rightarrow Possible to get superlinear convergence for problems with certain structures.

• Consider minimizing a differentiable function *f* with L1-regularization,

$$\min_{x} F(x) := f(x) + \lambda \|x\|_1,$$

• E.g., LASSO: $F(x) = \frac{1}{2!} ||Ax - b||^2 + \lambda ||x||_1$ for $\lambda > 0$.

$$\min_{x} F(x) := f(x) + \lambda \|x\|_1,$$

- E.g., LASSO: $F(x) = \frac{1}{2!} ||Ax b||^2 + \lambda ||x||_1$ for $\lambda > 0$.
- \rightarrow Using the BCD method with:
 - Variable blocks to choose the "best" M variables to update at each step.
 - Greedy BGS-q selection rule (or variations like those presented earlier).

$$\min_{x} F(x) := f(x) + \lambda \|x\|_1,$$

- E.g., LASSO: $F(x) = \frac{1}{2!} ||Ax b||^2 + \lambda ||x||_1$ for $\lambda > 0$.
- \rightarrow Using the BCD method with:
 - Variable blocks to choose the "best" M variables to update at each step.
 - Greedy BGS-q selection rule (or variations like those presented earlier).
- \rightarrow We prove identification of the sparsity pattern of x^* for **finite** k.

$$\min_{x} F(x) := f(x) + \lambda \|x\|_1,$$

- E.g., LASSO: $F(x) = \frac{1}{2!} ||Ax b||^2 + \lambda ||x||_1$ for $\lambda > 0$.
- \rightarrow Using the BCD method with:
 - Variable blocks to choose the "best" M variables to update at each step.
 - Greedy BGS-q selection rule (or variations like those presented earlier).
- \rightarrow We prove identification of the sparsity pattern of x^* for **finite** k.
 - Similar results are known for cyclic and random selection.

$$\min_{x} F(x) := f(x) + \lambda \|x\|_1,$$

- E.g., LASSO: $F(x) = \frac{1}{2!} ||Ax b||^2 + \lambda ||x||_1$ for $\lambda > 0$.
- \rightarrow Using the BCD method with:
 - Variable blocks to choose the "best" M variables to update at each step.
 - Greedy BGS-q selection rule (or variations like those presented earlier).
- \rightarrow We prove identification of the sparsity pattern of x^* for finite k.
 - Similar results are known for cyclic and random selection.
 - **BUT** with greedy, if $M > nnz(x^*)$, then after identifying the sparsity pattern, the cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

• Consider minimizing a differentiable function *f* with L1-regularization,

$$\min_{x} F(x) := f(x) + \lambda \|x\|_1,$$

- E.g., LASSO: $F(x) = \frac{1}{2!} ||Ax b||^2 + \lambda ||x||_1$ for $\lambda > 0$.
- \rightarrow Using the BCD method with:
 - Variable blocks to choose the "best" M variables to update at each step.
 - Greedy BGS-q selection rule (or variations like those presented earlier).
- \rightarrow We prove identification of the sparsity pattern of x^* for **finite** k.
 - Similar results are known for cyclic and random selection.
 - **BUT** with greedy, if $M > nnz(x^*)$, then after identifying the sparsity pattern, the cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!

- For LASSO and SVMs, possible to do **exact block updates** using homotopy methods.
 - Roughly cost $O(M^3) \rightarrow$ efficient for updating thousands of variables at once.

- For LASSO and SVMs, possible to do **exact block updates** using homotopy methods.
 - Roughly cost $O(M^3) \rightarrow$ efficient for updating thousands of variables at once.
 - Once we identify nnz(x*), using M > nnz(x*) and exact updates yields exact optimal solution...

- For LASSO and SVMs, possible to do **exact block updates** using homotopy methods.
 - Roughly cost $O(M^3) \rightarrow$ efficient for updating thousands of variables at once.
 - Once we identify nnz(x*), using M > nnz(x*) and exact updates yields exact optimal solution...

\rightarrow FINITE TERMINATION!

Experiment: Dual SVM

• Comparing update methods using variable blocks with greedy selection.

• Given the amazing properties we get for LASSO/SVMs with exact updates, are there other problems that allow efficient exact updates?

- Given the amazing properties we get for LASSO/SVMs with exact updates, are there other problems that allow efficient exact updates?
- Obvious choice is quadratics: can do exact updates in $O(M^3)$.
 - Allows big-but-not-too-big blocks.

- Given the amazing properties we get for LASSO/SVMs with exact updates, are there other problems that allow efficient exact updates?
- Obvious choice is quadratics: can do exact updates in $O(M^3)$.
 - Allows big-but-not-too-big blocks.
 - \rightarrow For **sparse** quadratics we can often do exact updates for much larger *M*.
 - E.g., Quadratic with lattice-structured non-zero pattern.

- Given the amazing properties we get for LASSO/SVMs with exact updates, are there other problems that allow efficient exact updates?
- Obvious choice is quadratics: can do exact updates in $O(M^3)$.
 - Allows big-but-not-too-big blocks.
 - \rightarrow For **sparse** quadratics we can often do exact updates for much larger *M*.
 - E.g., Quadratic with lattice-structured non-zero pattern.
 - Classic red-black ordering.
 - Allows blocks of size n/2 for O(n), but loses dependencies.

- Given the amazing properties we get for LASSO/SVMs with exact updates, are there other problems that allow efficient exact updates?
- Obvious choice is quadratics: can do exact updates in $O(M^3)$.
 - Allows big-but-not-too-big blocks.
 - \rightarrow For **sparse** quadratics we can often do exact updates for much larger *M*.
 - E.g., Quadratic with lattice-structured non-zero pattern.
 - Classic red-black ordering.
 - Allows blocks of size n/2 for O(n), but loses dependencies.

 \rightarrow Exploit connection to Gaussian Markov random fields, update tree-structured blocks in O(M) using Gaussian belief propagation.

- Given the amazing properties we get for LASSO/SVMs with exact updates, are there other problems that allow efficient exact updates?
- Obvious choice is quadratics: can do exact updates in $O(M^3)$.
 - Allows big-but-not-too-big blocks.
 - \rightarrow For **sparse** quadratics we can often do exact updates for much larger *M*.
 - E.g., Quadratic with lattice-structured non-zero pattern.
 - Classic red-black ordering.
 - Allows blocks of size n/2 for O(n), but loses dependencies.

- For lattice-structured graphs, can use blocks of size n/2 in O(n).
- Maintains modelling dependencies.

Experiment: Sparse Quadratic Problem

• Comparing exact updates using variable blocks with greedy selection.

- Exact solver uses M = 8, Gaussian belief propagation method uses $M = 8^3$.
- NP-hard to choose best "tree-structure" block.
 - → Use approximation method that performs substantially better than BGSD.

• Propose several greedy block selection rules for fixed and variable blocks.

Discussion

- Propose several greedy block selection rules for fixed and variable blocks.
- Propose cubic regularization update.
 - Uses instantaneous Hessian.
 - Achieves superlinear convergence for problems with certain structure.

Discussion

- Propose several greedy block selection rules for fixed and variable blocks.
- Propose cubic regularization update.
 - Uses instantaneous Hessian.
 - Achieves superlinear convergence for problems with certain structure.
- Propose using exact homotopy update rule for LASSO and SVMs.
 - Greedy block updates have "active set" identification property for LASSO, SMVs.
 - Superlinear convergence with variable blocks and higher order updates.
 - Finite convergence with variable blocks and exact updates.

Discussion

- Propose several greedy block selection rules for fixed and variable blocks.
- Propose cubic regularization update.
 - Uses instantaneous Hessian.
 - Achieves superlinear convergence for problems with certain structure.
- Propose using exact homotopy update rule for LASSO and SVMs.
 - Greedy block updates have "active set" identification property for LASSO, SMVs.
 - Superlinear convergence with variable blocks and higher order updates.
 - Finite convergence with variable blocks and exact updates.
- Propose optimal block update strategy for sparse quadratic problems.
 - Use "tree-structured" blocks.
 - Exploits Gaussian belief propagation algorithm developed for GMRFs.
 - Requires linear time in block size.