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Abstract Consider a set P of n points in the plane and n radars located at these points.
The radars are rotating perpetually (around their centre) with identical constant speeds,
continuously emitting pulses of radio waves (modelled as half-infinite rays). A radar
can “locate” (or detect) any object in the plane (e.g., using radio echo-location when

J. Czyzowicz
Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada

S. Dobrev
Institute of Mathematics, Slovak Academy of Science, 841 04 Bratislava, Slovak Republic

B. Joeris
Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

E. Kranakis
School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada

D. Krizanc
Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA
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its ray is incident to the object). We propose a model for monitoring the plane based
on a system of radars. For any point p in the plane, we define the idle time of p, as the
maximum time that p is “unattended” by any of the radars. We study the following
monitoring problem: what should the initial direction of the n radar rays be so as to
minimize the maximum idle time of any point in the plane? We propose algorithms
for specifying the initial directions of the radar rays and prove bounds on the idle
time depending on the type of configuration of n points. For arbitrary sets P we give
a O(n log n) time algorithm guaranteeing a O(1/

√
n) upper bound on the idle time,

and a O(n6/ ln3 n) time algorithm with associated O(log n/n) upper bound on the
idle time. For a convex set P , we show a O(n log n) time algorithm with associated
O(1/n) upper bound on the idle time. Further, for any set P of points if the radar
rays are assigned a direction independently at random with the uniform distribution
then we can prove a tight Θ(ln n/n) upper and lower bound on the idle time with high
probability.

Keywords Convex · Detection · Idle time · Monitor · Orientation · Patrol · Plane ·
Points · Radar · Random · (Light) Ray

1 Introduction

Radar systems are able to detect, locate and identify (stationary and moving) objects
located at great distances and in various kinds of weather conditions. They offer vast
potential for effective monitoring of objects in direct sight located within a terrain.

In our setting we view the plane or parts thereof as a critical region all of whose
points need to be monitored for important activities (such as animal migration, military
activity, navigation guidance, weather condition reporting, etc.) taking place. It is
required that specific events that may occur at any location in the plane be detected,
located and reported by at least one of the sensing radars. We assume the positions
of radars are fixed, for example, the radar infrastructure is already built. Our purpose
is to use the “rotating radar” as a paradigm for studying combinatorial aspects of
surveillance and understanding the limitations and capabilities of monitoring the plane.
It is assumed that the ray of the radar can reach any point at any distance in the plane,
if appropriately rotated towards this point, and that the radars have identical rotating
speeds. This requires to determine in an effective manner the initial direction of the
radar rays so as to optimize the time a point in the plane is left unattended by a radar. We
are concerned primarily with providing algorithms for determining the initial direction
of the radar rays so as to minimize the time a point in the plane may be left unattended.

1.1 Preliminaries and Notation

We consider n radars located at the points of a set P := {p1, p2, . . . , pn} of n arbitrary
points in the plane. The radars are rotating perpetually at constant identical speeds. Let
the initial directions of the radar rays be α1, α2, . . . , αn , with the understanding that the
i th radar has initial direction measured by an angle of αi , 0 ≤ αi < 2π , and rotates at
constant (angular) speed perpetually thereafter, for i = 1, 2, . . . , n. At all times during
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their rotation the radars are emitting a half-infinite ray, which for our purposes can be
considered to be a semi-line emanating from the point where the radar is located.

For any set Π = {α1, α2, . . . , αn} of initial directions of the rays of the n radars we
define the idle time of an arbitrary point p, denoted by I (P,Π, p), as the maximum
time that p may be left unattended by any of the radars. Finally, we define the idle
time of the system of radars as

I (P) := inf
Π

sup
p

I (P,Π, p),

where infΠ ranges over all possible initial directions Π of radar rays and supp over
all possible points p in the plane.

In what follows we will study our problem using an equivalent formulation based on
floodlights. Floodlights have been a source of several intriguing problems in discrete
and combinatorial geometry. By a floodlight f we mean a beam with a beam-width φ

located at a point p of the plane called its apex (e.g., see [13]). Hence, the floodlight
with apex p illuminates a wedge delimited between two rays (inclusively) with the
common vertex p and angles αp (the starting ray) and αp + φ (the ending ray). In
this setting, it is worth mentioning the following illumination theorem from [4]:

Theorem 1 Let P be a collection of n points in the plane, and f1, . . . , fn a set of
floodlights with beam-widths φ1, . . . , φn < π , such that φ1 + φ2 + · · · + φn ≥ 2π .
Then there is an O(n log n) algorithm which assigns floodlights to points in P and
orients them in such a way that the plane is completely illuminated.

Note this theorem gives the directions of static (i.e., non-rotating) floodlights.
In this paper, we assume that floodlights rotate at the same speed and direction

starting from their initial directions. The case when the floodlights rotate in different
directions is briefly considered in Sect. 1.3. An initial configuration of floodlights
is given by the triple (P, {αp}p∈P , φ), where P is a finite set of points in the plane
each containing the apex of a floodlight, αp an initial direction angle of the starting
ray of the beam of the floodlight with apex p, and φ ≤ 2π is the beam-width of
all floodlights. The sequence {αp}p∈P is called the initial configuration of the flood-
lights. Given the initial configuration, the configuration at time t is obtained from the
initial one by rotating each floodlight counterclockwise by angle t . A configuration
covers (illuminates) the plane, if each point of the plane is illuminated by at least one
floodlight (not necessarily always the same) at all times during the rotation. An initial
configuration is valid, if for every t ≥ 0, the configuration at time t covers the plane.

Given a finite set of points P , Φ(P) is the infimum over all beam-widths φ such that
there exists an initial configuration (P, {αp}p∈P , φ) that is valid. A useful observation
first proved in [10] (Theorem 8) is that for any set P of points in the plane the idle
time definition I (P) and the angular floodlight definition Φ(P) are identical.

1.2 Related Work

The authors of [4] study the floodlight illumination problem but their results are not
applicable since they consider only static (i.e., non-rotating) floodlights. There are sev-

123



396 Graphs and Combinatorics (2015) 31:393–405

eral related papers on floodlight illumination. Steiger and Streinu [15] is concerned
with the decision problem of illuminating a given wedge in the plane by n floodlights.
Obermeyer et al. [12] develops an algorithm for a group of guards statically posi-
tioned in a non-convex polygonal environment with holes for solving the Searchlight
Scheduling Problem: the objective of the proposed algorithm is to compute a schedule
to rotate a set of searchlights in such a way that any target in an environment will nec-
essarily be detected in finite time. Fusco and Gupta [8] is concerned with placement
and orientation of rotating directional sensors so as to optimize some function of the
“dark” time of the given points.

The first paper to investigate a similar problem concerning continuous coverage of
a finite or infinite domain using rotating floodlights (in that paper called antennae)
of a given beam width is [10]. In [10], the authors studied the Rotating Antennae
Coverage Problem concerning uninterrupted coverage of a region in the plane by
rotating antennae and gave algorithms for determining the initial direction of the
antennae and analyze the resulting beam-width/range tradeoffs for ensuring continuous
coverage of a given region or line in the plane with rotating antennae of given fixed
beam-width and range. Both instances of the problem were considered: (1) rotating
antennae with finite range and beam-width, and (2) rotating antennae with infinite
range and given finite beam-width (which is equivalent to the floodlight formulation
of our problem). In addition, to several results for uninterrupted coverage, they also
proved that an angle of 3π/n is necessary and sufficient for n ≥ 2 antennae all located
on a line to cover a half-plane defined by this line at all times. This easily implies that
an angle of 6π/n is sufficient for n ≥ 2 antennae on a line to cover the plane at all
times. They also proved that Φ(P) = π , for any set P of three points in the plane.
However [10] does not consider algorithms for the more general case of arbitrary
sets of points. Another related paper is [2] which studies the problem of finding the
minimum angle α such that one can install at each point of a pointset F a stationary
rotating floodlight with illumination angle, initially oriented in a suitable direction, in
such a way that, at all times, every target point of another pointset P is illuminated by
at least one floodlight.

The problem of monitoring a region to minimize idleness is studied in the mobile
robot literature under the name patrolling. It is usually defined as a perpetual process
performed by mobile robots in a static or in a dynamically changing environment.
Patrolling has been studied intensively in robotics (see [1,5–7,9,11,16]), where it is
often viewed as a form of coverage. It is defined as the act of surveillance consisting
of walking around an area in order to protect or supervise it. The frequency of visits
as a criterion for measuring the efficiency of patrolling was first introduced in [11]
where it was called idleness. For a survey of diverse approaches to patrolling based
on idleness criteria we refer to [1].

Standard investigations on patrolling have focused on one-dimensional models
by ensuring that a boundary encircling a given two-dimensional domain is patrolled
by robots perpetually moving along the boundary. Despite the fact that such one-
dimensional models provide adequate solutions for patrolling the boundary and thus
monitoring potential incursions, they do nothing to address monitoring of the interior
area delimited by this boundary. Thus the model studied in this paper is more suitable
for monitoring in the two dimensional plane.
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Table 1 The time complexity of finding the valid initial direction with given beam-widths for n points in
the plane

Point-set Initial direction Beam-width Complexity

Arbitrary Deterministic O(log n/n) O(n6/ ln3 n)

Arbitrary Deterministic O(1/
√

n) O(n log n)

Arbitrary Randoma Θ(log n/n) O(n)

Convex Deterministic O(1/n) O(n log n)

The first column describes the configuration of points, the second the type of initial direction, the third the
beam-width and the last the time complexity for finding such an initial direction
a The initial direction of floodlights is chosen independently and uniformly at random and is valid with
high probability

1.3 Outline and Results of the Paper

We give algorithms providing the initial directions of the radar rays and provide various
bounds for several types of configurations of a set P of n points in the plane. Since
the rotation of floodlights is a continuous process, Sect. 2 discusses a discretization of
the rotation of floodlights.

In Sect. 3, we prove an O(log n/n) upper bound on Φ(P) for any set P of n
points in the plane. However, since this algorithm for finding the initial direction of
floodlights with beam-width Θ(log n/n) is not very efficient, we will also present a
fast O(n log n) algorithm for floodlights with beam-width Θ(1/

√
n) and a randomized

O(n) algorithm for floodlights with beam-width Θ(log n/n). In Sect. 4, we consider
points in convex position; we give an O(1/n) upper bound on the idle time for any set
P of n points in convex position. We conclude in Sect. 5 with several open questions.
Results of the paper are summarized in Table 1.

2 Discretizing the Rotation of Floodlights

Rotation of floodlights is a continuous process. In order to study the problem, we
introduce a discrete model of the floodlights’ rotation. Before proving the upper bound
we define several concepts concerning the relation between discrete and continuous
movement of the floodlights.

Definition 1 (Discretely rotating floodlight) Let p be a point in the plane, and let k
and m be positive integers. Let b0, . . . , bk−1 be beams originating at p with beam-
width 2π/k such that the starting ray of bi has angle 2π i/k. We will assume that
for any integer p, bp = bp mod k . Note that the beams together illuminate the whole
plane. These beams do not rotate, but they do turn on and off. A discretely rotating
floodlight at p with beam-width 2πm/k, step-width 2π/k and initial direction i ∈
{0, . . . , k − 1} is the configuration of the beams such that for any integer T , at any
time t ∈ [T/k, (T + 1)/k), only beams bT +i , bT +i+1, . . . , bT +i+m−1 are on. Hence,
this discretely rotating floodlight illuminates the region of the plane between rays with

123



398 Graphs and Combinatorics (2015) 31:393–405

p

b0

b1

b2

b3
b4b5

b6

b7

b8

b9

b10

b11

b12

b13
b14 b15

b16

b17

b18

b19

p

b0

b1

b2

b3
b4b5

b6

b7

b8

b9

b10

b11

b12

b13
b14 b15

b16

b17

b18

b19

Fig. 1 Discretely rotating floodlight at a point p with beam-width 3π/10, step-width π/10 and initial
direction i = 1. On the left the floodlight at times 0 ≤ t < 1/20 and on the right the floodlight at times
1/20 ≤ t < 1/10

angles 2π(i +�tk�)/k and 2π(i + m +�tk�)/k at time t (see Fig. 1 for an illustration
of the concepts defined).

In terms of covering, continuously rotating floodlights and discretely rotating flood-
lights are equivalent up to constant factors of their beam-widths as stated in the fol-
lowing theorem.

Theorem 2 Let p be a point in the plane, and let k and m be positive integers. A
floodlight with beam-width φ ≤ 2π/k rotating (continuously) around a point p can
be covered by a discretely rotating floodlight at p of beam-width 6π/k and step-width
2π/k. Conversely, a discretely rotating floodlight at a point p with beam-width 2πm/k
and step-width 2π/k can be covered by a continuously rotating floodlight at p with
beam-width 2π(m + 1)/k.

Proof Consider a continuously rotating floodlight f with beam-width φ ≤ 2π/k at
a point p and initial direction α. Let f ′ be the discretely rotating floodlight at p with
beam-width 6π/k, step-width 2π/k and initial direction i such that beams bi and bi+1
of f ′ cover f at time t = 0. Since the beam-width of the union of these two beams is
larger than the beam-width of f , such an i must exist. At time 0 ≤ t ≤ 2π/k, f has
not moved by more than 2π/k from its initial direction, so it is covered by bi , bi+1
and bi+2. At time t = 2π/k, f ′ switches off bi and on bi+3 and f has moved at least
2π/k, but not more than 4π/k, hence f is covered by beams bi+1, bi+2 and bi+3 at
time 2π/k ≤ t ≤ 4π/k. This argument can be extended to all other time intervals, in
particular, at any time t , f is covered by beams bi+�kt�, bi+�kt�+1, bi+�kt�+2, which
are turned on.

Consider a discretely rotating floodlight f with beam-width 2πm/k, step-width
2π/k and initial direction i . Let f ′ be the continuously rotating floodlight with beam-
width 2π(m + 1)/k and initial direction 2π(i − 1)/k. Note that f ′ covers beams
bi−1, . . . , bi+m−1 of f at time t = 0, and beams bi , . . . , bi+m−1 at time 0 ≤ t < 2π/k,
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which are all beams turned on. For any integer T , at time 2πT/k ≤ t < 2π(T +1)/k,
f ′ covers beams bi+T , . . . , bi+m−1+T , which are all beams turned on at this time. 	


In the rest of the paper we will prove all upper bounds for discretely rotating
floodlights. By Theorem 2, these bounds extend to continuously rotating floodlights
with double beam-width.

3 Algorithms on Arbitrary Sets of Points

We start with the O(n log n) algorithm for finding the initial direction of floodlights
with beam-width O(1/

√
n).

Theorem 3 There is an O(n log n) algorithm that for any set P of n points in the
plane, finds a valid initial direction of discretely rotating floodlights with beam-width
and step-width O(1/

√
n) at points in P.

The proof uses the following corollary of the main illumination theorem from [4]:

Corollary 1 Let P be a collection of n ≥ 3 points in the plane, each with floodlight
having beam-width 2π/n. Then there is an O(n log n) algorithm which orients the
floodlights in such a way that the plane is completely illuminated.

Proof Let m = �√n�. Pick m mutually disjoint subsets S0, . . . , Sm−1 of P of size m.
For each j = 0, . . . , m −1, find the direction of static floodlights with the beam-width
2π/m at points in S j that illuminate the plane using the O(m log m) algorithm from
Corollary 1. For each point p in S j , define the discretely rotating floodlights with beam-
width 4π/m, step-width 2π/m and initial direction i such that at time t = 2π j/m, the
floodlight covers the static floodlight at p. It follows that for every T = 0, . . . , m − 1,
the floodlights in ST cover the plane at any time 2πT/m ≤ t < 2π(T + 1)/m,
hence, the place is covered at all times. The time complexity of this algorithm is
O(mm log m) = O(n log n). 	


Next, we will present an O(n6/ ln3 n) algorithm for finding the initial direction
of floodlights with beam-width Θ(log n/n). We will need the following result about
partitioning a plane into regions by a collection of lines.

Lemma 1 (Chapter 8.3 in [3]) Given n lines in the plane, there is an O(n2) algorithm,
which reports all regions (faces) determined by these lines.

Theorem 4 There is an O(n6/ ln3 n) algorithm that for any set P of n ≥ 2 points in
the plane, finds a valid initial direction of discretely rotating floodlights at points in
P with beam-width φ and step-width φ, where φ ∈ O(log n/n).

Proof Let P = {p1, p2, . . . , pn} and let k ≤ �n/(18 ln n)�. At each p ∈ P , construct
a discretely rotating floodlight with beam-width π/k and step-width π/k. For each
point p ∈ P the boundaries of its 2k beams is the union of k lines through p. The
union of these boundary lines is a collection of at most kn lines which partition the
plane into at most

(
kn + 1

2

)
+ 1 ≤ k2n2
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regions. We denote this set of regions by R. Note that each region is included in exactly
one of the 2k beams of each floodlight. Also note that the plane is covered at time t by
the floodlights if and only if each region is included in at least one beam that is on at time
t . Since floodlights will return to their initial direction at time t = 1, the plane is covered
at all times, if it is covered at times t ∈ T = {0, π/k, 2π/k, . . . , (2k − 1)π/k}. To
verify that the plane is covered, we define the coverage function C on a set of floodlights
S which returns all pairs (r, t) ∈ R × T such that region r is covered by at least one
of the floodlights in S at time t . In what follows we assign the initial directions to
floodlights such that the coverage function of all n floodlights returns exactly 2k|R|
pairs, i.e., all regions are covered at all times in T . The main algorithm is as follows.

1. Assign the initial direction of the floodlight at p1 arbitrarily.
2. Suppose we have already assigned the initial direction of floodlights at points

p1, . . . , p j−1, j < n. Pick the initial direction of the floodlight at p j such that
the number of pairs returned by the coverage function of the first j floodlights is
maximized.

Let C j denote the set of pairs returned by the coverage function for the first j ≤ n
floodlight configured by the algorithm. It is easy to see that |C1| = |R| (“a floodlight
illuminates all regions in one rotation”). In addition, we will show that |C j | ≥ |C j−1|+
|R| − |C j−1|

2k . Note that 2k possible initial directions of the floodlight at p j partitions
R × T into 2k subsets S0, . . . , S2k−1 of the same size |R|, where Si is the subset
of pairs covered by the floodlight at p j with initial direction i . The algorithm will
choose the initial direction i of the floodlight at p j so that the size of the intersection

of C j−1 and Si is minimized, i.e., it has size at most
|C j−1|

2k . Hence, the number of

newly covered pairs by the floodlight at p j is at least |R| − |C j−1|
2k , and the bound

follows. Now using that |C1| = |R| (for the base case) and this inequality (for the
inductive step), it is easy to prove by induction on j that |C j | ≥ 2k|R|(1− (1− 1

2k ) j ).
If we show that (1 − 1

2k )n < 1
2k|R| , then |Cn| > 2k|R| − 1, and since |Cn| is an

integer, we have that |Cn| = 2k|R|. To show this observe that for n ≥ 2,

(
1 − 1

2k

)n

≤ e− n
2k ≤ e−9 ln n <

183 ln3 n

2n5
≤ 1

2k3n2 ≤ 1

2k|R| , (1)

where the second and fourth inequalities follow from the bound on k.
Implementation and complexity. By Lemma 1, the set of all regions R determined

by kn lines can be constructed in time O(k2n2). To represent the result returned by the
coverage function, we will use a boolean array with an entry for each pair in R × T .
In the j th iteration of the algorithm, we count for each of 2k initial directions of the
floodlight at point p j how many new pairs will be returned by the coverage function
as follows. For each region in R, we determine in O(1) time in which beam of the
floodlight at p j it lies, and hence, at what time it will be covered by this floodlight.
After that we pick the best direction and update the array correspondingly. This takes
time O(|R|k) = O(k3n2), for j ≥ 2 and time O(|R|) = O(k2n2) for j = 1, since
we can pick any initial direction. Since we have n points, the total running time is
O(k3n3) = O(n6/ ln3 n). 	
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We remark that the constant 9 in the previous theorem can be replaced by any
c > 10, and the theorem still holds for n sufficiently large (depending on c).

Next, we will modify the argument in the previous proof to obtain a randomized
O(n) algorithm for floodlights with beam-width Ω(log n/n). This algorithm picks
the initial directions of all floodlights at random. We have the following theorem.

Theorem 5 Let P be a set of n ≥ 2 points in the plane. Let k ≤ �n/(20 ln n)�. If the
initial directions of discretely rotating floodlights at P with beam-width and step-width
π/k is chosen randomly and independently, then the plane is covered at all times with
high probability. If all n floodlights are placed at the same point and k ≥ �2n/ ln n�
and the initial directions of discretely1 rotating floodlights with beam-width and step-
width π/k are chosen independently and uniformly at random, then the plane is not
covered at all times with high probability.

Proof As in the proof of Theorem 4, sets C j of pairs (r, t) ∈ R × T returned
by the coverage function, j = 1, . . . , n. We still have |C1| = |R|, however, for
j ≥ 2, we can show by the same argument as in the previous proof that the expected
size of C j is E[|C j |] = E[|C j−1|] + |R| − E[|C j−1|]

2k , and hence also E[|Cn|] =
2k|R|(1 − (1 − 1

2k )n). We have

Pr(|Cn| = 2k|R|) ≥ E[|Cn|] − 2k|R| + 1 = 1 − 2k|R| (1 − 1
2k

)n
.

Similarly as in (1), we have

(
1 − 1

2k

)n

<
1

2kn|R|
for n ≥ 2. Notice that the extra n in the denominator on the right hand side of the
inequality comes from replacing constant 18 with 20 in the assumption on k. Therefore,
Pr(|Cn| = 2k|R|) > 1 − 1/n, i.e., the floodlights cover the plane at all times with
probability going to 1 as n goes to infinity.

To prove the second part of the statement, suppose k ≥ �2n/ ln n�. Since all flood-
lights are placed at the same point, it is enough to show that the initial configuration,
when chosen independently and uniformly at random, does not cover the plane with
high probability. Indeed, if the initial configuration covers the whole plain, then the
plain remains covered at all times. The beams of floodlights partition the plane into
2k regions. Let X be the random variable counting the number of uncovered regions
by floodlights in the initial configuration. We have that

E[X ] = 2k

(
1 − 1

2k

)n

≥ 2n3/4

ln n

for sufficiently large n, since E[X ] approaches 4n3/4

ln n as n goes to infinity. Since chang-
ing the initial direction of one floodlight changes the number of uncovered regions in
the initial configuration by at most one, by Azuma’s inequality, we obtain

1 A similar result can be proved for continuously rotating floodlights using a result of Penrose [14].
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Pr(|X − E[X ]| < t) ≥ 1 − 2e−t2/(2n).

Now if we set t to E[X ], we have

Pr(X ≥ 1) ≥ 1 − 2e− E[X ]2
2n ≥ 1 − 2e

− 2n1/2

ln2 n

which approaches 1 as n goes to infinity. 	

We again remark that the constant 20 in the first part of the previous theorem can

be replaced by any c > 12 and 1/2 in the second part can be replaced by any c < 1,
and the theorem still holds for n sufficiently large (depending on c).

4 Algorithms for Points in Convex Position

In this section we restrict ourselves to the set P of n points in convex position.
Without loss of generality, we will assume that at least �n/2� of the points of P lie

above the x-axis and at least �n/2� below the x-axis. We need additional concepts of
sweep line, and east and west subsets of a convex set.

Definition 2 (Sweep line hitting a set) Given an angle α, let dir(α) be the unit vector
with angle α. Given a set S of points in the plane, and an angle α, the sweep line
with angle α hits S at p if p ∈ S and if 	 is a translation of the sweep line such that
p ∈ 	 and H is the half-plane with boundary 	 containing point p + dir(α − π/2),
then S ⊆ H . We also say that p is a hitting point of the sweep line and S. Note that
p does not have to be unique.

Definition 3 (East and west subsets) Given a convex set of points S, let the north pole
of P , denoted s0, be the point at which the sweep line with angle 0 hits P (and has
the smallest x-coordinate if there are several such points). Let s1, s2, . . . , sn−1 be the
remaining points of P as they appear along the convex hull of P starting from s0 in
the clockwise direction. The south point of S is defined similarly with respect to the
sweep line with angle π . Suppose st is the south pole. The east subset of P is the set
{s0, . . . , st } and the west subset of P is the set {st+1, . . . , sn−1}.

The east subset behaves very nicely with respect to sweep lines with angles between
0 and π as stated in the following lemma whose proof can be found in the Appendix.

Lemma 2 If S = {si1, . . . , sik }, where 0 ≤ i1 < · · · < ik ≤ t , is a subset of the east
subset of P, then the sweep line with angle between 0 and π hits S at either si1 or sik .

Proof Let T be the intersection of three halfplanes:

– the halfplane with the boundary line through si1 and sik containing si1 + dir(0),
– the halfplane with the boundary line with angle 0, passing through si1 and con-

taining sik , and
– the halfplane with the boundary line with angle 0, passing through sik and con-

taining si1 ,
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Fig. 2 The intersection of three
halfplanes that contain the set S.
Any sweep line with angle
between 0 and π hits T at either
si1 or sik

cf. Fig. 2. It is easy to see that one of hitting points of the sweep line with angle
between 0 and π and T is at either si1 or sik . Since S is a subset T and contains si1 and
sik , the same holds true for S. 	


The following key lemma shows how to illuminate a half plane using a subset of
the east subset of points.

Lemma 3 Let S be a set of points of size at least 6k − 2 all lying below the x-axis
and in the east subset of P. Then there exist initial directions of discretely rotating
floodlights with the beam-width and the step-width φ = π/k at these points such that
the half-plane above the x-axis is covered at all times.

Proof Let sm1, . . . , sm6k−2 be 6k − 2 points of S such that m1 < · · · < m6k−2. For
every i = 1, . . . , 3k − 1, set the initial direction of the floodlights at smi and sm6k−1−i

to i mod 2k. It is enough to show that for any t ∈ {0, 1/2k, . . . , (2k − 1)/2k}, the
half-plane above the x-axis is covered at time t . For every such t , we can choose 2k
points sl1, . . . , slk , srk , . . . , sr1 out of these 6k − 2 points such that l1 < · · · < lk <

rk < · · · < r1 and for every i = 1, . . . , k, the direction of the floodlights at sli and
sri at time t is i − 1. Among these 2k points we will choose k using the following
procedure. For each i = 1, . . . , k, let point pi be a hitting point of the sweep line with
angle iφ and the set {sli , . . . , slk , srk , . . . , sri }. By Lemma 2, pi can be chosen to be
either sli or sri . Next, we show by induction on i that

– the floodlights at points p1, . . . , pi cover an angle βi with the starting ray with
angle 0 (lying on the x-axis) and the ending ray with angle iφ (lying on the line
Li passing through pi ). We call the common vertex of these two rays ci .

For i = 1, let L1 be the line passing through p1 with angle φ and c1 be the intersection
point of L1 and the x-axis. Obviously, the angle β1 with the starting ray with angle 0,
the ending ray lying on L1 and common vertex c1 satisfies the invariant.

Suppose that the induction invariant holds for i < k. Let Li+1 be the line passing
through pi+1 with angle (i + 1)φ and ci+1 be the intersection point of Li+1 and the
x-axis. Since point pi+1 lies in the right closed half-plane determined by Li , angle
βi and the floodlight at point pi+1 cover angle βi+1, cf. Fig. 3. Hence, the first i + 1
floodlights cover angle βi+1.

Note that if i = k, the above invariant implies that floodlights at p1, . . . , pk ∈ S
cover the half-plane above the x-axis at time t . 	
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Fig. 3 Illustration how angle βi
and the flood light at point pi+1
cover angle βi+1

We now state and prove the main theorem of this section, which is valid for a set
P of n points in convex position. Recall that in this section we assume that at least
�n/2� of the points of P lie above the x-axis and at least �n/2� below the x-axis.

Theorem 6 Let P be a set of n points in the plane in convex position. Then there
exists a valid initial direction of discretely rotating floodlights at points in P with
beam-width and step-width φ = π/�n/24�, which can be found in time O(n log n).

Proof Let P−
E (P−

W ) be the subset of P containing all points of the east (west) subset
of P that lie below the x-axis. At least one of the sets P−

W and P−
E contains at least

�n/4� > 6�n/24�−2 points. If it is the set P−
E , it follows by Lemma 3, that there exist

initial directions of discretely rotating floodlights with the beam-width and step-width
φ = π

�n/24� such that the halfplane above the x-axis is covered at all times. If it is

P−
W , we apply Lemma 3 on the reflection of P−

W about the vertical line through the
south pole st , since this reflection has the properties of the east subset. To each point
p ∈ P−

W , assign the reflection of the initial direction of the floodlight at the reflection
of p, i.e., if the floodlight at the reflection of p has initial direction i , assign the initial
direction (k − i) mod 2k to the floodlight at p. Since the floodlights at the reflected
points cover the halfplane above the x-axis at all times, so do the floodlights at P−

W .
By symmetry, the floodlights at points above the x-axis can be set up to cover the
half-plane below the x-axis.

To find the order of points of P along the convex hull takes time O(n log n), after
which assigning of initial directions can be done in linear time. 	


By Theorems 2 and 6 holds for continuously rotating floodlight with beam-width
2φ.

5 Conclusion and Open Problems

In this paper we have investigated the idle time of rotating floodlights in the plane.
We derived monitoring algorithms for radars located on arbitrary sets of points, and
for points in convex position. As an interesting problem we note that no general lower
bound result is known for the case of a regular n-gon other than the straightforward
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2π/n. For any set of n points, we also derived the idle time O(ln n/n) when the radars
are orientated randomly and independently with the uniform distribution. Further, in
view of Theorem 5, Θ(ln n/n) is also a lower bound assuming all the floodlights are
located at the same point in the plane. However, in general, it is not known whether the
problem of minimizing the idle time for floodlights on a general point set is NP-hard.

Aside from improving our bounds, several intriguing open problems remain. In all
point-sets considered in this paper the floodlights had identical angles. An interesting
problem concerns the possibility of generalizing the static floodlight coverage theorem
to rotating floodlights f1, . . . , fn with arbitrary angle sizes φ1, . . . , φn , respectively,
such that φ1+· · ·+φn = cπ , for some constant c independent of n. Another interesting
question concerns the possibility of having floodlights with arbitrary rotating speeds.
Similarly, computing the idle time for the case of faulty radars, which may malfunction
during the rotation, provides a challenging set of questions.

Acknowledgments Authors acknowledge partial support from NSERC, VEGA, and Conacyt. Many
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