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ABSTRACT

This paper introduces-body games, a new compact game-theoretic
representation which permits a wide variety of game-théogeian-
tities to be efficiently computed both approximately andotiya
This representation is useful for games which consist obsimy
actions from a metric space (e.g., points in space) and iotway-

offs are a function of the distances between players’ acfimices:

Categories and Subject Descriptors
1.2.11 Distributed Atrtificial Intelligence ]: Multiagent Systems

General Terms
Theory, Algorithms
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1. INTRODUCTION

Game theoretic models have recently been very influentidlan
electronic commerce community, primarily as a way of stodyi
users’ behavior in complex systems (e.g., computer netsyakd
the ways in which they would respond to changes in the struc-
ture of that system [28, 5, 26, 22, 29]. In particular, perfec
information, simultaneous-action games have receivediden
able study, which is reasonable as these games are in a bense t
most fundamentd. In order to analyze these models computa-
tionally, it is often necessary to compute game-theoraigntjties
ranging from expected utility to Nash equilibria.

Most of the game theoretic literature presumes that simetias
games will be represented in normal form. This is probleoniag-
cause quite often games of interest have a large numberydrgla
and a large set of action choices. In the normal form reptaten,
we store the game’s payoff function as a matrix with one efary
each player’s payoff under each combination of all playactions.

we'd like to thank Mike Klaas for helpful discussions.

2More complex games such as those involving time or uncer-
tainty about payoffs can always be mapped to perfect-inébion,
simultaneous-action games by creating an action for gqualigy in

the original game. It should be said that this expansion |siaiar-

ily theoretical interest, however, as it tends to cause atosion in

the size of the game.
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As aresult, the size of the representation grows exporigntiéh

the number of players. Even if we had enough space to stole suc
games, most of the computations we'd like to perform on these
exponential-sized objects take exponential time.

Fortunately, most large games of any practical interese hav
highly structured payoff functions, and thus it is possitdeep-
resent them compactly. (Intuitively, this is why humans @k to
reason about these games in the first place: we understapdythe
offs in terms of simple relationships rather than in term&dr-
mous look-up tables.) Compactness of representationsetf is
not enough, however. In order for a compact representatidret
useful, it must give rise to efficient computations.

Compact representations of structured games and these repr
sentations’ computational properties have already redebonsid-
erable study. For example, see work on congestion games [27]
local effect games [20], graphical games [16, 8], multirageflu-
ence diagrams [18] and action graph games [2], as well as work
on computation of correlated equilibria on compact gameerep
sentations [25, 24]. This prior work on compactly represgnand
reasoning about large utility functions in highly-mulagkr games
provides us with many useful tools; however, for the most {heese
classes of games are only compact when players’ payoffifumect
exhibit strict or context-specific independencies. Whilels as-
sumptions are justified in a wide range of practical applces,
there are many other sorts of interactions that cannot b@aotty
modeled using these existing approaches.

In this paper, we describe a class of games calkbddy games,
which have structure similar to the“body problems” widely stud-
ied in physics and statistical machine learning [12]. #Adbody
problem consists of. particles in a metric space and quantities to
be computed which are functions of the distances betwees pai
(or larger sets) of particles. Examplesrobody problems range
from determining the gravitational forces in effect betweeset of
masses in physics to kernel density estimation in stadistic

In an n-body game, players choose actions in a metric space,
and the payoff of a player depends on the distances between he
actions and each of the other players’ actions. We show thaym
computational questions abautbody games can be answered effi-
ciently, often by combining techniques farbody problems, such
as the dual-tree algorithm [12], with classical game-te#oral-
gorithms. The key difference between our work and the exgsti
research on compact game representations mentioned atina i
n-body games need exhibieitherstrict nor context-specific inde-
pendence structures. Instead, in this work we show how aeigyl
in the action space can be leveraged in several key gameetfeeo
computational problems, even when each agent’s pajwtysde-
pends on all other agents’ action choices. (Of course, thés ot
mean that the two approaches are incompatible: in our dureen
search we are investigating further computational gaiasdan be
realized iln-body games when strict or conditional independencies
hold between players’ payoff functions.)



2. DEFINING N-BODY GAMES DEFINITION 3 (MAX-KERNEL). A Max-Kernelpayoff func-

Consider a game with set of playelé = {1...n}. De- tion is defined as
note by.S; aggnti’s finite set of actiong. Denote a pure strat- Vi, wi(si, s_i) = maxw; K (d(si, s;)) ©)
egy of playeri ass; € S;. A pure strategy profile, denoted J#i

s = (s1,...5n), Is a tuple of then players’ actions. We also
define the pure strategy profile of all players other thass_; =

(81,..,8i-1,8i41,...,8n). LetS = X,cnS; be the set of all Analogously we can define Min-Kernel payoff functions. An

pure strategy profiles. Playés payoffu; : S — R is a function example of a min-kernel payoff function iearest Neighbor
of all n players’ actions.

An n-body game is any game which has the following properties:

whereK is positive and monotonic, and; € W C R.

Vi, wi(si,s—i) =mind(si,s;) 4
1. EachsS; is a subset of5, whereS is a metric space with g7
distance measuré Two action sets$; andS; may (partially We can represent many other interesting game-theoregiaicit
or completely) overlap with each other. tions as special cases of general pairwise interactionmsexample,
single-shot pursuit-evasion scenarios can be writtensnihy; for
2. Vi, ui = U(d(s1,8i),...,d(si-1,8:),d(Si+1, i), . - more details see the full version of our paper.

d(sn,si)). Thatis, each playea’s payoff depends only on ) )

the distancebetweeni’s action choice and each of the other 2.1 Representation Size

players’ action choices. According to the definition above, to represent a pairwiserin
actionsn-body game we need to specify the action Sgand the
kernel functionk; for each player. Lef = max; |S;|. Storing the
action sets take®(ns) space. For eacly we need to specifys;
for each possible values dfs;, s;), and in the worst case where
action sets are totally disjoint, can haveO((n3)?) different val-
ues (recall that we assume that the action space is finitethe&So

3. U is monotonic in its distance arguments. That is, holding
all but one ofU’s arguments constant/ must increase or
decrease (weakly) monotonically as the remaining distance
argument increases. As long as it satisfies this consti@int,
may be any function.

Although we have obtained results about many classesofdy wors%t_gase space complexity for representingualpody game is
games, due to space constraints in this paper we will coneitg O(n”s”). ) )
one family of payoff functions and two special cases of this{ We are most interested in cases whafe€an be expressed ana-

ily. Intuitively, we consider onlya-body games which can be con-  IYtically, and so we will not need to explicitly store its ugls. Some
structed from functiond; that depend on the distances between €xamples of useful analytic kernel functions are:

only two players’ actions. It turns out that these payoffdiions
are already sufficient to represent a large class of ganwdtie

interactions. ] 1
2. Coulombic Kernel: K (d(si,s;)) = —

1. Gaussian Kernel: K (d(si,s;)) = e M5l

DEFINITION 1  (PAIRWISE INTERACTIONS). A General Pair- llsi = sl
wise Interactionpayoff function is defined as When the kernel has an analytic expression, as in these, ¢hses
space complexity of representing the gamé(s:s), because it is
Vi, wi(si,s_i) = * K;(d(si,s;)) (1) unnecessary to stoi€; (d(s;, s;)) for eachs; ands;. Regardless,
G the space complexity of representingraibody game is much less
wherex is a monotonic, commutative and associative operator with itglaon(:lh;)space complexity of the same game’s normal formetwhi
*;Kj = K1 *...x K, and where eackernel K; is a monotonic '
function as defined in point 3 above. 2.2 Example

Here we give a discrete and multidimensional generalinatio
Hotelling’s famous location problem [15], represented asna
body game with Additive payoffs:

Below we define two special cases of pairwise interactioys pa
off functions which are useful representationally, andchhyield
computational benefits over the general case.

ExXAmMPLE 1. Coffee Shop Game
n vendors are trying to decide where to open coffee shops in a
downtown area. The area is rectangular, wittows andc columns
. of blocks; each vendor chooses to open shop in one of theslesblo
Vi, wisi 5-4) ij d(si, 53)) ) Vendors prefer to be far away from other vendors’ shops. ®end
i's payoff is the sum of all other vendors’ influenceipwhere;’s
where the kernel< is a positive and monotonic function of the influence on is an increasing function on the Manhattan distance

DEFINITION 2 (SuM-KERNEL). A Sum-Kernel or Additive
payoff function is defined as

JF#i

distance between two actions, and the weights= W C R. between andj’s chosen blocks. Formally,

3In fact, most of our results generalize to the case of continu i(8i,8-4) ZK (si,85)) (5)
ous action spaces, with the caveat that most quantities beust Py

approximated rather than computed exactly. We focus onitite fi

case for two reasons: first, it is simpler to explain given lour whered(s;, s;) is the Manhattan distance betweés location s;
ited space here; second, game-theoretic problems caniratise andj's location s;:

continuous case because e.g., Nash equilibria do not alevasts

In fact, we are able to show the existence of Nash equilitwia f d(si,sj) = |row(s;) — row(s;)| + |col(si) — col(s;)|

broad families of continuous-body games; we mention these re- ) ) ) . ) )
sults briefly in Section 6. and K is a monotonically increasing function (e.g., linear; log)



2.3 Computation onn-body Games

As noted above, the-body game representation is much more
compact than the normal form. However, evaluating a playsay/-
off now takesO(n) time, where for normal form games this just
requires a table lookup. Evaluating allplayers’ payoffs under a
pure strategy profile would then tak¥n?) time using the obvious
method. For some applications—even when the space corplexi
of the normal form is not a concern—this might still be fasgtem
constructing the exponential-sized normal form repregenrt and
then doing computation on it. This is because computatitzsiis
quite often require the evaluation only of payoffs under alésub-
set of pure strategy profiles, and payoffs that are not rateveed
not be evaluated when using thebody representation.

Nevertheless, payoff computations are in the inner loopsaxzt
computation tasks on games, thus thén?) complexity would
limit the size of games we would be able to analyze. Can wedspee
up this computation by exploiting the-body structure of the pay-
off function? Intuitively, if a certain set of players choaetions
that are “close together” it$, we could treat them as “approxi-
mately the same” during computation. This allows us to appro
imate the computation of payoffs by partitioning the actspace
S, and approximating the points in each partition by repregame
point(s). This is the intuition behind manybody methods, e.g.
the fast multipole algorithms and the dual-tree algorittsimgkd-
trees or metric trees. (We survey these approaches in mta# de
in Section 3.) It is conjectured that the computational clexyp
ity of these method® (n logn) and there is significant empirical
evidence of this [12, 23, 17, 1].

In the rest of this paper, we consider a number of computa-
tional tasks: computing payoffs under pure strategy psfitay-
offs under mixed strategy profiles, best responses, puategir
Nash equilibria and mixed strategy Nash equilibria. We demo
strate that the structure efbody games allows each of these tasks
to be performed more efficiently than in the general case.

3. EVALUATING PAYOFFS UNDER PURE
STRATEGY PROFILES

The computation of payoffs under pure strategy (PS) proiiles
required by essentially all computational tasks in gamertheOur
later discussion of more complex problems will be based sulte
here. Consider computing a playés payoff for playing each ac-
tion from S;, given that the other players play accordingq:

PrROBLEM 1. One-Player All-Deviations PS Payoffs:

Vs; € S;, compute wu;(s},s—i)

We start by discussing Problem 1 for the special cases of Ad-
ditive and Max-kernel payoff functions, because they aeenttost
similar to widely-studied problems in thebody literature; in Sec-
tion 3.3 we will generalize our results to general pairwiseliac-
tions payoff functions.

3.1 Additive payoff functions

In the Additive payoff function special case, Problem 1 is

Vsi € Si, compute > w;K(d(s}, s;)) (6)

J#i
A mathematically equivalent problem arises often in stiaége.g.,
Gaussian processes and kernel density estimation) andcphys
(e.g., gravitation and electro-magnetics); the compjesft solv-
ing the problem using a naive approach(Q$|S;|n). Leth =
max{n,|Si|}. Very recently, several techniques were proposed

Figure 1: KD-tree partition of the action space.

for solving this problem efficiently. Empirical results [[lifdicate
that their complexity igD(h log h). These methods produce an ap-
proximate solution which is guaranteed to fall within a sfied
error tolerance. (Later, we will see that in the max-kermal best
response cases, we can even achieve an exact solution isggg t
methods.) The most general examples of these fast methotiefo
sum-kernel problem include fast multipole expansions ,[b®k-
sum approximations [6] and spatial-index methods [23].

Fast multipole methods tend to work only in low (typicallyek)
dimensions and need to be re-engineered every time a newlkern
function is adopted. The most popular multipole method ésfést
Gauss transform (FGT) algorithm [14], which as the name iiespl
applies to Gaussian kernels. In this case, it is possiblatéala
larger (e.g., ten) dimensions by adopting clustering-thasetitions
as in the improved fast Gauss transform [31].

Spatial-index methods, such as KD-trees and ball treeseaye
general, easy to implement and can be applied in high-diimeals
spaces [12, 10, 11]. Furthermore, they apply to any monotcat-
nels defined on a metric space, and can be easily extendeleio ot
problems besides sum-kernel. Building the trees cOstslog h)
and in practice the run-time cost behave$X44 log h), while stor-
age isO(h) [19]. A detailed empirical analysis of the FGT and tree
methods is presented in [19].

To provide some intuition on how these fast algorithms ward,
will present a brief explanation of tree methods. Assumenfiw
that the weightsv; are all positive. (Below we show that the prob-
lem with arbitrary weights reduces to the case where all tsig
are positive.) The first step in these methods involvestaring a
set of points §_; in our case) recursively as illustrated in Figure 1.
Along with each node of the tree we will store statistics sasihe
sum of the weights in the node. Now imagine we want to evaluate
the effect of pointss; in a specific nod&3 on the query poink;,
that is:

wip = Y wiK(d(si, 55))-
jEB
As shown in Figure 2, this sum can be approximated using upper
and lower bounds:

lower) _ ZjEB W
e T2

whered'°“¢" andd“PP¢" are the closest and farthest distances from
the query point to nod&. The worst-case error in this approxima-

tion is:
lower)

upper +

uip % (ul (K(dlowe'r) + K(dupper')) ,

e = 1 (U?PPET _

2



Sj Si Si
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s; in node B

Figure 2: To bound the influence of node points; on the query
point s;, we move all the node points to the closest and farthest
positions in the node. To compute each bound, we only need to
carry out a single kernel evaluation.

One only needs to recurse down the tree to the level at which a

pre-specified error tolerance is guaranteed.

Since there are many query poin{se S;, it is possible to im-
prove the efficiency of these tree methods by building treeshie
source points_; and query points;. Then, instead of comparing

nodes to each separate query point, one compares nodesryo que

nodes. A detailed explanation of thesheal treetechniques appears

in [12, 10, 11]. When the kernel depends on more than two agent

saym agents, one can adopt trees to solve the sum-kernel prob-
lem efficiently.

If there are positive as well as negative weights, we can i
set of playersN into the setN™ with non-negative weights and

A B C

Figure 3: Assuming that all particles have equal weights, iis
clear in this picture that d%72°" < d'{%°" and, hence, nodeB
will have a stronger influence than nodeC' on node A. As a
result, all the points in node C' can be discarded in one single
pruning step.

tion towu;, but rather to compute the exact valuagimore quickly.
Note that we use a dual-tree approach here which querieg asin
set of pointsA rather than using a single point as in Figure 2. Of
course, if we just want approximate payoffs, the same dealdl-
gorithm can be run until a given error tolerance is satisfiading
additional savings.

If the actions are defined on a regular grid, then the distance
transform [4, 7] provides exact solutions @(h) with very low
constant factors. The distance transform is known to work fo
quadratic and conic kernels [7].

the setV™ with negative weights. Then the sum in (6) can be 3.3 General pairwise interactions payoffs

decomposed into two sums with non-negative weights:

Yo wiK(d(shs) - Y

JENT j#i JEN= jti

Vs; € Si, |w;| K (d(s3, 55))

Since we can compute each of the two sums independently of the

other, we have decomposed the problem into two smaHeody
problems, each of which can be solved efficiently using ehg t
dual tree algorithm. The error of the approximate payoffhisnt

Let us now consider general pairwise interactions. Prokem
can be written as
Vsi € Si, ¥ K;(d(s}, 55)) ®
J#i
Since* is monotonic, we can use dual-tree methods similar to the
ones for the Additive case to compute approximate payasfireg
as we can efficiently compute upper and lower bounds of tleeeff

the sum of the errors of the two sums. So given a required error of points in a source nodB to points in a query nodd:

tolerance, we could run the two dual-tree algorithms camily
until the sum of the two errors is below the required toleeanc

To summarize, for Problem 1 with Additive payoff functions,
approximate solutions with guaranteed error bounds carffbe e
ciently computed. A potential downside of these method$ias t
they produce approximate payoffs, while game theorisenofare
about exact quantities. It turns out that for many of the [mois
discussed in this paper, including the computation of ekast re-
sponses and exact Nash equilibria, approximate payoffefeea
sufficient. We also point out that our methods are efficieeneor
very smalle — after all, all numerical computation involves some
amount of error whether it claims to be exact or approximate.

3.2 Max-Kernel payoff functions
With the Max-Kernel payoff function, Problem 1 has the form

Dual-tree methods as proposed in [17] can be used to corsgute
act max-kernel payoffs with average-case complexith log h).
Figure 3 illustrates the fact that in the max-kernel casegteo$
players’ actions can be disregarded whenever it can be iprtbn
no element in the set is the closest freaction, and hence that
dropping these actions will not change the max. Thus, indase

we use the upper and lower bounds not to produce an approxima-

uap = * K;(d(A,s;)) 9)
JjEB
Similar to Figure 2, the upper and lower bounds.af 5 are com-
puted by assuming that all the points are located in the stas&l
farthest positions which are consistent with the node’snding
box respectively.

However, computing the bounds ofs, 5 directly would take
O(1) distance computations bai(|B|) kernel evaluations ang
operations, which implies that the entire dual-tree atgamiwould
take O(hlog h) distance computations bad(|S;|n) evaluations.
So unless the computation time of kernel evaluationslarsimuch
less than that of distance computations, we have not gaingth m
compared to the naive method.

3.4 Related problems

There are several similar problems that we may want to censid
First, imagine that we are given a pure strategy profile ofrthe
players:s = (s1,...,sx), and that we would like to compute the
payoffs of alln players undes. This can be formulated as the
following problem, which take®(n?) by naive computation.

PROBLEM 2. All-Players One-Action-Profile PS Payoffs:

Vi e N, compute wu;(s)



We can also apply dual-tree methods to this problem. We need o
tree to partition the: players’ actionss;, and one tree to partition
the actionss; (actions of players other tha®). Since these two
trees contain the same data, we can actually just build eeehat
partitionss, and run the dual-tree algorithm on this tree.

We may also want to compute a combination of Problems 2 and
1: given a pure strategy profite for all i € N and all deviations
that this playet could make, computés utility.

PrRoBLEM 3. All-Player All-Deviations PS Payoffs:

Vi € N,Vs; € S;, compute wu;(s;,s—;)

We can treat this as instances of Problem 1 and solve them sep-
arately. However, by considering them together, some ofittia
structures can be shared. In particular, to solve eachniostaf
Problem 1 using a dual-tree algorithm, we would need to kit
trees, one to partitiof’'s action setS;, the other to partition the

n — 1 other players actions_;. Instead of building a tree os_;

for eachi, we could build a tree that partitions everyone’s actions
s. Then when we computes payoffs, we hides; from the tree to
yield a tree on the: — 1 particless_;. Thus we only need to build

n + 1 trees, instead din trees.

If the action sets completely overlap with each other, Fg.=
S; foralli,5 € N, we can achieve further savings on space and
time complexity. Firstly, since the action sets overlaponty need
one tree to partition them. Thus we only need to build twostiiee
total, one for the action se; and one for the actions Further-
more, since both trees are shared among:theb-problems, much
of the computation of distances between nodes can be cathed.
the action sets only partially overlap with each other, we sl
apply the same ideas as above, although more book-keepigeg is
quired. In particular, we use one tree to partition all thiéoacsets
Sty
about each player’s actions in that partition.

A final problem we might want to solve is very related to Prob-
lem 1. Rather than finding a given player’s utility under eath
his pure-strategy deviations from a pure-strategy profieemight
want to identify a single deviation that maximizes thisitytil(That
is, we might not care to know exactly what utilities the plewyeuld
get by playing each non-optimal deviation, as long as wecdcoul
prove that they were indeed non-optimal.) This is the ptrategy
best-response problem, and we consider it in Section 5.

4. EVALUATING PAYOFFS
MIXED STRATEGY PROFILES

A mixed strategy of playet, denoted;, is a probability distri-
bution overS;. Playing a mixed strategy; means probabilistically
playing an action front; according to the distribution;. Denote
aso;(s;) the probability of playing action; under the mixed strat-
egyo;. A mixed strategy profile is denoted= (o1,...,0,). The
supportof o;, denotedsS;! (o), is the set of’s actions with positive
probability undeis;. We use the shorthand (o) to denote player
i's expected payoff under mixed strategy profile

A fundamental computational problem is to compute ex-
pected payoffs for playing each of her pure actionsSin given
that the other players follow the mixed strategy;.

UNDER

PROBLEM 4. One-Player All-Deviations Mixed Payoff:
Vs; € S;, compute wu;(si,0—;)

For computing expected payoffs, the naive method is to suen ov

S», and in each node of the tree we keep separate statistics

all possible outcomes, weighted by their probabilitiesafloring:

E wi(8i, 5—i) Pr(s_ilo—;)
= E wi(8i, 84 HUJ 5)-

J#i

S»L,
(10)

But the number of terms to sum is exponential in the number of
players. (Remembeyr_; is a pure strategy profile of thg — 1)
players other than, i.e. we are summing over all possible combi-
nations of the(n — 1) players’ actions.) We need a more efficient
algorithm.

4.1 Additive payoff functions

If the game’s payoff function is of thAdditive type (Equation
(2)), then due to linearity of expectation, we can compufeeeted
payoffs easily. For example, consider a case where playéth
weightw; plays action 1 with probabilitg and action 2 with prob-
ability %. Linearity of expectation allows us essentially to “regac
player; with two new players: one with Weiglitwj who plays ac-
tion 1 and another with weig@wj who plays action 2. Formally,

é Ui 3273 i Ho_k Sk

87,,

k#1
= Zzw] d(si 57)) [ [ on(se)
S_4 j#i k#1
=D > wiK(d(si,s;) [ [ oxlsr)
JFE s ki
_Zzw] SZ,SJ O'J SJ z H Ok Sk
J#i s S—i,—j k#4,j
:Zijaj(sj) d(si, sj)) H Zak Sk)
JFL s k#i,j sk
=D wjioy(s;)K(d(si, s5)) (11)
J#i s

wheres_; _; denotes a pure strategy profile for all players except

1 andj. Thus we have reduced Problem 4 to the pure-strategy case
(Problem 1) with Additive payoffs. The number of non-zerore

in (11) is equal toll = 3., |Sj+(aj)|, the sum of the support
sizes of the other players’ mixed strategies. Since the oasthe-
scribed in Section 3.1 (e.g., dual-tree) shéWh log h) run-time
performance in practice for the sum-kernel problem, we exibat
these methods would approximate Problem 4 for Additive fiayo

with O(H log H) run-time performance.

4.2 Max-Kernel payoff functions

If the game’s payoff function is of thlax-Kernels type (Equa-
tion (3)), the task is more complex since we cannot use the lin
earity of expectation. Instead, we can combine dual-treinoas
with dynamic programming techniques to efficiently appnoaie
expected payoffs.

First, let us look at the naive way of computing the expected

payoff:
Z max [w; K (54, 55)] H ok (sk)

k#i
For each possible_;, we need to solve the maximization prob-
lem max;-; [w; K (s;, s;)], and add up these values, weighted by
[Ix; o (sk). Since the number of possible ; is[],_,; |5;]. this
method is exponential in.

(12)

8L7



We have seen previously that dual-tree methods, by partitio
ing the particles into clusters and considering interactioetween
clusters of particles instead of individual particles, cueed up
the computation ofi-body problems. Let us apply this intuition
here. Let us partition the action spaSeusing e.g. &d-tree or a
ball-tree. Denote a$' the set of partitions in a partitioning of,
corresponding to a frontier of the tree, andsasne of the parti-
tions, corresponding to one node in that frontier. The panting
of S induces a partitioning for eac$y, denotedS;. Essentially, we
are approximating the original game using a game with actéis
S;, where different actions in the original game that belonth®
same partition are treated as approximately the same dotitie
new game. For alf € S and allj # i, lets;(3) = Zsjeg o (s5),
i.e. 5;(5) is the probability ofj playing an action in the regiof
In other wordsg; is player;j’s mixed strategy in the approximated
game onS. We also partition playe’s action spaces; (the query
points) using another tree. Let us denote a node in this queey
asX. For each nod« in the S; tree and each nodein the S tree,

variables, multiply them together to get the CDF of the maxim
and then convert the CDF back to a probability density fuomcti

1. Sort the partitions % by their distances t&, i.e. d(X, 3).
2. Foreacly # i:

(a) Foreachs € S: Pj(w; K(d(X,3)) := &;(5)

(b) Compute the CDF of;, denotedF;. SinceP; is al-
ready sortedFj is the cumulative sum aP;.

3. For each of the possible valuesipitcompute the CDF of the
maximum: F'(v) = [];_, F5(v)

4. Compute the probability distribution from the CDKv).

This process needs to be done twice: once for the upper bound
and once for the lower bound. The complexity of the algoriitm
O(|S)log |S| + n?|S|). This is much better than the exponential

we can compute the upper and lower bounds of the distance be-complexity of Equation (13).

tween the two nodes, denotgtl(X, 5) andd’ (X, 3) respectively.
Assuming the kerneK is monotonically decreasing i, we can
compute the upper and lower bounds of the expected payoffiwhe
plays an action inX, and the other players play the mixed strategy
profiles_;:

ul{u’l}(X, o_i) = max
J#i

S—4

[wi K@ (x,5,))| T ow(60)
k#i
(13)
Compared to Equation (12), we have effectively reduced ¢the a

tion setsS; to smaller setsS; by grouping nearby actions. Unfor-
tunately, since we are still considering each possibleagirofile
5_, of then — 1 players, the number of summandsig|S|™ 1),
i.e. still exponential im.

Furthermore, since we only need upper and lower bounds on
the expected payoff, we can further speed up this computatio
Intuitively, although there ar@(n|S|) possible outcomes of,
we can “merge” possible outcomes at the sanfrit with differ-
ent weights, and replace them using maximum (minimum) of the
weights. This way we only have to considéi| outcomes. This
yields anO(|S| log | S| + n|S|) algorithm, although it would pro-
duce looser bounds.

Once we have computed an approximated expected payoff on
query nodeX and partitioningS, and later want to approximate
the expected payoff on one &f's children X" and a finer partition-
ing S’, can we save any computation by using the earlier results?
Unfortunately the earlier results cannot be directly usadcbm-
puting the payoff on the finer resolution; but the good newibas
we can use the earlier results (especially the distribution) to

Can we do better? We observe that the pure strategy payoff prune parts of the spack Following is an outline of our dual-tree

max;z; [ij(d“’"}(X, §j))} depends only on the nodee S

that achieves this maximum of the weighted kernels, and #ighw

wj of the player whose action achieves this maximum. Since this
weight can take one of — 1 different values, the payoff can take at
most(n — 1)| 5| different values. If we can compute the probability
distribution of these payoff values given the mixed strafewpfile,
then the expected payoff is just a weighted sum of these payof
values, with the weights being the probabilities of eacli@aFor-
mally,

ui(X,6-3) =Y Pr(ui(X,5.,) =v[6_4) v (14)

= " Pr(max[uw; K(d(X,5,))] = vlo-i) - v (15)

wherePr(u; (X, 5-;) = v|6—;) is the probability ofi's payoff be-

ing v, given that the other players are playing the mixed strategy
6—;. Sincev has at mos{n — 1)|S| possible values, the num-
ber of summands is at moét — 1)|S|. The difficult part is to
compute the probability distributiofr(u; (X, 5-;)|o—;). From
Equation (15), we observe that this is the distribution ef tiaxi-
mum of (n — 1) independent random variables, each with distribu-
tion Pr(w; K (d(X, §))|&;) which is the distribution of playej’s
weighted kernel given her mixed strategy. Note that the Cumu-
lative Distribution Function (CDF) of the highest ordertittic of

n — 1 independent random variables is the product of the CDFs of
each random variable. So a simple algorithm to compute gte-di
bution of the maximum is to first compute the CDFs of the random

algorithm (the pseudo-code of this algorithm is too longtciude
here, but will be included in the full version of this paper):

1. Get the query nod& from a depth-first traversal of thed-
tree onS;; and get the partitioning as the frontier of a
breath-first traversal of thied-tree onS.

2. Prune away parts ¢, using earlier results.
3. Compute the distribution over payoffs.
4. Compute the expected payoff using Equation (15).

This algorithm can be run until we reach the leaves of thestree
to produce exact expected payoffs. We still gain speed-up- co
pared to not using trees, due to the pruning in each iterat@h
course, if we only need approximate expected payoffs, werjus
this algorithm until the error tolerance is satisfied. THigoathm

is obviously polynomial im. Analyzing the exact time complexity
of our algorithm, both theoretically and empirically, isubgect of
future work.

4.3 General pairwise interactions payoffss

Let us now considen-body games with general pairwise inter-
actions, as defined in Equation (1). Assume that upper andrlow
bounds on the kernel value between two nodes can be compoted,
that dual tree methods can be applied. From our discussidheon
Max-Kernel case, we note that the expected payoff can béenrit
as Equation (14). If the number of possible values df.e. the
number ofi’s distinct payoff values under pure strategy profiles)



grows exponentially with respect to, then Equation (14) is still
an exponential-sized sum. However, if the number of possial-
ues ofv is polynomial inn (as is the case for Max-Kernel), then
the expected payoff can be computed efficiently. To comphse t
distribution of payoffsPr(u;(X,$—;)|6—:), we use a dynamical
programming algorithm that applies one player's mixedtsgy at
atime? Let Q;(v) = Pr(K;(d(si,s;)) = v|5;), then the algo-
rithm computes the following recurrence:

Po(v)= Y Puo1(2)Qu(y)
THY=V

fork=1,...,i— 1,7+ 1,...,n. The resultP, is the distribu-
tion of payoffs needed in Equation (14). Let the number ofspos
ble v in Equation (14) bé/. Then this algorithm’s complexity is
O(nV|S|), which is polynomial ifV is polynomial inn.
4.4 A more general problem

Another important problem is to compuits expected payoff
when all players (including) are playing mixed strategies:

PROBLEM 5. One-Player Mixed Payoff

> oi(siuilsi, o))

s;E€S;

compute w;(o) = (16)

A straightforward way to compute this is to first compute
u;i(si,o—;) for all s; (Problem 4), then do the above weighted
sum. A more efficient way is to integrate the computation & th
weighted sum into the dual-tree algorithm of Problem 4. Irtipa
ular, for any partitioning ofS; and partitioning ofS, we can com-
pute upper and lower bounds ef(o) by summing the bounds for
u; (X, o—;) for all nodesX in that partitioning ofS;, weighted by
the probability of playing an action iX:

Z O’i(Si)

ul" (o) = ul(X,5-0)
X s, €X

Thus we can keep a running estimation:gfc), and undo parts of
the above approximation as we descend down the trég OAs a
result, we could achieve the desired accuracy before negthe
leaves of thes; tree.

5. COMPUTING BEST RESPONSE

Playeri’'s best response (BR) under a pure strategy prefibe
mixed strategy profile is i's optimal action against the other play-
ers’ strategies. Although it is true that mixed strategiaa be
best responses, there always exists a pure strategy bpshses
to any strategy profile_;. Players only play mixed strategy best
responses when they are indifferent between the actioh® igup-
port of that mixed strategy: any mixed strategy BR is a mixtof
pure strategy BRs, and any mixture of pure strategy BRs isxaani
strategy BR.

5.1 Bestresponse to a pure strategy profile

First we consider the case where the other players are pglayin
pure strategy profile_;.

PROBLEM 6. Best Response to a Pure Strategy Profile

compute BR;(s—;) € arg maxu;(si, $—;) 17)

5;€85;

An important observation is that in order to find the bestoesp
(i.e. to evaluate therg max operation), we do not need to compute
the exact payoffs. If we could efficiently compute upper aowddr
bounds on payoffs of the candidate actions, we could quijskipe
candidate actions that cannot be a best response. (For Examp
the case of additive payoffs with no negative weights, ifupeer
bound on the sum for a nod¢ is lower than the lower bound on
the sum for another nodB, then nodeA can be pruned because
no action inA could possibly be a best response. Note that we
are able to perform this pruning without having computedetkect
expected utility of actions im; nevertheless, in the end we will
compute the exact best response.) Once we have pruned @l can
date actions but one, we can return the remaining actioneasetst
response. The dual-tree algorithm also partitions the fsedmdi-
datessS; and operates on chunks §f, so it can prune chunks of
candidate actions which is much faster than pruning indisidan-
didate actions. Following is an outline of our dual-treeoaitihm
for finding best responses:

1. Initialize the set of candidate node&s::= { root of the query
tree onS; }

2. Loop until C has only one node X and X has only one action:

(a) Split on query and/or source nodes

(b) Update upper / lower boundé', u!. If vl = w! for all
actions left inC', then stop and return the best action(s).
Otherwise, let be the highest lower bound:

l
r = maxu, (X, s—i)

(c) Remove fromC' the nodes whose upper bound is less
thanr:

C:={XeC:ui(X,s—;) >r}

If there is only one BR against_;, then the above algorithm stops
when all actions except the BR are pruned off. &Léte the differ-
ence between the payoffs of the best response and the skesnd-
response against_;. Then we need to at least approximate the
payoffs of the BR and the second-best response with errer-tol
anced, in order to prune off the second-best response in step 2(c).
Pessimistically assume that all other actiong achieve payoffs
similar to that of the second-best response and each regjuiag-
proximation withd error to prune off. Then essentially we would
need to solve Problem 1 with error tolerantelf there are more
than one BRs, then in addition we would need to compute thetexa
payoffs of these BRs to verify that they are equal. Since istmo
situations the number of BRs (1), this only takesO(n) time.
Therefore the running time of our BR algorithm is no worsentha
that of solving Problem 1 with error toleranée In practice, most
parts ofS; achieve much worse payoff than the BR, and can be
pruned off early, resulting in speed-ups compared to Proldle
Observe that our algorithm amounts to branch-and-bound
search. In step 2(a), there are many different ways of expgnd
the query and source trees—this corresponds to variabtiesadne-
ordering heuristics in the search. Since the speed of tlwitim
depends on how much of the action sp&¢eve can prune off, we
need a good heuristic for expanding the trees in order tonmagi
the chance of pruning. Intuitively, a heuristic should take ac-
count the highest lower bound the upper bounds of the candidate
nodes, and the sizes of these nodes. In the full version ®ptper

“We observe that analogous dynamic programming algorithms We Will provide empirical results that compares differeatihistics.

have been used in different contexts; see for example tloeitdm
for exploiting causal independende Bayesian networks [32].

Sometimes we do not need exact best responses; insteadtwe jus
want an action that achieves a payoff withiaf the best response’s



payoff. The dual-tree methods described above can be Isti@rig
wardly extended to compute suetbest responses.

5.2 Bestresponse to a mixed strategy profile

We can similarly define the problem of computing a best re-
sponse against other players’ mixed strategy profiles

PROBLEM 7. Best Response to a Mixed Strategy Profile

compute BR;(o—;) € arg max u;(s;,0—;) (18)

s;ES;

This problem can be solved using the same techniques déstuss
in the previous section. The only difference is that in st@3 and
2(b) above, we must compute expected payoffs (i.e., soleb-Pr
lem 4), instead of payoffs under pure strategy profiles, G@&ving
Problem 1).

6. COMPUTING NASH EQUILIBRIA

An important computational task is determining a samplehNas
equilibrium of a given game.

PrROBLEM 8. Sample Nash Equilibrium

Find somer which satisfie¥i € N o; € BRi(0-). (19)
The strategy profiler may be mixed; however, it may also in-
volve pure strategies. A Nash equilibrium is always guaradtto
exist in finite games; however, no polynomial algorithm iskmn
for finding such equilibria in general games.
Pure-strategy equilibria can be easier to find; howevey; tie
not always exist.

PROBLEM 9. Sample Pure-Strategy Nash Equilibrium

Find somes which satisfie¥i € N s; € BRi(s—:). (20)

In this section we consider both kinds of equilibria.

6.1 Existence of PS Nash Equilibria

We can prove that certain sub-classesidfody games always
have pure-strategy Nash equilibria.

THEOREM1 (COORDINATION EQUILIBRIA ). Ifann-body
game has a pairwise-interaction payoff function with an oton-
ically non-decreasing operator (e.g. Additive or Max-Kernel),
and each kernels; achieves its maximum when the distance is
zero, and the intersection of the action sg}s; is nonempty, then
for any actions € [ S;, the action profile where everyone plays
is a Nash equilibrium.

In other words, if everyone prefers to play actions that éoser
to other actions, then every pure strategy profile whereyewer
plays the same action is an equilibrium. Such games are dgamp
of coordination gameswhich are well studied in economics.

Let us now consider other cases, where players have ricbér pr
erences. It turns out that we can prove the existence of prae s
egy equilibria for a large set ef-body games, using the concept of
generalized ordinal potentidlom Monderer and Shapley’s highly
influential paper [21].

DEFINITION4 (MONDERER& SHAPLEY [21]). A function
P : S — R is ageneralized ordinal potentidor a gameT
if for everyi € N and for everys_;, and for everys;,s; €
Siy wi(si,8—:) — wi(si,s—;) > 0 implies that P(s}, s_;) —
P(si,5-3) > 0.

Several subclasses of generalized ordinal potentialsoadinal
potential, potential and weighted potential. We refer taders to
[21] for their definitions.

THEOREM2 (MONDERER& SHAPLEY [21]). LetI be afi-
nite game with a generalized ordinal potential. THehas at least
one pure strategy equilibrium.

Thus we have proven the existence of pure strategy eqailibri
for a class of games when we have identified a generalizedairdi
potential function for that class of games.

6.1.1 General pairwise interactions payoffs

Let us first considen-body games with general pairwise interac-

tion payoff functions (Equation (1)). We have the followiresult:

THEOREM 3. Supposd” is ann-body game with pairwise in-
teractions (Equatiorfl)) satisfying the following properties:

1. The kernels are identical. Formally,

wisi,s—i) = * K(d(si,s;))
J#i

2. The binary operatox is strictly monotonically increasing in
its arguments. Formally, for alt, z’, y from the range ofx,
x> iffexy>a xy.

ThenI" has an ordinal potential function:

P(s)= *  K(d(si,s;))
i.JEN ij

(1)

which implies thal™ has at least one pure strategy equilibrium.

PROOF By re-arranging terms it (s) into terms that depend
oni’s strategys; and terms that does not, we observe that the terms
that depend on; is exactlyi’s payoff u;:

P(s) = u;(s) * (terms not dependent on)

Then the monotonicity of the operateimplies thatP is an ordinal
potential function. [J

A straightforward corollary is that i is instead monotonically
decreasing, then P(s) is an ordinal potential function.

6.1.2 Additive payoff functions

The addition operato# is monotonically increasing, so if the
weightsw; are identical, then following Theorem 3 the game has
at least one pure strategy equilibrium.

If the weights are not identical, Theorem 3 cannot be applied
Nevertheless, we can prove the existence of pure strategijbeiz
for the case of non-negative weights.

THEOREM 4. If ann-body game has Additive payoffs and non-
negative weights, then the game has at least one pure syrateg-
librium.

PROOF Let us first consider the case when all weights are
strictly positive. We claim that the following is a geneza&ld or-
dinal potential:

P(s)= Y waw;K(d(s:s;))
1,JEN,i#]
This is because if we collect the termsBfthat depend on;, it is
exactlyw;u;(s).

Now suppose that some of the players’ weights are zero. Then
an increase im; would not necessarily increage It turns out that



we can easily get around this problem. Udbe the set of players
with positive weights, an@d be the set of players with weight 0.
Let s; be the pure strategy profile éfthat maximizes the “partial
weighted potential’P;, i.e. the weighted sum of the interactions
among players ifd:

s = arg max Pr(s1) = arg max Z wiw; K (d(si, s5))
ST ST i,jE€T,i#]

Letsg be the pure strategy profile 6f that maximizes theocial
welfare(the sum of thex players’ payoffs) given that the players in
I is playingsg, i.e.

so = arg max W (s, so) = arg max E u;(s1,80)
so SO jeN

Then the strategy profilgy, so ) is a Nash equilibrium. Intuitively,
since the players i do not affect the payoffs of players ih we

can “optimize” within I first, then optimize withinO given the
partial solution inf. [

Can we formulate a generalized ordinal potential for th&sslof
games? We make use of the following Lemma:

LEMMA 1. Supposd is a finite game. If there exists a func-
tion P : s — R" such that for every € N and for everys_;,
and for everys;, s; € Si, u;(si,s—i) > wi(si, s—;) implies that
P(s},s_;) is lexicographically greater thar(s;,s_;) (denoted
P(s},s—;) > P(si,s—i)), thenT" has a generalized ordinal po-
tential.

PROOFSKETCH. Sincel is finite, we can sort all pure strategy
profiles by P. Then we can construct a generalized ordinal poten-
tial that mapss to its index in the sorted list. (]

For convenience, we call sudh(s) ageneralized lexicographi-
cal ordinal potential (GLOP}and use it as regular generalized or-
dinal potentials. For Additive:-body games with non-negative
weights, it is straightforward to verify that the tupl’(s) =
(P](SI), VV(SI7 So)) isa GLOP.

If the weights are instead non-positive, then following saene
argument, pure strategy equilibria still exist. Howevethiére are
positive and negative weights, then pure strategy eqialimight
not exist. One simple example is a game with two players with
opposite weightsu; = —ws2). LetS: Se = {H,T} and

d(H,T) = 1. Then one player prefers to choose the same action as

the other, while the other player prefers to be differentsThthe
classic game of Matching Pennies which do not have puréegtya
equilibrium.

6.1.3 Max-Kernel payoff functions

Let us considem-body games with Max-Kernel payoff func-
tions. Themax operator is only weakly increasing in its operands,
so Theorem 3 cannot be applied even for the case with idéntica
weights.

We look at Nearest Neighbor games (Equation (4)), which is a
subclass of Min-Kerneh-body games with identical weights.

THEOREM 5. A Nearest Neighbor game as defined by Equation
(4) has at least one pure strategy equilibrium.

ProOFR We define theank vectorV (s), which is a vector of all
distances between pairs of actionsjrsorted in increasing order:

V(s) = sorf{d(s;,s;) : i,j € N,i # j}

Now suppose player deviates froms; to s;, and achieves a bet-
ter payoff. This must be because the distance betwéamd its

nearest neighbors;, is greater than the distance betwegrand
its nearest neighbosy: d(s;, s;) > d(s:, sx). Now let's consider
this deviation’s effect on the rank vector. Comparivigs;, s_;)

and V' (s;, s—;) lexicographically, we see that the changei®
nearest neighbor distance dominates the changé's mlistances
to the other actions. And sina(s;, s;) > d(s;, sx), we must
haveV (s;, s—i) >; V(si,5—i). ThusV(s) isa GLOP.

This result can be generalized to the case with positive non-
identical weights, by using the weighted rank vector

WV(s) = sorf{w;w; K(d(si, s;)) : 4,7 € N,i # j}

as a GLOP. We omit the details of the proof.

All of our existence results for finite-body games can be ex-
tended ton-body games with continuous action spaces, with the
additional restriction that the action sefs are compact and the
kernel K is bounded. Due to space constraints we omit the proofs.

6.2 lIterated Best Response Dynamics

We've shown that a large set afbody games always have pure
strategy equilibria. Here, we show that these equilibria ba
computed relatively inexpensively by repeatedly commutirest
responses to pure strategy profiles.

DEFINITIONS5 (MONDERER& SHAPLEY [21]). A se-
quence of pure strategy profiles = (s®,s?,...) is animprove-
ment pathwith respect td" if for everyk > 1 there exists an unique
player, sayi, such thas® = (s¥, s"7*) for somes? # s*~!, and
furthermoreu; (s, " 1) > w;(sF !

In other words, at each step of an improvement path, one “my-
opic” player unilaterally deviates to an action with a bepiayoff.

T" has thdfinite improvement property (FIR) every improvement
path is finite.

THEOREM6 (MONDERER& SHAPLEY [21]). LetI" be afi-
nite game. Thel' has the FIP if and only if it has a generalized
ordinal potential.

This immediately suggests a method to find an equilibrium by
iteratively improving the strategy profile One such method is
iterated best response dynamics:

1. start from an initial pure strategy profie

2. repeat the following until eithes converges or maximum
number of iterations reached:

(a) for each playet who is not already playing a best re-
sponse ta_;, updates; to be one of’s best responses.

It is obvious that the resulting path of pure strategy prsfigean
improvement pathThus forn-body games with generalized ordi-
nal potentials, the path is finite and terminates at an dyititin.
The bottleneck of the above procedure is the computatioresf b
responses. As discussed in Section 5 this can be done efficlen

SAn alternative is théoetter response dynamicat each iteration,
just try to find a better response than the current one. Dupaoes
constraints, we omit the details on computation of bettgpoases.
For continuous:-body games with differentiabl&” and operatos,
gradient-following algorithms could be even more efficiehgain,
we leave detailed discussion to the full version of the paper



6.3 Mixed Strategy Equilibria

Quite a few algorithms for computing mixed-strategy edpié
of finite games have been proposed, e.g. simplicial subdiv[80]
and Govindan & Wilson’s continuation method [9]. These algo
rithms all depend on the subroutine of computing expectgdffa
under given mixed strategies and/or computing best reggof®or
example, the computation of the integer labels in simglisié-
division algorithms depends on the computation of bestaesgs
against mixed-strategy profiles. In the cases where we Hevers
how to efficiently compute these values exactlyfisbody games,
it is immediate to see that we can speed up all of these ahgasit
Many of these algorithms already tolerate some error (seg the
GameTracer [3] implementation of Govindan & Wilson’s conti
ation method, which uses a generalized Newton method toeeco
from small steps off the path); showing how to use approxémat
computations in these algorithms is a topic for future work.

7. CONCLUSION

We have presented-body games, a new compactly repre-
sentable class of games about which many important coniquisht
game-theoretic questions can be answered efficiently. \&& al

showed that many-body games have pure-strategy Nash equilib-

ria which can be found using iterated best response dynar@its
course, we have only scratched the surface of this rich tople
are currently investigating games built around higheretigional
kernels, games with continuous action spaces, more efficean-
putational techniques (e.g., for best response), otheiapeases
(e.g., pursuit-evasion games) and connections with otbiepact
representations (e.g., action-graph games).
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