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Abstract

In a landmark paper, Papadimitriou and Roughgarden [2008] described
a polynomial-time algorithm (“Ellipsoid Against Hope”) for computing
sample correlated equilibria of concisely-represented games. Recently,
Stein, Parrilo and Ozdaglar [2010] showed that this algorithm can fail to
find an exact correlated equilibrium, but can be easily modified to efficiently
compute approximate correlated equilibria. Currently, it remains an open
problem to determine whether the algorithm can be modified to compute an
exact correlated equilibrium. We show that it can, presenting a variant of
the Ellipsoid Against Hope algorithm that guarantees the polynomial-time
identification of exact correlated equilibrium. Also, our algorithm is the first
to tractably compute correlated equilibria with polynomial-sized supports;
such correlated equilibria are more natural solutions than the mixtures of
product distributions produced previously, and have several advantages
including requiring fewer bits to represent, being easier to sample from, and
being easier to verify. Our algorithm differs from the original primarily in its
use of a separation oracle that produces cuts corresponding to pure-strategy
profiles. As a result, we no longer face the numerical precision issues
encountered by the original approach, and both the resulting algorithm
and its analysis are considerably simplified. Our new separation oracle can
be understood as a derandomization of Papadimitriou and Roughgarden’s
original separation oracle via the method of conditional probabilities. We
also adapt our techniques to two related algorithms that are based on the
Ellipsoid Against Hope approach, Hart and Mansour’s [2010] CE procedure
with polynomial communication complexity and Huang and Von Stengel’s
[2008] polynomial-time algorithm for extensive-form correlated equilibria,
yielding in both cases exact solutions with polynomial-sized supports.
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1 Introduction

A central topic of game theory is the study of solution concepts, which are rules
for predicting likely outcomes of the game under various models of rationality of
the players. Perhaps the best-known solution concept is Nash equilibrium, in
which each of the players chooses a randomized strategy, and each player would
not be able to increase her expected utility by unilaterally deviating to a different
strategy. First proposed by Aumann [1974; 1987], correlated equilibrium (CE)
is another important solution concept. Whereas in a Nash equilibrium players
randomize independently, in a correlated equilibrium players are allowed to
coordinate their behavior based on signals from an intermediary.

A fundamental task is the computation of a solution concept: given a specific
game instance, figuring out what the solution concept says about the likely
outcomes of the game. If the game is very small or has certain special properties,
it is possible to carry out this task by pen and paper. For all other cases,
a computational procedure (i.e., an algorithm) is required. Economists and
operations researchers have studied the computation of solution concepts since
the early days of game theory, from the linear programming formulation of
zero-sum games [von Neumann & Morgenstern, 1944] and Lemke and Howson’s
[1964] algorithm for computing a Nash equilibrium of bimatrix games, to the
development of algorithms for Nash equilibria in n-player games (see, e.g., [Scarf,
1967; van der Laan et al., 1987; Govindan & Wilson, 2003] and the survey by
McKelvey and McLennan [1996]). One fundamental property of an algorithm is
the scaling behavior of its runtime as the size of its input grows. If an algorithm
runs in time polynomial in the size of its input, the algorithm is generally
considered to be efficient.

In this paper we consider the problem of computing a sample correlated
equilibrium given a finite, simultaneous-move game. It is known that correlated
equilibria of a game can be formulated as probability distributions over pure
strategy profiles satisfying certain linear constraints, and thus a CE can be
found by solving a linear feasibility program. If the game is represented in the
normal form representation, in which the game’s payoff function is stored as a
multidimensional table with one entry for each player’s payoff under each pure
strategy profile, then the size of this linear feasibility program is polynomial
in the size of the normal form representation of the game. Since there exist
polynomial-time algorithms for solving linear feasibility programs (e.g., the
ellipsoid method), a correlated equilibrium can be found in polynomial time.
This attractive property of the correlated equilibrium solution concept is in
contrast with the case of Nash equilibrium; recent results from the theoretical
computer science community [Goldberg & Papadimitriou, 2006; Daskalakis et al.,
2006; Chen & Deng, 2006] showed that the problem of finding a Nash equilibrium
for games represented in normal form is unlikely to admit a polynomial-time
algorithm, even if the game has only two players.1

1Some computer scientists have argued that such complexity results have implications on
whether equilibria can be reached in practice. For example, Kamal Jain has been widely quoted
for the remark “if your laptop cannot find [an equilibrium], neither can the market.”
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The size of the normal form representation grows exponentially in the number
of players. This is problematic when games involve large numbers of players: it
is unreasonable to imagine even writing down such games in the normal form.
Fortunately, most large games of practical interest have highly-structured payoff
functions, and thus it is possible to represent them compactly. Intuitively, this
helps to explain why people are able to reason about these games in the first place:
we understand the payoffs in terms of simple relationships rather than in terms of
enormous lookup tables. A line of research thus exists to look for compact game
representations that are able to succinctly describe structured games, including
work on graphical games [Kearns et al., 2001] and action-graph games [Bhat
& Leyton-Brown, 2004; Jiang et al., 2011]. Thus another important desirable
property for an algorithm for solution concept computation is its ability to work
with compact representations of games. The previously mentioned algorithm for
CE no longer runs in polynomial time when the input is a compactly represented
game, since the size of the linear feasibility program for CE can be exponential
in the input size; furthermore, since a solution vector of such a linear feasibility
program (i.e., a CE) has an exponential number of components, specifying such
a CE can require an exponential amount of storage space.

The “Ellipsoid Against Hope” algorithm [Papadimitriou, 2005; Papadim-
itriou & Roughgarden, 2008] is a polynomial-time method for identifying a
(polynomial-size representation of a) CE, given a game representation satisfying
two properties: polynomial type, which requires that the number of players and
the number of actions for each player are bounded by polynomials in the size
of the representation, and the polynomial expectation property, which requires
access to a polynomial-time algorithm that computes the expected utility of
any player under any mixed-strategy profile. Many existing compact game
representations (including graphical games, symmetric games, congestion games,
polymatrix games and action-graph games) satisfy these properties. This im-
portant result extends CE’s attractive computational properties to the case of
compactly represented games; note in contrast that the problem of finding a Nash
equilibrium remains computationally difficult for many of the same compact
game representations [Goldberg & Papadimitriou, 2006; Jiang et al., 2011]. At
a high level, the Ellipsoid Against Hope algorithm works by solving an infeasible
dual LP (D) using the ellipsoid method (exploiting the existence of a separation
oracle), and arguing that the LP (D′) formed by the generated cutting planes
must also be infeasible. Solving the dual of this latter LP (which has polynomial
size) yields a CE, which is represented as a mixture of the product distributions
generated by the separation oracle.

1.1 Recent Uncertainty About the Complexity of Exact
CE

In a recent paper, Stein, Parrilo and Ozdaglar [2010] raised two interrelated
concerns about the Ellipsoid Against Hope algorithm. First, they identified a
symmetric 3-player, 2-action game with rational utilities on which the algorithm
can fail to compute an exact CE. Indeed, they showed that the same problem
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arises on this game for a whole class of related algorithms. Specifically, if an
algorithm (a) outputs a rational solution, (b) outputs a convex combination
of product distributions, and (c) outputs a convex combination of symmetric
product distributions when the game is symmetric, then that algorithm fails
to find an exact CE on their game, because the only CE of their game that
satisfies properties (b) and (c) has irrational probabilities. This implies that any
algorithm for exact rational CE must violate (b) or (c).

Second, Stein, Parrilo and Ozdaglar also showed that the original analysis by
Papadimitriou and Roughgarden [2008] incorrectly handles certain numerical
precision issues, which we now briefly describe. Recall that a run of the ellipsoid
method requires as inputs an initial bounding ball with radius R and a volume
bound v such that the algorithm stops when the ellipsoid’s volume is smaller
than v. To correctly certify the (in)feasibility of an LP using the ellipsoid
method, R and v need to be set to appropriate values, which depend on the
maximum encoding size of a constraint in the LP. However (as pointed out by
Papadimitriou and Roughgarden [2008]), each cut returned by the separation
oracle is a convex combination of the constraints of the original dual LP (D)
and thus may require more bits to represent than any of the constraints in
(D); as a result, the infeasibility of the LP (D′) formed by these cuts is not
guaranteed. Papadimitriou and Roughgarden [2008] proposed a method to
overcome this difficulty, but Stein et al. showed that this method is insufficient
for finding an exact CE. For the related problem of finding an approximate
correlated equilibrium (ε-CE), Stein et al. gave a slightly modified version of
the Ellipsoid Against Hope algorithm that runs in time polynomial in log 1

ε and
the game representation size.2 For problems that can have necessarily irrational
solutions, it is typical to consider such approximations as efficient; however, the
computation of a sample CE is not such a problem, as there always exists a
rational CE in a game with rational utilities, since CE are defined by linear
constraints. It remains an open problem to determine whether the Ellipsoid
Against Hope algorithm can be modified to compute an exact, rational correlated
equilibrium.3

1.2 Our Results

In this paper, we use an alternate approach—completely sidestepping the issues
just discussed—to derive a polynomial-time algorithm for computing an exact
(and rational) correlated equilibrium given a game representation that has
polynomial type and satisfies the polynomial expectation property. Specifically,
our approach is based on the observation that if we use a separation oracle (for
the same dual LP formulation proposed by Papadimitriou and Roughgarden

2An ε-CE is defined to be a distribution that violates the CE incentive constraints by at
most ε.

3In a recent addendum to their original paper, Papadimitriou and Roughgarden [2010]
acknowledged the flaw in the original algorithm. We note also that Stein et al. subsequently
withdrew their paper from arXiv. It is our belief that their results are nevertheless correct; we
discuss them here because they help to motivate our alternate approach.
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[2008]) that generates cuts corresponding to pure-strategy profiles (instead of
Papadimitriou and Roughgarden’s separation oracle that generates nontrivial
product distributions), then these cuts are actual constraints in the dual LP,
as opposed to convex combinations of constraints. As a result we no longer
encounter the numerical accuracy issues that prevented the previous approaches
from finding exact correlated equilibria. Both the resulting algorithm and its
analysis are also considerably simpler than the original: standard techniques
from the theory of the ellipsoid method are sufficient to show that our algorithm
computes an exact CE using a polynomial number of oracle queries.

The key issue is the identification of pure-strategy-profile cuts. It is relatively
straightforward to show that such cuts always exist: since the product distribution
generated by the Ellipsoid Against Hope algorithm ensures the nonnegativity of
a certain expected value, then by a simple application of the probabilistic method
there must exist a pure-strategy profile that also ensures the nonnegativity of
that expected value. The key is to go beyond this nonconstructive proof of
existence to also compute pure-strategy-profile cuts in polynomial time. We show
how to do this by applying the method of conditional probabilities [Erdős &
Selfridge, 1973; Spencer, 1994; Raghavan, 1988], an approach for derandomizing
probabilistic proofs of existence. At a high level, our new separation oracle begins
with the product distribution generated by Papadimitriou and Roughgarden’s
separation oracle, then sequentially fixes a pure strategy for each player in a way
that guarantees that the corresponding conditional expectation given the choices
so far remains nonnegative. Since our separation oracle goes though players
sequentially, the cuts generated can be asymmetric even for symmetric games.
Indeed, we can confirm (see Section 4.2) that it makes such asymmetric cuts on
Stein, Parrilo and Ozdaglar’s symmetric game—thus violating their condition
(c)—because our algorithm always identifies a rational CE.

Another effect of our use of pure-strategy-profile cuts is that the correlated
equilibria generated by our algorithm are guaranteed to have polynomial-sized
supports; i.e., they are mixtures over a polynomial number of pure strategy
profiles. Correlated equilibria with polynomial-sized supports are known to exist
in every game (e.g., [Germano & Lugosi, 2007]); intuitively this is because CE are
defined by a polynomial number of linear constraints, so a basic feasible solution
of the linear feasibility program would have a polynomial number of non-zero
entries. Such small-support correlated equilibria are more natural solutions than
the mixtures of product distributions produced by the Ellipsoid Against Hope
algorithm: because of their simpler form they require fewer bits to represent
and fewer random bits to sample from; furthermore, verifying whether a given
polynomial-support distribution is a CE only requires evaluating the utilities
of a polynomial number of pure strategy profiles, whereas verifying whether
a mixture of product distributions is a CE would require evaluating expected
utilities under product distributions, which is generally more expensive. No
tractable algorithm has previously been proposed for identifying such a CE, thus
our algorithm is the first algorithm that computes in polynomial time a CE with
polynomial support given a compactly-represented game. In fact, we show that
any CE computed by our algorithm corresponds to a basic feasible solution of
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the linear feasibility program that defines CE, and is thus an extreme point of
the set of CE of the game.

Since Papadimitriou and Roughgarden [2008] proposed the Ellipsoid Against
Hope algorithm for computing a CE, researchers have proposed algorithms for
related problems that used a similar approach (which we call the Ellipsoid Against
Hope approach): first solving an infeasible LP using the ellipsoid method with
some separation oracle, then arguing that the LP formed by the cutting planes
is also infeasible, and finally solving the dual of the latter polynomial-sized LP.
For example, Hart and Mansour [2010] considered the setting where each player
initially knows only her own utility function, and proposed a communication
procedure that finds a CE with polynomial communication complexity using
a straightforward adaptation of the Ellipsoid Against Hope algorithm. Huang
and Von Stengel [2008] proposed a polynomial-time algorithm for computing a
extensive-form correlated equilibrium (EFCE) [von Stengel & Forges, 2008], a
solution concept for extensive-form games, by applying the Ellipsoid Against Hope
approach to the LP formulation of EFCE. For both algorithms, the separation
oracle outputs a mixture of the original constraints, and hence the flaws of the
Ellipsoid Against Hope algorithm pointed out by Stein et al. [2010] also apply.
We show that our techniques can be adapted to these two algorithms, yielding
in both cases exact solutions with polynomial-sized supports. In particular,
we replace the original separation oracles with “purified” versions that output
cutting planes corresponding to the original constraints, which ensures that the
resulting algorithms avoid the numerical issues.

The rest of the paper is organized as follows. We start with basic definitions
and notation in Section 2. In Section 3 we summarize Papadimitriou and
Roughgarden’s Ellipsoid Against Hope algorithm. In Section 4 we describe our
algorithm and prove its correctness. In Sections 5 and 6 we describe our fixes
to Hart and Mansour’s [2010] and Huang and Von Stengel’s [2008] algorithms
respectively, and Section 7 concludes.

2 Preliminaries

We largely follow the notation of Papadimitriou [2005] and Papadimitriou and
Roughgarden [2008]. Consider a simultaneous-move game with n players. Denote
a player p, and player p’s set of pure strategies (i.e., actions) Sp. Let m =
maxp |Sp|. Denote a pure strategy profile s = (s1, . . . , sn) ∈ S, with sp being
player p’s pure strategy. Denote by S−p the set of partial pure strategy profiles
of the players other than p. Player p’s utility under pure strategy profile s is ups .
We assume that utilities are nonnegative integers (but results in this paper can
be straightforwardly adapted to rational utilities). Denote the largest utility of
the game as u.

A correlated distribution is a probability distribution over pure strategy
profiles, represented by a vector x ∈ RM , where M =

∏
p |Sp|. Then xs is the

probability of pure strategy profile s under the distribution x. A correlated
distribution x is a product distribution when it can be achieved by each player p
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randomizing independently over her actions according to some distribution xp,
i.e., xs =

∏
p x

p
sp . Such a product distribution is also known as a mixed-strategy

profile, with each player p playing the mixed strategy xp.
Throughout the paper we assume that a game is given in a representation

satisfying two properties, following Papadimitriou and Roughgarden [2008]:

• polynomial type: the number of players and the number of actions for each
player are bounded by polynomials in the size of the representation.

• the polynomial expectation property : we have access to an algorithm that
computes the expected utility of any player p under any product distribution
x, i.e.,

∑
s∈S u

p
sxs, in time polynomial in the size of the representation.

Definition 2.1. A correlated distribution x is a correlated equilibrium (CE) if
it satisfies the following incentive constraints: for each player p and each pair of
her actions i, j ∈ Sp, ∑

s∈S−p

[upis − u
p
js]xis ≥ 0, (1)

where the subscript “is” (respectively “js”) denotes the pure strategy profile in
which player p plays i (respectively j) and the other players play according to
the partial profile s ∈ S−p.

Intuitively, when a trusted intermediary draws a strategy profile s from this
distribution, privately announcing to each player p her own component sp, p
will have no incentive to choose another strategy, assuming others follow the
suggestions. We write these incentive constraints in matrix form as Ux ≥ 0.
Thus U is an N×M matrix, where N =

∑
p |Sp|2. The rows of U , corresponding

to the left-hand sides of the constraints (1), are indexed by (p, i, j) where p is
a player and i, j ∈ Sp are a pair of p’s actions. Denote by Us the column of U
corresponding to pure strategy profile s. These incentive constraints, together
with the constraints

x ≥ 0,
∑
s∈S

xs = 1, (2)

which ensure that x is a probability distribution, form a linear feasibility program
that defines the set of CE. The largest value in U is at most u.

We define the support of a correlated equilibrium x as the set of pure strategy
profiles assigned positive probability by x. Germano and Lugosi [2007] showed
that for any n-player game, there always exists a correlated equilibrium with
support size at most 1 +

∑
p |Sp|(|Sp| − 1) = N + 1 −

∑
p |Sp|. Intuitively,

such correlated equilibria are basic feasible solutions of the linear feasibility
program for CE, i.e., vertices of the polyhedron defining the feasible region.
Furthermore, these basic feasible solutions involve only rational numbers for
games with rational payoffs (see e.g. Lemma 6.2.4 of [Grötschel et al., 1988]).
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3 The Ellipsoid Against Hope Algorithm

In this section, we summarize Papadimitriou and Roughgarden’s [2008] Ellipsoid
Against Hope algorithm for finding a sample CE, which can be seen as an
efficiently constructive version of earlier proofs [Hart & Schmeidler, 1989; Nau &
McCardle, 1990; Myerson, 1997] of the existence of CE. We will concentrate on
the main algorithm and only briefly point out the numerical issues discussed at
length by both Papadimitriou and Roughgarden [2008] and Stein et al. [2010],
as our analysis will ultimately sidestep these issues.

Papadimitriou and Roughgarden’s approach considers the linear program

max
∑
s∈S

xs (P )

Ux ≥ 0, x ≥ 0,

which is modified from the linear feasibility program for CE by replacing the
constraint

∑
s∈S xs = 1 from (2) with the maximization objective. (P ) either

has x = 0 as its optimal solution or is unbounded; in the latter case, taking a
feasible solution and scaling it to be a distribution yields a correlated equilibrium.
Thus one way to prove the existence of CE is to show the infeasibility of the
dual problem

UT y ≤ −1, y ≥ 0. (D)

The Ellipsoid Against Hope algorithm uses the following lemma, versions of
which were also used by Nau and McCardle [1990] and Myerson [1997].

Lemma 3.1 ([Papadimitriou & Roughgarden, 2008]). For every dual vector
y ≥ 0, there exists a product distribution x such that xUT y = 0. Furthermore
there exists an algorithm that given any y ≥ 0, computes the corresponding x
(represented by x1, . . . , xn) in time polynomial in n and m.

We will not discuss the details of this algorithm; we will only need the facts
that the resulting x is a product distribution and can be computed in polynomial
time. Note also that the resulting x is symmetric if y is symmetric. Lemma 3.1
implies that the dual problem (D) is infeasible (and therefore a CE must exist):
xUT y is a convex combination of the left hand sides of the rows of the dual, and
for any feasible y the result must be less than or equal to −1.

The Ellipsoid Against Hope algorithm runs the ellipsoid algorithm on the
dual (D), with the algorithm from Lemma 3.1 as separation oracle, which we
call the the Product Separation Oracle. At each step of the ellipsoid algorithm,
the separation oracle is given a dual vector y(i). The oracle then generates the
corresponding product distribution x(i) and indicates to the ellipsoid algorithm
that (x(i)UT )y ≤ −1 is violated by y(i). The ellipsoid algorithm will stop after a
polynomial number of steps and determine that the program is infeasible. Let X
be the matrix whose rows are the generated product distributions x(1), . . . , x(L).

Consider the linear program

[XUT ]y ≤ −1, y ≥ 0, (D′)
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and observe that the rows of [XUT ]y ≤ −1 are the cuts generated by the ellipsoid
method. If we apply the same ellipsoid method to (D′) and use a separation oracle
that returns the cut x(i)UT y ≤ −1 given query y(i), the ellipsoid algorithm would
go through the same sequence of queries y(i) and cutting planes x(i)UT y ≤ −1
and return infeasible. Presuming that numerical problems do not arise,4 we will
find that (D′) is infeasible. This implies that its dual [UXT ]α ≥ 0, α ≥ 0 is
unbounded and has polynomial size, and thus can be solved for a nonzero feasible
α. We can thus scale α to obtain a probability distribution. We then observe
that XTα satisfies the incentive constraints (1) and the probability distribution
constraints (2) and is therefore a correlated equilibrium. The distribution XTα
is the mixture of product distributions x(1), . . . , x(L) with weights α, and thus
can be represented in polynomial space and can be efficiently sampled from.

One issue remains. Although the matrix XUT is polynomial sized, computing
it using matrix multiplication would involve an exponential number of operations.
On the other hand, entries of XUT are differences between expected utilities
that arise under product distributions. Since we have assumed that the game
representation admits a polynomial-time algorithm for computing such expected
utilities, XUT can be computed in polynomial time.

Lemma 3.2 ([Papadimitriou & Roughgarden, 2008]). There exists an algo-
rithm that given a game representation with polynomial type and satisfying the
polynomial expectation property, and given an arbitrary product distribution
x, computes xUT in polynomial time. As a result, XUT can be computed in
polynomial time.

4 Our Algorithm

In this section we present our modification of the Ellipsoid Against Hope al-
gorithm, and prove that it computes exact CE. There are two key differences
between our approach and the original algorithm for computing approximate
CE.

1. Our modified separation oracle produces pure-strategy-profile cuts;

2. The algorithm is simplified, no longer requiring a special mechanism to deal
with numerical issues (because pure-strategy-profile cuts can be represented
directly as rows of (D)’s constraint matrix).

4Since each row of (D′)’s constraint matrix XUT may require more bits to represent than
any row of the constraint matrix UT for (D), running the ellipsoid algorithm on (D′) with
the original bounding ball and volume lower bound for (D) would not be sound, and as a
result (D′) is not guaranteed to be infeasible. Indeed, Stein et al. [2010] showed that when
running the algorithm on their symmetric game example, (D′) would remain feasible, and thus
the output of the algorithm would not be an exact CE. Furthermore, since the only CE of
that game that is a mixture of symmetric product distributions is irrational, there is no way
to resolve this issue without breaking at least one of the symmetry and product distribution
properties of the Ellipsoid Against Hope algorithm. For more on these issues and possible
ways to address them, please see Papadimitriou and Roughgarden [2008]; Stein et al. [2010];
Papadimitriou and Roughgarden [2010].
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4.1 The Purified Separation Oracle

We start with a “purified” version of Lemma 3.1.

Lemma 4.1. Given any dual vector y ≥ 0, there exists a pure strategy profile s
such that (Us)

T y ≥ 0.

Proof. Recall that Lemma 3.1 states that given dual vector y ≥ 0, a product
distribution x can be computed in polynomial time such that xUT y = 0. Since
x[UT y] is a convex combination of the entries of the vector UT y, there must exist
some nonnegative entry of UT y. In other words, there exists a pure strategy
profile s such that (Us)

T y ≥ xUT y = 0.

The proof of Lemma 4.1 is a straightforward application of the probabilistic
method: since xUT y is the expected value of (Us)

T y under distribution x,
which we denote Es∼x[(Us)

T y], the nonnegativity of this expectation implies the
existence of some s such that (Us)

T y ≥ 0. Like many other probabilistic proofs,
this proof is not efficiently constructive; note that there are an exponential
number of possible pure strategy profiles.

It turns out that for game representations with polynomial type and satisfying
the polynomial expectation property, an appropriate s can indeed be identified in
polynomial time. Our approach can be seen as derandomizing the probabilistic
proof using the method of conditional probabilities [Erdős & Selfridge, 1973;
Spencer, 1994; Raghavan, 1988]. At a high level, for each player p our algorithm
picks a pure strategy sp, such that the conditional expectation of (Us)

T y given the
choices so far remains nonnegative. This requires us to compute the conditional
expectations, but this can be done efficiently using the expected utility subroutine
guaranteed by the polynomial expectation property.

Lemma 4.2. There exists a polynomial-time algorithm that given

• an instance of a game in a representation satisfying polynomial type and
the polynomial expectation property,

• a polynomial-time subroutine for computing expected utility under any
product distribution (as guaranteed by the polynomial expectation property),
and

• a dual vector y ≥ 0,

finds a pure strategy profile s ∈ S such that (Us)
T y ≥ 0.

Proof. Given a product distribution x, let x(p→sp) be the product distribution
in which player p plays sp and all other players play according to x. Since x is a
product distribution, x(p→sp)U

T y is the conditional expectation of (Us)
T y given

that p plays sp, and furthermore we have for any p,

xUT y =
∑
sp

[
x(p→sp)U

T y
]
xpsp . (3)
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Algorithm 1 Computes a pure strategy profile s such that (Us)
T y ≥ 0.

1. Given y ≥ 0, identify a product distribution x satisfying xUT y = 0, using
the algorithm described in Lemma 3.1.

2. Sequentially for each player p ∈ {1, . . . , n},

(a) iterate through actions sp ∈ Sp, and compute x(p→sp)U
T using the

algorithm described in Lemma 3.2, until we find an action s∗p ∈ Sp
such that

[
x(p→s∗p)U

T
]
y ≥ 0.

(b) set x to be x(p→s∗p).

3. The resulting x corresponds to a pure strategy profile s. Output s.

Since xp is a distribution, the right hand side of (3) is a convex combination
and thus there must exist an action sp ∈ Sp such that x(p→sp)U

T y ≥ xUT y ≥ 0.
Since x(p→sp) is a product distribution, this process can be repeated for each

player to yield a pure strategy profile s such that (Us)
T y ≥ xUT y ≥ 0. This is

formalized in Algorithm 1.
We now consider the running time of Algorithm 1. We observe that x remains

a product distribution throughout the algorithm and can thus be represented by
its marginals x1, . . . , xn, requiring only polynomial space. Due to the polynomial
expectation property, the algorithm described in Lemma 3.2 is polynomial,
which implies that in Step 2a, for each sp ∈ Sp, x(p→sp)UT can be computed in
polynomial time. Since Step 2a requires at most |Sp| such computations, and
since polynomial type implies that n and |Sp| are polynomial in the input size,
the algorithm runs in polynomial time.

A straightforward corollary is the following:

Corollary 4.3. Algorithm 1 can be used as a separation oracle for the dual LP
(D) in the Ellipsoid Against Hope algorithm: for each query point y, the oracle
computes the corresponding pure-strategy profile s according to Algorithm 1 and
returns the half space (Us)

T y ≤ −1. We call this the Purified Separation Oracle.
This separation oracle has the following properties:

• Each returned half space is one of the constraints of (D).

• Since Algorithm 1 iterates through the players sequentially, the generated
pure-strategy profiles can be asymmetric even for symmetric games and
symmetric y.

• Since a pure-strategy profile is a special case of a product distribution, the
resulting pure-strategy profile s also satisfies Lemma 3.1, with x being the
unit vector corresponding to s.
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4.2 The Simplified Ellipsoid Against Hope Algorithm

We now modify the Ellipsoid Against Hope Algorithm by replacing the Product
Separation Oracle with our Purified Separation Oracle. The rows of X in (D′)
become unit vectors corresponding to the pure-strategy profiles generated by
the oracle. Thus, we can write (D′) as

(U ′)T y ≤ −1, y ≥ 0, (D′′)

where the matrix U ′ ≡ UXT consists of the columns Us(i) that correspond to
pure-strategy profiles s(i) generated by the separation oracle. Note that each
constraint of (D′′) is also one of the constraints of (D), and as a result neither the
maximum value of the coefficients nor the right-hand sides of (D′′) are greater
than in (D). Therefore, a starting ball and volume lower bound that are valid
for a run of the ellipsoid method on (D) is also valid for (D′′). We thus avoid the
precision issues faced by the Ellipsoid Against Hope algorithm, and it is sufficient
to use standard values for the initial radius and volume lower bound, and
standard perturbation methods for dealing with non-full-dimensional solutions.
The resulting CE is a mixture over a polynomial number of pure strategy profiles.
We can make a further conceptual simplification of the algorithm: instead of
using X as in the Ellipsoid Against Hope algorithm, we can directly treat the
generated pure-strategy profiles as columns of U , and use U ′ in place of UXT .

We now formally state and prove our result. Note that although we only
briefly discussed the way numerical issues are addressed in the original Ellipsoid
Against Hope algorithm in Section 3, we do go into detail about how our algorithm
ensures its own numerical accuracy. Nevertheless that task is comparatively
easy, as it is sufficient for us to apply standard techniques from the theory of the
ellipsoid method. Our analysis makes use of the following lemma from Grötschel
et al. [1988].

Lemma 4.4 (Lemma 6.2.6, [Grötschel et al., 1988]). Let P = {y ∈ RN |Ay ≤ b}
be a full-dimensional polyhedron defined by the system of inequalities, with the
encoding length of each inequality at most ϕ. Then P contains a ball with radius
2−7N

3ϕ. Moreover, this ball is contained in the ball with radius 25N
2ϕ centered

at 0.

We note that the only restriction on P is full dimensionality; we do not need
to assume that P is bounded, or that A has full row rank.

Theorem 4.5. Given a game representation with polynomial type and satisfying
the polynomial expectation property, Algorithm 2 computes an exact and rational
CE with support size at most 1 +

∑
p |Sp|(|Sp| − 1) in polynomial time.

Proof. We begin by proving the correctness of the algorithm. First, we will show
that the ellipsoid method in Step 1 is a valid run for (D), which certifies that
the feasible set of (D) is either empty or not full dimensional.5 Suppose the

5Since the ellipsoid method relies on shrinking the volume of the candidate set, it is not
able to distinguish between non-full-dimensional feasible sets and infeasibility. We overcome
this by perturbing the LP after the ellipsoid method has been applied; an alternate method
perturbs the LP in advance to ensure the feasible set is either empty or full dimensional.

12



Algorithm 2 Computes an exact rational CE given a game representation
satisfying polynomial type and the polynomial expectation property.

1. Apply the ellipsoid method to (D), using the Purified Separation Oracle,

a starting ball with radius of R = u5N
3

centered at 0, and stopping when
the volume of the ellipsoid is below v = αNu

−7N5

, where αN is the volume
of the N -dimensional unit ball.

2. Form the matrix U ′ whose columns are the Us(1) , . . . , Us(L) generated by
the separation oracle during the run of the ellipsoid method.

3. Compute a basic feasible solution x′ of the linear feasibility program

U ′x′ ≥ 0, x′ ≥ 0, 1Tx′ = 1, (P ∗)

by applying the ellipsoid method on the explicitly represented (P ∗) and
recovering a basis using, e.g., Algorithm 4.2 of Dantzig and Thapa [2003].

4. Output x′ and s(1), . . . , s(L), interpreted as a distribution over pure-strategy
profiles s(1), . . . , s(L) with probabilities x′.

contrary, i.e., the feasible set of (D) is feasible and full dimensional. Since the
encoding length of each constraint of (D) is at most N log2 u, then by Lemma

4.4, the feasible set must contain a ball with radius u−7N
4

, and thus volume
αNu

−7N5

, and furthermore this ball must be contained in the ball with radius
u5N

3

centered at 0, which is the initial ball of our ellipsoid method in Step 1.
Since at the end of Step 1 the ellipsoid method certifies that the intersection of
the initial ball and the feasible set has volume less than v = αNu

−7N5

, we reach
a contradiction and therefore either the LP (D) must be infeasible or the feasible
set must not be full dimensional. Since the largest magnitude of the coefficients
in (D′′) is also u, Step 1 is also a valid run for (D′′) and therefore either (D′′)
must be infeasible or the feasible set of (D′′) must not be full dimensional.

Of course a non-full-dimensional feasible set is not sufficient for our purpose;
we now perturb (D′′) to get an infeasible LP. Fix ρ > 1. Perturbing the
constraints (U ′)T y ≤ −1 of (D′′) by multiplying the RHS by ρ, we get the LP:

min 0 (4)

(U ′)T y ≤ −ρ1
y ≥ 0.

We claim that (4) is infeasible. Suppose otherwise: then there exists a y ∈ RN
such that y ≥ 0 and (U ′)T y ≤ −ρ1. Let y′ ∈ RN be a vector such that
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0 ≤ y′j−yj ≤
ρ−1
Nu for all j. Then y′ ≥ 0, and each component s of U ′T y′ satisfies

(U ′s)
T y ≤ (U ′s)

T y +
ρ− 1

Nu

∑
j

|U ′js |

≤ −ρ+ ρ− 1

≤ −1.

Thus, any such y′ is feasible for (D′′). However, the set of all such vectors y′ is a
full-dimensional cube. This contradicts the fact that (D′′) is either infeasible or
not full dimensional, and therefore (4) is infeasible. This means that (4)’s dual

max ρ1Tx′ (5)

U ′x′ ≥ 0

x′ ≥ 0

is unbounded (since it is feasible, e.g. x′ = 0). Then a nonzero feasible vector x′ is
(after normalization) a distribution over the pure strategy profiles corresponding
to columns of U ′. Treating it as a sparse representation of a correlated distribution
x, it satisfies the feasibility program for CE and is therefore an exact CE.

This CE is exact but its support size could be greater than 1+
∑
p |Sp|(|Sp|−1)

(although as we argue below it is still polynomial). To get a CE with the required
support size, we notice that since (5) is unbounded, a feasible solution of the
bounded linear feasibility program (P ∗) is a CE. Note that (P ∗) has the same set
of constraints as the feasibility program for CE defined by (1) and (2), and that
for each player p and action i ∈ Sp, the incentive constraint (p, i, i) corresponds
to deviating from action i to itself and is therefore redundant. Thus the number
of bounding constraints of (P ∗) is at most 1 +

∑
p |Sp|(|Sp| − 1) and therefore a

basic feasible solution x′ of (P ∗) will have the required support size. Since the
coefficients and right-hand sides of (P ∗) are rational, then (by e.g. Lemma 6.2.4
of Grötschel et al. [1988]) its basic feasible solution x′ is also rational and can
be represented using at most 4N3u bits.

We now consider the running time of the algorithm. Since Step 1 is a standard
run of the ellipsoid method, it terminates in a polynomial number of iterations.
For example if we use the ellipsoid algorithm presented in Theorem 3.2.1 of
Grötschel et al. [1988], then by Lemma 3.2.10 of Grötschel et al. [1988] the ratio
between volumes of successive ellipsoids vol(Ek+1)/vol(Ek) ≤ e−1/(5N). With
the volume of the initial ellipsoid at most αNR

N and stopping when volume is
below v, the number of iterations L is at most

5N
[
ln(αNR

N )− ln v
]

= 5N
[
5N4 lnu+ 7N5 lnu

]
= O(N6 lnu),

which is polynomial in the input size since N ≡
∑
p |Sp|2 is polynomial. Since

each call to the separation oracle takes polynomial time by Lemma 4.2, Step 1
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takes polynomial time. L being polynomial also ensures that (P ∗) has polynomial
size, and thus a basic feasible solution can be found in polynomial time.

We note that the estimates on R and v (and thus L) can be improved, but our
main goal here is to prove that the running time of our algorithm is polynomial.

The reader may wonder how our algorithm would deal with Stein et al.
[2010]’s counterexample, a symmetric game in which the only CE that is a convex
combination of symmetric product distributions has irrational probabilities.
Since we have proved that our algorithm computes a rational CE as a convex
combination of product distributions, it must violate the symmetry property.
Indeed as we discussed in Section 4.1, our Purified Separation Oracle can return
asymmetric cuts for symmetric games and symmetric queries, and thus for this
game it must return at least one asymmetric cut.

5 Uncoupled Dynamics with Polynomial Com-
munication Complexity

Hart and Mansour [2010] considered the setting where each player initially
knows only her own utility function, and analyzed the communication complexity
for such uncoupled dynamics to reach various equilibrium concepts. They use
a straightforward adaptation of Papadimitriou and Roughgarden’s Ellipsoid
Against Hope algorithm to show that a CE can be reached using polynomial
communication. The recent discovery by Stein et al. [2010] of flaws of the
Ellipsoid Against Hope algorithm imply that Hart and Mansour’s procedure as
proposed would not reach an exact CE. We show that our modified version of
the Ellipsoid Against Hope algorithm can be straightforwardly adapted into a
polynomial communication procedure for exact CE.

Formally, in Hart and Mansour’s setting, each player p initially knows only
her utility function up. No assumption is made on how the game is represented
and the cost of computation is of no concern; instead, we focus on the amount of
communication required to reach a CE. Hart and Mansour’s approach used the
following property of the Product Separation Oracle (Lemma 3.1): given y ≥ 0,
the corresponding product distribution x depends only on y and not on the
utilities of the game. Although generating the cutting plane requires computing
xUT which does depend on the utilities, each entry (p, i, j) of the vector xUT

depends only on the utilities of player p.
We now describe Hart and Masour’s procedure. A center runs the Ellipsoid

Against Hope algorithm; when the Product Separation Oracle generates a product
distribution x, the center sends it to all players, and asks each player p to compute
her segment of the vector xUT , i.e., entries (p, i, j) for all i, j ∈ Sp, to send back
to the center. This exactly simulates the Ellipsoid Against Hope algorithm, and
its communication costs are those of sending the product distributions to players
and each player sending back her part of xUT .

This procedure can be modified to use the Purified Separation Oracle instead.
At Step 2a of the Purified Separation Oracle (Algorithm 1), for each sp ∈ Sp
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the center sends x(p→sp) to all players and asks each to compute her segment of

x(p→sp)U
T . After assembling the vector x(p→sp)U

T from the segments, the center

checks whether
[
x(p→sp)U

T
]
y ≥ 0. We call the resulting modified version of

Algorithm 1 the Uncoupled Purified Separation Oracle. It is straightforward to see
that this exactly simulates the Purified Separation Oracle. The communication
costs are those of the center sending the product distributions and the players
sending back segments of x(p→sp)U

T . At most
∑
p |Sp| rounds of such exchange

are required for each call to the Purified Separation Oracle, therefore the total
amount of communication is polynomially bounded.

Corollary 5.1. Modify Hart and Mansour’s procedure by replacing its sep-
aration oracle with the Uncoupled Purified Separation Oracle. The resulting
communication procedure reaches an exact CE while both the number of bits
of communication required and the size of the support are polynomial in n and∑
p |Sp|.

6 Computing Extensive-form Correlated Equi-
libria

Recently, von Stengel and Forges [2008] proposed extensive-form correlated
equilibrium (EFCE), a solution concept for extensive-form games that is closely
related to correlated equilibrium. Whereas in a CE of the induced normal
form of a game the intermediary recommends a pure strategy (i.e., a move for
each information set) to each player at the start of the game, in an EFCE the
intermediary recommends a move to the player only when the corresponding
information set is reached. Here we focus on the computational problem of
finding an EFCE and refer interested readers to von Stengel and Forges [2008] for
details on EFCE as a solution concept. Huang and Von Stengel [2008] described
a polynomial-time algorithm for computing sample extensive-form correlated
equilibria. Their algorithm follows a very similar structure as Papadimitriou
and Roughgarden’s Ellipsoid Against Hope algorithm, and the problems pointed
out by Stein et al. [2010] carry over. As a result, the algorithm can fail to find
an exact EFCE.

We extend our fix for Papadimitriou and Roughgarden’s Ellipsoid Against
Hope algorithm to Huang and Von Stengel’s algorithm, allowing it to compute an
exact EFCE with polynomial-sized support. We first give a high-level description
of Huang and Von Stengel’s algorithm, following Huang [2011]. 6 The input
of the problem is an n-player extensive-form game with perfect recall. Each
nonterminal node of the game tree is a decision node for either one of the players
or Chance. H denotes the set of information sets, and Ch denotes the set of
moves available from h ∈ H, and T denotes the set of terminal nodes. Due to
the tree structure of the extensive form, for each node there exists a unique path
from the root of the tree to that node. Let s be a pure-strategy profile; s(h)

6We assume that readers are familiar with the standard concepts of extensive form games,
information sets, perfect recall, and behavior strategies.
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denotes the move at information set h ∈ H. Let z be a distribution over the set
of pure-strategy profiles. The size of z is exponential. Huang and Von Stengel
[2008] showed that z is an EFCE if it satisfies a polynomial number of linear
constraints, which can be written as Az +Bv ≥ 0 where v is an auxiliary vector
of polynomial size. They considered the exponential-sized primal LP

max
∑
s

zs (6)

Az +Bv ≥ 0

z ≥ 0,

and its dual

AT y ≤ −1 (7)

BT y = 0

y ≥ 0

which has a polynomial number of variables and exponential number of con-
straints. The following is a key lemma:

Lemma 6.1. [Huang & Von Stengel, 2008] For all y ≥ 0 such that BT y = 0,
there exists a product distribution z such that zTAT y = 0.

Unlike the simultaneous-move game case, z being a product distribution
(mixed-strategy profile) does not imply that it can be concisely represented, as
the number of pure strategies for each player can be exponential. Fortunately
the z constructed by Lemma 6.1 corresponds to a behavior strategy profile, which
specifies a distribution (denoted zh) over moves for each information set h.
Formally, given zh for all h ∈ H, the resulting distribution over pure-strategy
profiles is given by

∀s, zs =
∑

t∈T :t agrees with s

p(t)xt,

where we say t agrees with pure-strategy profile s if all the moves by the players
on the path from the root to t are given by s, p(t) is the product of probabilities
of moves by Chance along the path from the root to t, and xt =

∏
h precedes t z

h
s(h)

is the product of probabilities of moves by the players along the path from the
root to t. Here by “h precedes t” we mean that h is an information set on the
path from the root to t. Note that perfect recall ensures that an information
set h appears at most once along the path from the root to t. Such a behavior
strategy profile requires only a polynomial number of values to specify. Given y,
the corresponding z can be computed in polynomial time.

By the same argument as for the Ellipsoid Against Hope algorithm, Lemma
6.1 implies the infeasibility of (7), and can be used as a separation oracle for a
ellipsoid method on (7). In order to generate the cutting plane [zAT ]y ≤ −1,
the oracle needs to compute zAT whose inner dimensions are exponential. It
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turned out that zAT can be formulated as expected utility computations which
can be carried out in polynomial time. Huang and Von Stengel’s algorithm
thus proceeds similarly as in the Ellipsoid Against Hope algorithm to produce a
feasible solution to (6), which can be scaled to be an EFCE.

By the same argument as our fix of the Ellipsoid Against Hope algorithm, in
order to overcome the problems pointed out by Stein et al. [2010] it is sufficient
to construct a Purified Separation Oracle that given a y ≥ 0 such that BT y = 0,
computes a pure-strategy profile s such that (As)

T y ≥ 0. We construct such
an oracle using a similar application of the method of conditional probabilities.
For a behavior strategy profile z, an information set h, and a move d ∈ Ch,
define z(h→d) to be the behavior strategy profile that is identical to z except at
information set d, where the corresponding player deterministically chooses d
instead. Our Purified Separation Oracle starts with the behavior strategy profile
constructed by Lemma 6.1, and uses the same algorithm as Algorithm 1, except
that instead of going through players in step 2a, we go through information sets
sequentially, and for each information set h we iterate through z(h→d) until we
find a d∗ such that [z(h→d∗)A

T ]y ≥ 0.
To show that our algorithm is correct, we use the following lemma:

Lemma 6.2. Given a behavior strategy profile z, for each information set h,

z =
∑
d∈Ch

z(h→d)z
h
d ,

where zhd is the probability of choosing d at h prescribed by z.

Proof. Recall that

zs =
∑

t∈T :t agrees with s

p(t)xt,

where xt =
∏
h precedes t z

h
s(h). Since the moves along the path to t are uniquely

determined by t, xt is fully specified by the behavior strategies and does not
depend on s. We can write this in matrix form as z = Fx, with x ∈ R|T |. Let
x(h→d) ∈ R|T | be the vector induced by behavior strategy profile z(h→d). We
then have z(h→d) = Fx(h→d). Furthermore, we observe that for all h,

x =
∑
d∈Ch

x(h→d)z
h
d .

(It is straightforward to verify the above by considering the terminal nodes t for
which h precedes t and then the other terminal nodes.) We thus have

z = Fx = F
∑
d∈Ch

x(h→d)z
h
d =

∑
d∈Ch

z(h→d)z
h
d ,

which is the required equality.

The correctness and the polynomial running time of our algorithm for Purified
Separation Oracle then follow by the same argument as in the proof of Lemma
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4.2. After modifying Huang and Von Stengel’s algorithm by replacing their
separation oracle with our Purified Separation Oracle, the resulting algorithm
computes in polynomial time an exact EFCE that is a mixture of a polynomial
number of pure-strategy profiles.

Corollary 6.3. Given a game in extensive form, an exact EFCE with polynomial-
sized support can be computed in polynomial time.

7 Conclusion

We have proposed a polynomial-time algorithm, a variant of Papadimitriou and
Roughgarden’s Ellipsoid Against Hope approach, for computing an exact CE
given a game representation with polynomial type and satisfying the polynomial
expectation property. A key component of our approach is a derandomization
of Papadimitriou and Roughgarden’s separation oracle using the method of
conditional probabilities, yielding a polynomial-time separation oracle that
outputs cuts corresponding to pure-strategy profiles. Our approach is then
spared from dealing with the numerical precision issues that were a major focus
of previous approaches, and the algorithm is considerably simplified as a result.
Furthermore, the correlated equilibria returned by our algorithm have polynomial-
sized supports. We expect these properties of our algorithm to be independently
interesting, beyond its usefulness in resolving the recent uncertainty about the
computational complexity of identifying exact CE. For example, we show that
our techniques can be adapted to two existing algorithms that are based on
the Ellipsoid Against Hope approach, Hart and Mansour’s [2010] CE procedure
with polynomial communication complexity and Huang and Von Stengel’s [2008]
polynomial-time algorithm for extensive-form correlated equilibria, yielding in
both cases exact solutions with polynomial-sized supports.

Our algorithm has additional practical benefits: the resulting cutting planes
are deeper cuts than those produced by the original oracle, resulting in a smaller
number of iterations required to reach convergence, albeit at the cost of more
work per iteration. It is also possible to return cuts corresponding to pure
strategy profiles with (e.g.) good social welfare, yielding a heuristic method for
generating correlated equilibria with good social welfare; we do note, however,
that finding a CE with optimal social welfare is generally NP-hard for many
game representations [Papadimitriou & Roughgarden, 2008].
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Erdős, P., & Selfridge, J. L. (1973). On a combinatorial game. Journal of
Combinatorial Theory, Series A, 14(3), 298 – 301.

Germano, F., & Lugosi, G. (2007). Existence of sparsely supported correlated
equilibria. Economic Theory, 32(3), 575–578.

Goldberg, P. W., & Papadimitriou, C. H. (2006). Reducibility among equilibrium
problems. STOC: Proceedings of the Annual ACM Symposium on Theory of
Computing (pp. 61–70).

Govindan, S., & Wilson, R. (2003). A global Newton method to compute Nash
equilibria. Journal of Economic Theory, 110, 65–86.

Grötschel, M., Lovász, L., & Schrijver, A. (1988). Geometric algorithms and
combinatorial optimization. Springer-Verlag, New York, NY.

Hart, S., & Mansour, Y. (2010). How long to equilibrium? the communication
complexity of uncoupled equilibrium procedures. Games and Economic Behavior,
69(1), 107–126.

Hart, S., & Schmeidler, D. (1989). Existence of correlated equilibria. Mathematics of
Operations Research, 14(1), 18–25.

Huang, W. (2011). Equilibrium computation for extensivegames. Doctoral dissertation,
London School of Economics and Political Science.

Huang, W., & Von Stengel, B. (2008). Computing an extensive-form correlated
equilibrium in polynomial time. WINE: Proceedings of the Workshop on Internet
and Network Economics (pp. 506–513).

Jiang, A. X., Leyton-Brown, K., & Bhat, N. (2011). Action-graph games. Games and
Economic Behavior, 71(1), 141–173.

Kearns, M., Littman, M., & Singh, S. (2001). Graphical models for game theory. UAI:
Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp. 253–260).

Lemke, C., & Howson, J. (1964). Equilibrium points of bimatrix games. Society for
Industrial and Applied Mathematics Journal of Applied Mathematics, 12, 413–423.

McKelvey, R., & McLennan, A. (1996). Computation of equilibria in finite games.
Handbook of Computational Economics, 1, 87–142.

Myerson, R. (1997). Dual reduction and elementary games. Games and Economic
Behavior, 21(1-2), 183–202.

Nau, R., & McCardle, K. (1990). Coherent behavior in noncooperative games. Journal
of Economic Theory, 50(2), 424–444.

Papadimitriou, C. (2005). Computing correlated equilibria in multiplayer games.
STOC: Proceedings of the Annual ACM Symposium on Theory of Computing (pp.
49–56).

20



Papadimitriou, C., & Roughgarden, T. (2008). Computing correlated equilibria in
multi-player games. Journal of the ACM, 55(3), 14.

Papadimitriou, C., & Roughgarden, T. (2010). Comment on “computing correlated
equilibria in multi-player games”.
http://theory.stanford.edu/~tim/papers/comment.pdf, accessed Jan. 10, 2011.

Raghavan, P. (1988). Probabilistic construction of deterministic algorithms:
Approximating packing integer programs. Journal of Computer and System
Sciences, 37(2), 130 – 143.

Scarf, H. (1967). The approximation of fixed points of a continuous mapping. SIAM
Journal of Applied Mathematics, 15, 1328–1343.

Spencer, J. (1994). Ten lectures on the probabilistic method. CBMS-NSF regional
conference series in applied mathematics. Society for Industrial and Applied
Mathematics.

Stein, N. D., Parrilo, P. A., & Ozdaglar, A. (2010). Exchangeable equilibria contradict
exactness of the Papadimitriou-Roughgarden algorithm.
http://arxiv.org/abs/1010.2871v1.

van der Laan, G., Talman, A., & van der Heyden, L. (1987). Simplicial variable
dimension algorithms for solving the nonlinear complementarity problem on a
product of unit simplices using a general labelling. Mathematics of Operations
Research, 12(3), 377–397.

von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.
Princeton University Press.

von Stengel, B., & Forges, F. (2008). Extensive-form correlated equilibrium: Definition
and computational complexity. Mathematics of Operations Research, 33(4),
1002–1022.

21

http://theory.stanford.edu/~tim/papers/comment.pdf
http://arxiv.org/abs/1010.2871v1

	Introduction
	Recent Uncertainty About the Complexity of Exact CE
	Our Results

	Preliminaries
	The Ellipsoid Against Hope Algorithm
	Our Algorithm
	The Purified Separation Oracle
	The Simplified Ellipsoid Against Hope Algorithm

	Uncoupled Dynamics with Polynomial Communication Complexity
	Computing Extensive-form Correlated Equilibria
	Conclusion

