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Abstract

There is much active research into the design of automated bidding
agents, particularly for environments that involve multiple decoupled auc-
tions. These settings are complex partly because an agent’s strategy de-
pends on information about other bidders’ interests. When bidders’ val-
uation distributions are not known ex ante, machine learning techniques
can be used to approximate them from historical data. It is a character-
istic feature of auctions, however, that information about some bidders’
valuations is systematically concealed. This occurs in the sense that some
bidders may fail to bid at all because the asking price exceeds their val-
uations, and also in the sense that a high bidder may not be compelled
to reveal her valuation. Ignoring these “hidden bids” can introduce bias
into the estimation of valuation distributions. To overcome this problem,
we propose an EM-based algorithm. We validate the algorithm exper-
imentally using agents that react to their environments both decision-
theoretically and game-theoretically, using both synthetic and real-world
(eBay) datasets. We show that our approach estimates bidders’ valuation
distributions and the distribution over the true number of bidders sig-
nificantly more accurately than more straightforward density estimation
techniques.

1 Introduction

There has been much research on the study of automated bidding agents for
auctions and other market-based environments. The Trading Agent Competi-
tions (TAC-Classic and TAC Supply Chain Management) have attracted much
interest [Wellman et al. 2002]. There have also been research efforts on bid-
ding agents and bidding strategies in other auction environments [Byde 2002;
Boutilier et al. 1999; Greenwald and Boyan 2004; Arora et al. 2003; Cai and
Wurman 2003; Anthony et al. 2001]. Although this body of work considers
many different auction environments, bidding agents always face a similar task:
given a valuation function, the bidding agent needs to compute an optimal bid-
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ding strategy that maximizes expected surplus. (Some environments such as
TAC-SCM also require agents to solve additional, e.g., scheduling tasks.)

The “Wilson Doctrine” in mechanism design argues that mechanisms should
be constructed so that they are “detail-free”—that is, so that agents can behave
rationally in these mechanisms even without information about the distribution
of other agents’ valuations. For example, the VCG mechanism is detail-free
because under this mechanism it is a weakly dominant strategy to bid exactly
one’s valuation, regardless of other agents’ beliefs, valuations or actions. Un-
der common assumptions (in particular, independent private values) single-item
English auctions are similar: an agent should remain in the auction until the
bidding reaches the amount of her valuation.

While detail-free mechanisms are desirable, they are not ubiquitous. Very
often, agents are faced with the problem of deciding how to behave in games
that do not have dominant strategies and where other agents’ preferences are
strategically relevant. For example, we may want to participate in a series of
auctions run by different sellers at different times. This is a common scenario
at online auction sites such as eBay. In Section 4 we consider a sequential
auction model of this scenario, and show that information about other bidders’
preferences is very relevant in constructing a bidding strategy.

1.1 Game-Theoretic and Decision-Theoretic Approaches

How should a bidding agent be constructed? Depending on the assumptions we
choose to make about other bidders, two broad approaches to computing bid-
ding strategies suggest themselves: a game-theoretic approach and a decision-
theoretic approach. The game theoretic approach assumes that all agents are
perfectly rational and that this rationality is common knowledge; the auction
is modeled as a Bayesian game. Under this approach, a bidding agent would
compute a Bayes-Nash equilibrium of the auction game, and play the equilib-
rium bidding strategy. Much of the extensive economics literature on auctions
follows this approach (see, e.g., the survey in [Klemperer 2000]). For exam-
ple, in environments with multiple, sequential auctions for identical items and
in which each bidder wants only a single item, the Bayes-Nash equilibrium is
well-known [Milgrom and Weber 2000; Weber 1983]. Such equilibria very often
depend on the distribution of agents’ valuation functions and the number of
bidders. Although this information is rarely available in practice, it is usually
possible to estimate these distributions from the bidding history of previous
auctions of similar items. Note that this involves making the assumption that
past and future bidders will share the same valuation distribution.

The game-theoretic approach has received a great deal of study, and is per-
haps the dominant paradigm in microeconomics. In particular, there are very
good reasons for seeking strategy profiles that are resistant to unilateral devia-
tion. However, this approach is not always useful to agents who need to decide
what to do in a particular setting, especially when the rationality of other bid-
ders is in doubt, when the computation of equilibria is intractable, or when the
game has multiple equilibria. In such settings, it is sometimes more appropri-
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ate to rely on decision theory. A decision-theoretic approach effectively treats
other bidders as part of the environment, and ignores the possibility that they
may change their behavior in response to the agent’s actions. We again make
the assumption that the other bidders come from a stationary population; how-
ever, in this case we model agents’ bid amounts directly rather than modeling
their valuations and then seeking an equilibrium strategy. We then solve the re-
sulting single-agent decision problem to find a bidding strategy that maximizes
expected payoff. We could also use a reinforcement-learning approach, where
we continue to learn the bidding behavior of other bidders while participating
in the auctions. Much recent literature on bidding agent design follows the
decision-theoretic approach, e.g. [Boutilier et al. 1999; Byde 2002; Greenwald
and Boyan 2004; Stone et al. 2002; Mackie-Mason et al. 2004; Osepayshvili
et al. 2005].

In this work we do not attempt to choose between these two approaches;
it is our opinion that each has domains for which it is the most appropriate.
The important point is that regardless of which approach we elect to take, we
are faced with the subproblem of estimating two distributions from the bidding
history of past auctions: the distribution on the number of bidders, and the
distribution of bid amounts (for decision-theoretic approaches) or of valuations
(for game-theoretic approaches). Consequently, this problem has received much
discussion in the literature. For example, Athey and Haile [2002] and various
others in econometrics have studied the estimation of valuation distributions in
various standard auction types given observed bids, assuming that bidders are
perfectly rational and follow equilibrium strategies. On the decision-theoretic
front, a popular approach is to estimate the distribution of the final prices in
auctions based on observed selling prices, and then to use this distribution to
compute the optimal bidding strategy. Examples of this include Stone et al.’s
[2002] ATTac agent for the Trading Agent Competition, Mackie-Mason et al.’s
[2004] study of bidding in simultaneous ascending auctions and the follow-up
work in [Osepayshvili et al. 2005], Byde’s [2002] study of bidding in simultaneous
online English auctions, and Greenwald and Boyan’s [2004] analysis of sequential
English auctions. A paper by Boutilier et al. [1999] takes a different decision-
theoretic approach which is relevant to the approach we propose in this paper.
We defer discussion of this work until Section 6, after we have presented our
approach.

1.2 Overview

In this paper we consider sequential English auctions in which a full bidding
history is revealed, such as the online auctions run by eBay. It might seem that
there is very little left to say: we learn the distributions of interest from the
bidding history, then compute a bidding strategy based on that information for
the current and future auctions. However, we show that under realistic bidding
dynamics (described in Section 2) the observed bidding histories omit some rel-
evant information. First, some bidders may come to the auction when it is
already in progress, find that the current price already exceeds their valuation,
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and leave without placing a bid. Second, the amount the winner was willing to
pay is never revealed. Ignoring these sources of bias can lead to poor estimates
of the underlying valuation distribution and distribution of number of bidders.
In Section 3 we propose a learning approach based on the Expectation Max-
imization (EM) algorithm, which iteratively generates hidden bids consistent
with the observed bids, and then computes maximum-likelihood estimations of
the valuation distribution based on the completed set of bids. The learned dis-
tributions can then be used in computing decision-theoretic or game-theoretic
bidding strategies. Section 4 discusses the computation of the optimal strategy
for an agent in a repeated English auction setting under the decision-theoretic
approach, and in a similar (non-repeated) setting under the game-theoretic ap-
proach. In Section 5 we present experimental results on synthetic data sets
as well as on data collected from eBay, which show that our EM learning ap-
proach makes better estimates of the distributions, gets more payoff under the
decision-theoretic model, and makes a better approximation to the Bayes-Nash
equilibrium under the game-theoretic model, as compared to the straightforward
approach which ignores hidden bids.

2 A Model of Online Auctions

Consider a (possibly repeated) auction held online, e.g., on eBay. There are m
potential bidders interested in a certain auction for a single item. We assume
that bidders are risk-neutral, have independent private values (IPV), and that
utilities are quasilinear. The number of bidders m is drawn from a discrete
distribution g(m) with support [2,∞). Bidders’ potential valuations (in the
game-theoretic context) or bids (in the decision-theoretic context) are indepen-
dently drawn from a continuous distribution f(x).

2.1 Bidding Dynamics

The m potential bidders arrive at the auction site sequentially. When each
bidder arrives, she observes the bids that have been accepted in the auction
so far, places a single proxy bid1 and then leaves the system. The auctioneer
processes new bids as follows:

1. When a proxy bid is submitted, the auctioneer compares it to the current
price level, which is the second-highest proxy bid so far plus a small bid
increment.2

(a) If the submitted bid is not greater than the current price level the
bid is dropped and no record of the bid is recorded in the auction’s
history.

1A proxy bidding system asks bidders for their maximum willingness to pay, and then bids
up to this amount on the bidder’s behalf. Such systems are common on online auction sites
such as eBay; see e.g., http://pages.ebay.com/help/buy/proxy-bidding.html.

2For simplicity in this paper we ignore this small increment and assume that the current
price level is the second-highest proxy bid so far.
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(b) If the submitted bid is higher than the current price level but lower
than the highest proxy bid so far, then the submitted bid is accepted,
the bid amount of the currently winning bid is increased to equal
the submitted bid (i.e., this bid remains the winning bid), and the
submitted bid loses.

(c) If the submitted bid is higher than the previously winning bid then
the price level is increased to equal the previously winning bid and
the submitted bid is made the current winner.

2. At the end of the auction, the item is awarded to the bidder who placed the
highest bid, and the final price level is the amount of the second highest
bid.

2.2 Hidden Bids

According to our model, some bidders’ proxy bid amounts will be revealed. This
includes any bid that was higher than the current price level at the time it was
placed, even if that bid was immediately outbid by another proxy bid. However,
other bids will not be observed. There are two types of hidden bids:

1. The highest bid of each auction xhi.

2. Dropped bids xd that were lower than the current price when they were
placed.

Let us denote the set of visible bids as xv and the set of hidden bids as xh.
Let n denote the number of bidders that appears in the bidding history. This
means that xv will always contain (n−1) bids, since the winning bidder’s proxy
bid is never observed. Since there are m potential bidders in total, (n− 1) bids
are visible, and one bid is the highest bid xhi, there are (m − n) dropped bids
in xd.

Figure 1 shows an example of the bidding process for an auction according
to our online auction model, and illustrates how bids are dropped. Bids arrive
sequentially from left to right. Bids 3, 4 and 7 (the grey bars) will be dropped
because they are lower than the current bid amount at their respective time
steps. The amount of the winning bid (6) will not be revealed, although an
observer would know that it was at least the amount of bid 2, which would be
the amount paid by bidder 6.

2.3 Discussion

Our model of the bidding process is quite general. Notice that when a bidder
observes that the price level is higher than her potential bid, she may decide
not to bid in this auction. This is equivalent to our model in which she always
submits the bid, because dropped bids do not appear in the bidding history.
(Indeed, this is the motivation for our model.) Also our model covers the case
of last-minute bidding, which happens quite often in eBay auctions [Roth and
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Figure 1: An example of the bidding process of an auction with 7 potential
bidders.

Ockenfels 2002]: even though last-minute bids may be submitted almost simul-
taneously, eBay processes the bids in sequence.

Observe that with a proxy bidding system, and when agents have indepen-
dent private values, bidders would not benefit from bidding more than once in
an auction. However, in practice eBay bidders quite often make multiple bids
in one auction. One possible motivation for these bids is a desire to learn more
information about the proxy bid of the current high bidder [Shah et al. 2003].
However, only the last bid of the bidder represents her willingness to pay. Given
a bidder’s last bid, her earlier bids carry no extra information. Therefore, we
will be interested in only the last bid from each bidder.3 We can preprocess
the bidding histories by removing all bids except the last bids from each bidder,
without losing any relevant information.

3 Learning the Distributions

Given the model of the bidding process, the first task of our bidding agent is to
estimate the distributions f(x) and g(m) from the bidding history. Suppose we
have access to the bidding history of K auctions for identical items.

3In a common value model, the earlier bids would carry some information, and we would
not be able to simply ignore those bids.
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3.1 The Simple Approach

A simple approach is to ignore the hidden bids, and to directly estimate f(x)
and g(m) from observed data. The observed number of bidders, n, is used to
estimate g(m). To estimate f(x) we use the observed bids xv , which consists of
(n− 1) bids for each auction. Any standard density estimation technique may
be used.

Because it ignores hidden bids, this approach can be expected to produce
biased estimates of f and g:

• g(m) will be skewed towards small values because n ≤ m.

• f(v) may be skewed towards small values because it ignores the winning
bid xhi, or it may be skewed towards large values because it ignores the
dropped bids xd.

A popular variation of this approach (mentioned in Section 1) is to directly
estimate the distribution of final prices from the selling prices of previous auc-
tions, then to use this distribution to compute a decision-theoretic bidding strat-
egy. The problem with this approach is that for English auctions, the selling
prices are the second-highest bids. As we will show in Section 4, to compute a
decision-theoretic strategy we really need the distribution of the other bidders’
highest bids. Using the distribution of final prices introduces bias, as this distri-
bution is skewed towards small values compared to the distribution of highest
bids.

3.2 EM Learning Approach

We would like to have an estimation strategy that accounts for the hidden bids
xh and any bias introduced by their absence. Suppose f(x) belongs to a class
of distributions parameterized by θ, f(x|θ). Further suppose that g(m) belongs
to a class of distributions parameterized by λ, g(m|λ). For example, f(x) could
be a Normal distribution parameterized by its mean µ and variance σ2, whereas
g(m) could be a Poisson distribution parameterized by its mean, λ. We want to
find the maximum likelihood estimates of θ and λ given the observed data xv .

Suppose that we could actually observe the hidden bids xh in addition to
xv . Then estimating θ and λ from the completed data set (xv , xh) would be
easy. Unfortunately we do not have xh. Given xv , and with the knowledge of
the bidding process, we could generate xh if we knew θ and λ. Unfortunately
we do not know θ and λ.

A popular strategy for learning this kind of model with missing data is the
Expectation Maximization (EM) algorithm [Dempster et al. 1977]. EM is an
iterative procedure that alternates between E steps which generate the missing
data given current estimates for the parameters and M steps which compute the
maximum likelihood (or maximum a posteriori) estimates for the parameters
based on the completed data, which consists of the observed data and current
estimates for the missing data. Formally, the E step computes
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Q(θ) =

∫
log(p(xh, xv |θ))p(xh|xv , θ(old), λ(old))dxh, (1)

and the M step solves the optimization

θ(new) = arg max
θ

(Q(θ)). (2)

Analogous computations are done to estimate λ, the parameter for g(m|λ).
The EM algorithm terminates when λ and θ converge. It can be shown that
EM will converge to a local maximum of the observed data likelihood function
p(xv |θ, λ).

EM is a particularly appropriate algorithm in our auction setting with hidden
bids, because

1. EM was designed for finding maximum likelihood (ML) estimates for prob-
abilistic models with unobserved latent variables.

2. EM is especially helpful when the observed data likelihood function p(xv |θ, λ)
(which we want to maximize) is hard to evaluate, but the ML estimation
given complete data (xv , xh) is relatively easy (because the M step cor-
responds to maximizing the expected log-likelihood of (xv , xh)). This is
exactly the case in our auction setting.

3.2.1 The E Step

The integral in Equation (1) is generally intractable for our complex bidding
process. However, we can compute a Monte Carlo approximation of this integral
by drawing N samples from the distribution p(xh|xv , θ(old), λ(old)), and approx-
imating the integral by a small sum over the samples (see e.g. [Andrieu et al.
2003]). Applied to our model, in each E step our task is therefore to generate
samples from the distribution p(xh|xv , θ(old), λ(old)). Recall that xh consists of
the highest bid xhi and the dropped bids xd.

Given θ(old) and the second highest bid (which is observed), the highest
bid xhi can easily be sampled. According to the bidding process described in
Section 2, the highest bid was generated by repeatedly drawing from f(x|θ(old))
until we get a bid higher than the previously highest (now second-highest) bid.
This is exactly the rejection-sampling procedure for the distribution f(x|θ(old))
truncated at the second highest bid and renormalized. For distributions with a
simple functional form (e.g. normal distributions), it may be easier to sample
directly from the truncated distribution by reversing the CDF (see e.g. [West
1994]).

Sampling the dropped bids xd is a more difficult task. We use the following
procedure, which is based on simulating the bidding process:

1. Sample m from g(m|λ(old)).

2. If m < n, reject the sample and go back to step 1.
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3. Simulate the bidding process using xv and m− n dropped bids:

(a) Repeatedly draw a sample bid from f(x|θ(old)), and compare it to
the current price level. If it is lower than the price level, add the bid
to the set of dropped bids xd. Otherwise, the current price level is
increased to the next visible bid from xv .

(b) If the number of bids in xd exceeds m − n, or if we used up all the
bids in xv before we have m − n dropped bids in xd, we reject this
sample and go back to step 1. Only when we used up all bids in xv
and we have m− n bids in xd, do we accept the sample of xd.

4. Repeat until we have generated N samples of xd.

3.2.2 The M Step

Our task at each M step is to compute the maximum likelihood (ML) esti-
mates of λ and θ from xv and the generated samples of xh. For many standard
parametric families of distributions, there are analytical solutions for the ML
estimates. For example, if f(x) is a normal distribution N(µ, σ), then given the
complete set of bids (xv , xh), the ML estimate of µ is the sample mean, and
the ML estimate of σ is the sample standard deviation. If g(m) is a Poisson
distribution, then the ML estimate of the mean parameter λ is the mean of the
number of bidders per auction. If analytical solutions do not exist we can use
numerical optimization methods such as simulated annealing. If prior distribu-
tions on λ and θ are available, we may instead compute maximum a posteriori
(MAP) estimates, which are point estimates of λ and θ that maximize their
posterior probabilities.

3.3 Learning Distributions in a Game-Theoretic Setting

The approach we just described is decision-theoretic because we estimate the
distribution of bid amounts without considering how other agents would react
to our behavior. What if we want to take a game-theoretic approach? Athey
and Haile [2002] discussed estimation in the game-theoretic setting, however
they generally assume that the number of bidders is known (there is a brief
discussion of unknown number of bidders, but it is not relevant to our online
auction setting).

Let f(v) be the distribution of bidder’s valuations (instead of bid amounts),
and let g(m) denote the distribution of number of bidders, as before. Given a
bidder’s valuation v, her bid amount in the game-theoretic setting is given by
the Bayes-Nash equilibrium of the auction game. Many (but not all) auction
games have symmetric pure strategy equilibria. Assume there is a symmetric
pure strategy equilibrium given by the bid function b(v|f, g). Our task is to
estimate f(v) and g(m) given the observed bids.

We can use an EM learning algorithm similar to the one in Section 3.2 to
estimate f(v|θ) and g(m|λ), where θ and λ are parameters for f and g:
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• E step: for each auction with observed bids xv :

– Compute observed bidders’ valuations vv from xv by inverting the
bid function.4

– Generate bidders with valuations vh who place hidden bids xh =
b(vh|f (old), g(old)). This is done by a similar procedure to the one in
Section 3.2.1 that simulates the auction’s bidding process.

• M step: update θ and λ to maximize the likelihood of the valuations
(vv , vh).

4 Constructing a Bidding Agent

In Sections 2 and 3 we presented a model of the bidding process for a single
auction, and proposed methods to estimate the distributions of bids and number
of bidders in an auction. But our work is not done yet: how do we make use of
these estimated distributions to compute a bidding strategy?

If we only participate in one English auction, bidding is simple: under the
IPV model it is a dominant strategy to bid up to our valuation for the item, and
we do not even need to estimate the distributions. However if we are interested
in more complex environments, good estimates of the distributions f(x) and
g(m) are essential for computing a good bidding strategy. In this section we
discuss two such environments: finitely-repeated online auctions and unrepeated
online auctions without proxy bidding. We consider the first problem from a
decision-theoretic point of view, and take a game-theoretic approach to the
second problem.

4.1 A Decision-Theoretic Approach to Repeated Auctions

In this section we develop a decision-theoretic bidding agent for finitely repeated
auctions. We choose this setting because it is a reasonable model of the decision-
theoretic problem we would face if we wanted to buy one item from an online
auction site. Our estimation algorithm can straightforwardly be applied to more
complex decision-theoretic models such as infinite horizon models with discount
factors and combinatorial valuation models.

4.1.1 The Auction Environment

Suppose we only want to buy one item (say a Playstation 2) in an environment
(say eBay) where multiple auctions for similar, but not necessarily identical,
Playstation 2 systems are held regularly. Recall that we have assumed that
utility is quasilinear: thus if we successfully win one item, our utility will be
equal to our valuation for the item minus the price we paid. So our bidding

4If the bidding function does not have a single-valued inverse function, or if the equilibrium
has mixed strategies, we just generate bidders with valuation vv that would likely bid xv under
the equilibrium.
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agent’s task is to compute a bidding strategy that will maximize this utility.
Assume that we are only interested in the first k auctions that will be held after
we arrive at the auction site. One motivation for such a restriction is that we
prefer to have the item within a bounded amount of time. If we fail to win an
item from the k auctions, we lose interest in the item and leave the auction site,
and our utility is 0. (Alternatively, we could say that if we fail to win an auction
then we could buy the item from a store after leaving the auction site, in which
case we would get some other known and constant amount of utility.)

Some of the k auctions may overlap in time, but since eBay auctions have
strict closing times, this can be modeled as a sequential decision problem, where
our agent makes bidding decisions right before each auction closes. Number the
auctions 1 . . . k according to their closing times. Let vj denote our valuation
for the item from auction j. Note that this allows the items in the auctions to
be non-identical. Let bj denote our agent’s bid for auction j. Let Uj denote
our agent’s expected payoff from participating in auctions j . . . k, assuming we
did not win before auction j. Let Uk+1 be our payoff if we fail to win any of
the auctions. For simplicity we define Uk+1 = 0, though the analysis would be
similar for any constant value. Suppose that for each auction j the number of
other bidders is drawn from gj(m) and each bidder’s bid is drawn from fj(x).
Since each auction j is an English auction, only the highest bid from other bid-
ders affects our payoff. Let f 1

j (x) and F 1
j (x) respectively denote the probability

density function and cumulative density function (CDF) of the highest bid from
other bidders in the jth auction. Then

F 1
j (x) =

∞∑

m=2

gj(m)(Fj(x))m,

where Fj(x) is the CDF of fj(x). Now Uj can be expressed as the following
function of the future bids bj:k = (bj , . . . , bk) and valuations vj:k = (vj , . . . , vk):

Uj(bj:k, vj:k) =

∫ bj

−∞
(vj − x)f1

j (x)dx + (1− F 1
j (bj))Uj+1(bj+1:k, vj+1:k). (3)

The first term in Equation (3) is the expected payoff from the jth auction; the
second term is the expected payoff from the later auctions.

4.1.2 The Optimal Strategy

Greenwald and Boyan [2004] and Arora et al. [2003] have analyzed similar
auction models. Following similar reasoning, we can derive the optimal bidding
strategy for our auction model. Let b∗j:k be the optimal bidding strategy for
auctions j, . . . , k. Let U∗j (vj:k) denote the expected payoff under the optimal
strategy, i.e. U∗j (vj:k) = Uj(b

∗
j:k , vj:k). We can optimize Uj by working from

the kth auction to the first one in a manner similar to backward induction. By
solving the first-order conditions of Uj , we obtain the optimal bidding strategy:
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b∗j = vj − U∗j+1(vj+1:k). (4)

In other words, our agent should shade her bids by the “option value”, i.e.
the expected payoff of participating in future auctions. The exception is of
course the kth auction; in this case there are no future auctions and the optimal
bid is b∗k = vk. Thus we see that the standard result that honest bidding is
optimal in an unrepeated auction is recovered as the special case k = 1.

The computation of the optimal bidding strategies requires the computation
of the expected payoffs U∗j = Uj(b

∗
j:k, vj:k), which involves an integral over the

distribution f1
j (x) (Equation 3). In general this integral cannot be solved ana-

lytically, but we can compute its Monte Carlo approximation if we can sample
from f1

j (x). If we can sample from fj(x) and gj(m), we can use the following

straightforward procedure to generate a sample from f 1
j (x):

1. draw m from gj(m);

2. draw m samples from fj(x);

3. keep the maximum of these m samples.

The bidding strategy b∗1:k computed using Equations (4) and (3) is optimal,
provided that the distributions fj(x) and gj(m) are the correct distributions
of bids and number of bidders for all j ∈ 1 . . . k. Of course in general we do
not know the true fj(x) and gj(m) and the focus of this paper is to estimate
the distributions from the bidding history and use the estimated distributions
to compute the bidding strategy. As a result, the computed bidding strategy
should be expected to achieve less than the optimal expected payoff. However, it
is reasonable to think that better estimates of f(x) and g(m) should give bidding
strategies with higher expected payoffs. This is confirmed in our experiments
across a wide range of data sets, which we discuss in Section 5.

4.1.3 Auctions that Overlap in Time: Exploiting Early Bidding

We observe that while the optimal bid in auction j does not depend on f 1
j , it

does depend on f1
l for l > j. So far we have been estimating f 1

l (x) using fl(x)
and gl(m). In practice, auctions overlap in time, and we often observe some
early bidding activity by other bidders in auctions j+1, . . . , k before we have to
make a bid on auction j. This extra information allows us to make even more
informed (posterior) estimates on f 1

l (x), l > j, based on fl(x), gl(m) and the
observed bids for auction l, which leads to a better bid for auction j.

Suppose we have observed n − 1 early bids, denoted by xv ; the current
highest bid xhi is not revealed (but can be sampled from f(x) truncated at the
current price). Since the auction is not over, there will be some set of future
bids xfuture (possibly empty). When the auction closes, the highest bid from the
other bidders will be max{xhi, xfuture}. We can generate xfuture if we know the
number of future bids. We know the total number of bids m is drawn from g(m),
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and the number of bids made so far is n+ |xd|, where xd are the dropped bids
so far, so the number of future bids is m− n− |xd|. Now we have a procedure
that samples from f1(x):

1. Simulate the auction using our model in Section 2 to generate xd, the
dropped bids so far.

2. Sample the total number of bids m from g(m).

3. Compute the number of future bids, m− n− |xd|.

(a) If this quantity is negative, reject the sample.

(b) Otherwise generate xfuture as (m− n− |xd|) bids drawn from f(x).

4. Generate xhi and take the maximum of xfuture and xhi.

4.2 A Game-Theoretic Approach to Bidding in Online
Auctions without Proxies

In Section 4.1 we discussed building a decision-theoretic bidding agent for re-
peated English auctions. What happens if we try to use the game-theoretic
approach on our auction model to build an agent that plays a Bayes-Nash equi-
librium of the auction game?

The difficulty turns out to be identifying the equilibrium. If each bidder
other than our agent only participates in one auction, then the situation is easy.
In this case the other bidders’ dominant strategies will be to bid truthfully up
to the amount of their valuations. Assuming all bidders follow this dominant
strategy as a game-theoretic approach would have us do, we find that the dis-
tribution of bids is the same as the distribution of valuations. Thus, our agent’s
strategy should be the same as the decision-theoretic optimal strategy described
in Section 4.1.2. It is easy to verify that this strategy together with the other
players’ truthful bidding forms a Bayes-Nash equilibrium.

If the other bidders participate in more than one auction then the equilibrium
strategy gets more complex, both strategically and computationally. Milgrom
and Weber [2000] have derived equilibrium strategies for sequential auctions
under some strong simplifying assumptions, such as identical items, a fixed
number of bidders, and all bidders entering the auctions at the same time. In
an online auction setting, these assumptions are not reasonable: the items are
often heterogenous, the number of bidders is unknown ex ante, and bidders have
different entry times and exit policies. The equilibrium strategy in the general
case is not known. Therefore, it is an open problem to find a game-theoretic
model for repeated online auctions that is realistic and yet still tractable.

4.2.1 Online Auctions without Proxies

Because of the difficulties described above, we turn to a slightly different auc-
tion setting in order to show how our distribution learning techniques can be

13



used to build a game-theoretic bidding agent. Specifically, we will consider
an online auction setting which differs in one crucial respect from the setting
defined in Section 2. Bidders still participate in an online ascending auction
against an unknown number of opponents and still arrive and bid sequentially;
however, now we add the restriction that bidders cannot place proxy bids. In-
stead, bidders can now place only a single bid before they leave the auction
forever; the game now takes on a flavor similar to a first-price auction, but
with different information disclosure rules. We chose this game because it has
hidden-bid characteristics similar to the online auctions we discussed earlier,
but at the same time it also has a known, computationally tractable—and yet
non-trivial—Bayes-Nash equilibrium.

More formally, suppose that there are m potential bidders interested in a
single item. The numberm is drawn from a distribution g(m), and is observed by
the auctioneer but not the bidders. Bidders have independent private valuations,
drawn from the distribution f(v). A bid history records every bid which is placed
along with the bid amount, and is observable by all bidders. The auction has
the following rules:

• The auctioneer determines a random sequential order to use in approach-
ing bidders.

• Each bidder is approached and asked to make a bid. Each bidder is asked
once and only once.

• When asked, a bidder has to either make a bid which is at least the current
highest bid plus a constant minimum increment δ, or decide not to bid.

1. If the bidder places a bid, it is recorded in the bidding history.

2. Otherwise, no record is made of the fact that the auctioneer ap-
proached the bidder.

• The auction ends after the last bidder makes her decision. The highest
submitted bid wins, and the winner pays her bid amount. The winner’s
utility is her valuation minus her payment; other bidders get zero utility.

4.2.2 Computing Equilibrium Strategies

We now turn to the construction of a game-theoretic bidding agent for the
auction described in Section 4.2.1. We begin by supposing that the distributions
f(v) and g(m) are common knowledge, which allows us to treat the auction as
a Bayesian game and find its Bayes-Nash equilibrium.

Suppose there exists a pure-strategy equilibrium of this game. Consider
bidder i with valuation v, who is asked to make the next bid when the bid-
ding history is xv . Denote b(v|xv) the equilibrium bidding strategy. Before
we compute b(v|xv), let us first eliminate dominated strategies. As in classical
sealed-bid first-price auctions, it is obvious that we should never bid higher than
our valuation v. Let bo denote the highest submitted bid so far, thus bo + δ is
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the minimum bid amount. It immediately follows that if v < bo + δ then we
should not bid. On the other hand, if v ≥ bo + δ, then we have non-negative
expected payoffs by making a bid (as long as we bid below v).

Define as P the class of strategies which take the following form:

• if v < bo + δ, then do not bid

• if v ≥ bo + δ, then bid an amount in the interval [bo + δ, v]

Following the above reasoning, any strategy not in P is weakly dominated.
Thus, in equilibrium all bidders will play some strategy in P . Suppose bidder
i’s valuation is v ≥ bo+δ. Thus she places a bid b ∈ [bo+δ, v]. Note that bidder
i’s expected payoff depends on her valuation, her bid b, and what future bidders
do. Since future bidders play strategies in P , we know i will be outbid if and
only if at least one future bidder has valuation greater than or equal to b+δ. In
other words, as long as everyone plays a strategy in P , a bidder’s expected payoff
depends on future bidders’ valuations but not their exact bidding functions.

Denote by mf the number of future bidders, and denote by po = Pr(mf =
0|xv) the probability that there will be no future bidders. Let F 1(v) be the CDF
of the (posterior) distribution of the highest future bid given xv , conditioned on
having at least one future bidder. In other words,

F 1(v) = Emf |mf>0[F (v)mf ] (5)

where F (v) is the CDF of the value distribution. F 1 and po depend on the
posterior distribution of the number of future bidders, Pr(mf |xv). If we can
generate samples of mf , then F 1 and po can be straightforwardly approximated.
Note that the set of bidders consists of past bidders (observed and hidden), the
current bidder, and future bidders. Thus we can generate mf using essentially
the same procedure as described in Section 4.1.3, by drawing m from g(m),
simulating the auction so far to get the number of already dropped bids |xd|,
then letting mf = m − |xv | − |xd| − 1. Note that we do not need to know the
exact equilibrium strategy to generate the hidden bidders; the knowledge that
the equilibrium strategy is in P is enough to determine whether a bidder should
bid or not.

Now we can write the expected payoff U(b, v) as:

U(b, v) = (1− po)F 1(b+ δ)(v − b) + po(v − b). (6)

Since v is fixed for each bidder, U(b, v) is then a function of b. We can then use
any standard numerical technique for function maximization in order to find
the optimal b∗ ∈ [bo + δ, v] that maximizes U .

Theorem 1 It is a Bayes-Nash equilibrium of our auction setting for all bidders
to follow the strategy:

• if v < bo + δ, do not bid.

• if v ≥ bo + δ, bid b∗ = arg maxb∈[bo+δ,v] U(b, v).
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The proof is straightforward: first observe that this strategy is in P . We
have showed above that if everyone else is playing a strategy in P , then b∗ as
defined will maximize the bidder’s utility. It follows that if everyone is playing
the above strategy, then each bidder is playing a best response to the other
bidders’ strategies and so we have an equilibrium.

4.2.3 Learning the Distributions

At the beginning of Section 4.2.2 we assumed that the distributions f(v) and
g(m) were commonly known. Now we relax this assumption. We assume that
we have access to the bidding histories of K past auctions, and consider the
problem of learning the distributions.

As in our online English auctions, some information is hidden from the
bidding history: the number and valuations of the bidders who decided not
to bid. As discussed in Section 3.1, the simple approach of ignoring these
hidden bidders could be expected to introduce bias to the estimates of f and
g. Furthermore, the observed bids are not equal to the bidders’ valuations; as
shown above a bidder’s equilibrium bid is always lower than her valuation.

To correctly account for the hidden information, we use our EM algorithm
for game-theoretic settings, as described in Section 3.3. To implement the EM
algorithm, an important subproblem is reversing the equilibrium bidding strat-
egy. Formally, given a complete bidding history xv of an auction and the current
estimates f(v|θ) and g(m|λ), compute the corresponding valuations vv such that
bidders with valuations vv playing the equilibrium strategy would have placed
the bids xv .

Consider each bid bi ∈ xv . Denote by bo the previous observed bid. From
Section 4.2.2 we know that bi = arg maxb∈[bo+δ,v] U(b, v). There are two cases:

1. If bi > bo + δ, then bi must be a local maximum in [bo + δ, v] satisfying

the first-order condition ∂U(b,v)
∂b = 0. Solving for v, we get

v = bi +
F 1(bi + δ) + po/(1− po)

f1(bi + δ)
(7)

where f1 is the derivative of F 1. We can numerically approximate F 1, f1

and po by generating samples of mf in the same way as in Section 4.2.2.

2. Otherwise, bi = bo + δ. Intuitively, this means that the bidder’s valuation
is high enough to make a bid (i.e. v ≥ bo + δ), but not high enough to fall
into Case 1. Any bidder with a valuation in the interval

[
bo + δ, bo + δ +

F 1(bo + δ) + po/(1− po)
f1(bo + δ)

]

would bid in this way. Thus we generate samples of v by drawing from
f(v|θ) truncated to the above interval.

Once the EM algorithm has estimated the distributions f and g, our agent
can use these distributions to compute the Bayes-Nash equilibrium strategy as
described in Section 4.2.2.
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5 Experiments

We evaluated both our EM learning approach and the simple approach5 on
several synthetic data sets and on real world data collected from eBay. We
compared the approaches in three ways:

1. Which approach gives better estimates of the distributions f(x), g(m) and
f1(x)? This is important because better estimation of these distributions
should give better results, regardless of whether agents take a decision-
theoretic approach or a game-theoretic approach to bidding. We measure
the closeness of an estimated distribution to the true distribution using
the Kullback-Leibler (KL) Divergence from the true distribution to the
estimated distribution. The smaller the KL Divergence, the closer the
estimated distribution to the true one.

2. For repeated online auction data, which approach gives better expected
payoff under the decision-theoretic bidding model, as described in Section
4.1?

3. For data from online auctions without proxies, which approach gives closer
estimates to the Bayes-Nash equilibrium under the game-theoretic bidding
model (i.e., computes ε-equilibria for smaller values of ε), as described in
Section 4.2?

Our experiments show that the EM learning approach outperforms the sim-
ple approach in all three ways, across a wide range of data sets.

5.1 Repeated Online Auctions

In this section we consider repeated online auctions, and thus attempt to answer
the first two questions above. We present results from four data sets:

• Data Set 1 has auctions of identical items, and we know the family of
distributions that f(x) and g(m) belong to.

• Data Set 2 has auctions of non-identical items, but we know the bid dis-
tribution f(x) is influenced linearly by an attribute a.

• Data Set 3 has auctions of identical items, but we do not know what kind
of distributions f(x) and g(m) are. We use nonparametric estimation
techniques to estimate the distributions.

• Data Set 4 is real-world auction data on identical items, collected from
eBay.

5We also looked at the variant of the simple approach that directly estimates the dis-
tribution f1(x) using the selling prices. Our results show that this approach consistently
underestimates f1(x) as expected, and its performance is much worse than both the EM ap-
proach and the simple approach. To avoid clutter, detailed results on this approach are not
shown.
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5.1.1 Synthetic Data Set 1: Identical Items

In this data set, the items for sale in all auctions are identical, so the number
of bidders and bid amounts come from stationary distributions g(m) and f(x).
f(x) is a Normal distribution N(4, 3.5). g(m) is a Poisson distribution shifted
to the right: g(m − 2) = P (40), i.e. the number of bidders is always at least
2. The bidding history is generated using our model of the bidding process as
described in Section 2. Each instance of the data set consists of bidding history
from 40 auctions. We generated 15 instances of the data set.

Estimating the Distributions Both estimation approaches are informed of
the parametric families from which f(x) and g(m) are drawn; their task is to
estimate the parameters of the distributions, (µ, σ) for f(x) and λ for g(m). At
the M step of the EM algorithm, standard ML estimates for µ, σ, and λ are
computed, i.e. sample mean of the bid amounts for µ, standard deviation of the
bid amounts for σ, and the mean of the number of bidders minus 2 (due to the
shifting) for the Poisson parameter λ.

Our results show that the EM approach outperforms the simple approach in
the quality of its estimates for the distributions f(x), g(m) and f 1(x). Figure 2
shows typical estimated distributions6 and the true distributions. We observe
that the plot of the estimated f(x) by the simple approach is significantly shifted
to the right of the true distribution, i.e. the simple approach overestimated
f(x). We have also calculated KL Divergences from the true distributions to
the estimated distributions, and the EM estimations have consistently lower
KL Divergences. This difference was verified to be significant, using the non-
parametric Wilcoxon sign-rank test.

Bidding in Repeated Auctions Estimates from both approaches were used
to compute bidding strategies for an auction environment with 8 sequentially
held auctions of the same kind of items, using the decision-theoretic model
introduced in Section 4.1. The agent’s “actual” expected payoffs U1(b, v) under
these bidding strategies were then computed, using the true distributions. The
optimal bidding strategy and its expected payoff were also computed.

Our results show that the EM approach gives rise to bidding strategies closer
to the optimal strategy, and achieves higher expected payoffs, as compared to
the simple approach. Figure 3 shows a plot of the bidding strategies in the first
auction, and a box plot of the mean regrets, which is the differences between
optimal expected payoffs and actual expected payoffs. Formally, let b∗ denote
the optimal strategy and b̂ the strategy computed using estimated distributions,
then the regret given our agent’s valuation v is

R(v) = U1(b∗, v)− U1(b̂, v)

6The distributions shown were randomly chosen from the 15 instances of the data set. We
have verified that the plots of the other distributions are qualitatively similar.
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Figure 2: Results for Data Set 1, Distribution Estimation: distribution of bids
f(x) (left); distribution of highest bids f 1(x) (right).

and the mean regret is the expected value of R(v) over the distribution of v,
which we set to be the same as the other bidders’ bid distribution f :

R̄ =

∫ ∞

−∞
R(v)f(v)dv.

From the box plot we observe that the mean regret of the EM approach is much
smaller than that of the simple approach. The ratio between the mean regrets
of the EM and simple approaches is 1 : 56.

We also used the estimated distributions on the decision-theoretic model
with overlapping auctions, as described in Section 4.1.3. We again tested both
approaches on 8 sequentially held auctions, but now some early bidding activity
on each auction was generated. These results are shown in Figure 4. Again
we see that the EM approach achieves higher expected payoffs (and thus less
regret) compared to the simple approach. The EM approach seemed to benefit
more from the extra information of early bids than the simple approach: the
ratio between the mean regrets of the EM and simple approaches increased to
1 : 390.

5.1.2 Synthetic Data Set 2: Non-identical Items

In our second data set, the items on sale are not identical; instead the distribu-
tion of valuations are influenced by an observable attribute a. In this data set
the dependence is linear: f(x|a) = N(1.1a+ 1.0, 3.5). g(m) is a Poisson distri-
bution as before: g(m− 2) = P (35). For each auction, a is sampled uniformly
from the interval [3, 9]. In other words, this data set is similar to Data Set 1, ex-
cept that the bid distribution f(x) is drawn from a different parametric family.
Both approaches now use linear regression to estimate the linear coefficients.

Estimating the Distributions Again, our results show that the EM ap-
proach outperforms the simple approach for this data set, in terms of its esti-
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(left); box plot of payoff regrets of the two approaches (right).
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Figure 4: Box plot of expected payoff regrets for overlapping auctions

mates for f(x) and g(m). Figure 5 (left) shows the estimated linear relation
between the mean of f(x|a) and a. From the figure we can see that the EM
approach gives a much better estimate to the linear function. The simple ap-
proach again significantly overestimates the bid amounts. In fact the simple
approach has consistently overestimated f(x) for all the synthetic data sets we
tested.

Bidding in Repeated Auctions We then used the estimated distributions
to compute a decision-theoretic agent’s bidding strategies and expected payoffs
of an auction environment with 8 sequential auctions, where the attribute a
of each item is observed. The EM approach also gives better expected payoff,
the statistical significance of which is confirmed by Wilcoxon’s sign-rank test.
Figure 5 (right) shows a box plot of regrets from different instances of data sets,
which shows that the EM approach achieved consistently higher payoffs.
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Figure 5: Results for Data Set 2: Linear relationship between the mean of f(x|a)
and a (left). Box plot of payoff regrets (right).

5.1.3 Synthetic Data Set 3: Unknown Distributions

We go back to the identical items model with stationary distributions f(x) and
g(m). For this data set, f(x) is a Gamma distribution with shape parameter
2 and scale parameter 3. g(m) is a mixture of two Poisson distributions: P (4)
with probability 0.6 and P (60) with probability 0.4. But now the estimation
approaches does not know the types of the true distributions. Instead, both
use kernel density estimation (kernel smoothing), a nonparametric estimation
strategy. Essentially, given N samples from a distribution p(x), we estimate
p(x) by a mixture of N kernel functions centered at the N samples.

Estimating the Distributions A Gaussian kernel is used for estimating
f(x) and a uniform kernel is used for estimating g(m). At each M step of the
EM algorithm, the bandwidth parameters of the two kernel estimations need
to be selected. We use the simple “rule of thumb” strategy [Silverman 1986]
for bandwidth selection. We used the same kernel estimation and bandwidth
selection technique for the simple approach.

Our results show that the EM approach gives better estimates than the
simple approach. Figure 6 shows typical estimated distributions and true dis-
tributions. From the figure we can observe that the EM estimates of f(x), g(m)
and f1(x) are much closer to the true distributions that the simple estimates.
The EM estimates have significantly smaller KL Divergences compared to the
simple estimates, verified by Wilcoxon’s sign-rank test.

Bidding in Repeated Auctions We then computed the expected payoffs
under the decision-theoretic model with 8 sequential auctions. The expected
payoffs of the EM approach were not significantly better than that of the simple
approach, as shown by the box plot in Figure 6. One possible explanation is
that although KL divergence is a good measure of similarity of distributions
in general, under this particular sequential auction decision-theoretic model KL

21



−10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Bid Amount

Distribution of Bids

true
simple kernel
EM kernel

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Bidders

Distribution of Number of Bidders

true
simple kernel
EM kernel

−10 −5 0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Bid Amount

Distribution of Highest Bid

true
simple kernel
EM kernel

simple kernel EM kernel

0

0.05

0.1

0.15

0.2

R
eg

re
t

Payoff Regrets

Figure 6: Results for Data Set 3: Distribution f(x) (top-left). Distribution
g(m) (top-right). Distribution f 1(x) (bottom-left). Box plot of payoff regrets
(bottom-right).

divergence might not be the best measure of quality. The bidding strategy as de-
fined in (4) and (3) is optimal if the distributions f and g are the true underlying
distributions. Using our estimated distributions, the resulting bidding strategy
may be higher or lower than the optimal bids. However from our experience in
these experiments, bidding too high is more costly than bidding too low. This
is not taken into account in the KL divergence computation as well as our ML
estimation procedure. This suggests that a possible future research direction
is to identify a loss function suited for the sequential auction bidding model,
and compute estimated distributions by minimizing that loss function. Another
possible approach is to compute a posterior distribution instead of point esti-
mates of the parameters in each iteration. For example, West [1994] used Gibbs
sampling techniques to compute the posterior distribution of parameters in a
relatively simple model of incomplete data. Bidding strategies computed using
the distribution of parameters should be free of the problem mentioned above.
However, this kind of approach would be more computationally expensive.
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5.1.4 eBay Data on Sony Playstation 2 Systems

Our experiments on synthetic data sets showed that our EM approach gave
good estimates of the true distributions in several different settings. However,
the synthetic data sets are generated using our model for the bidding process.
Thus, the above experiments do not tell us whether our model for the bidding
process is an accurate description of what happens in real world online auctions.
To answer this question, we wanted to test our approach on real world bid data.
On eBay, the bidding histories of completed auctions are available for 30 days.
Unfortunately, information on the hidden bids, especially the proxy bids of the
winners of the auctions, is not publicly available. So unlike in the synthetic data
experiments, we cannot compare our estimated distributions with the “true”
distributions.7

To get around this problem, we used the following approach. First we col-
lected bidding histories from a set of eBay auctions. Next we pretended that
those highest bids were not placed, and the previously second highest bids were
the highest bids. We then “hid” these new highest bids of each auction. This
gave us a “ground truth” for the hidden bids which allowed us to evaluate our
different approaches. It is true that this approach of hiding bids changed the
underlying distribution of bids; however, this did not worry us as our goal was
not to learn the true distribution of bids in our eBay auctions. Instead, our goal
was to evaluate our algorithms’ performance on a realistic, non-synthetic data
set. We believe that despite the removal of the high bid our data set preserves
qualitative characteristics of the original bidding history data. If our model of
the bidding process is correct, then our EM approach should be able to cor-
rectly account for the hidden bids in this data set and produce good estimates
of f1(x).

We collected bidding history of eBay auctions on brand new Sony Playstation
2 (Slim Model) consoles, over the month of March 2005. We chose to study these
auctions because they had been previously studied by Shah et al. [2003], who
argued that bidders’ valuations on Playstations tend to be close to the private
value model. We considered only auctions that lasted one day and had at least
3 bidders.8 We found 60 auctions that satisfied these requirements. We then
randomly divided our data into a training set of 45 auctions and a testing set
of 15 auctions.

Estimating the Distributions We tested four learning approaches: the EM
and simple approaches that estimate a Normal distribution for f(x) and a Pois-
son distribution for g(m), and the EM and simple approaches that use kernel
density estimation to estimate f(x) and g(m). Of course we did not have a
ground truth for these distributions, so it was not possible to compare the ac-
curacy of the predictions. However, we could use both approaches’ estimates to
estimate f1(x) based on the training set, and compare these estimates against

7Of course we could have used our techniques to generate values for the missing bids;
however, this would have been unfair when the goal was to test these techniques!

8We needed at least 3 bidders so that we could drop one and still have one observed bid.
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Figure 7: Box plot of payoff regrets on the eBay Data Set

the highest bids from the test set. We did 8 runs of this experiment with dif-
ferent random partitions of training set and testing set, and aggregated the
results. The KL Divergences of f 1(x) of the approaches were similar, and no
one approach was significantly better than the others.

Bidding in Repeated Auctions We then computed the expected payoffs
under the decision-theoretic model. The EM approaches achieved significantly
higher payoffs than the simple approaches, as shown in Figure 7. The ap-
proaches using parametric models achieved similar payoffs to the corresponding
approaches with kernels. The good performance of the parametric estimation
EM approach for the eBay data set indicates that the Normal and Poisson mod-
els for f(x) and g(m) may be adequate models for modeling bidding on eBay.

The EM approaches did not have better KL divergence than the simple ap-
proaches, but nevertheless outperformed the simple approaches in the repeated
auction experiments. This is similar to our situation in Data Set 3. Our ex-
periments have shown that there is a positive correlation between better KL
divergence and better performance in repeated auctions, but that this correla-
tion is not perfect.

5.2 Online Auctions without Proxies

We built a data set modeling online auctions without proxies in order to compare
the EM approach against the simple approach in the game-theoretic setting
described in Section 4.2. Thus, in this section we consider questions 1 and 3
from the list at the beginning of Section 5.

Similar to Section 5.1.1, we use a normal distribution N(5.0, 2.0) for f(v)
and a shifted Poisson distribution (with λ = 10) for g(m). Each instance of the
data set consists of bidding histories from 30 auctions.
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Estimating the Distributions As might be expected from the results in the
previous section, we found that the EM approach gave much better estimates
of f(v) and g(m) than the simple approach. Figure 8 shows typical estimated
distributions and the true distributions.

Estimating the Bayes-Nash Equilibrium We then compared the game-
theoretic bidding agents that would have been built using the distributions esti-
mated by the two learning approaches. Unlike in Section 5.1, we cannot simply
use expected payoff as a measure of performance, since in a game-theoretic
setting our payoff depends other agents’ strategies; for example, a bad approxi-
mation to an equilibrium could actually lead to increased payoffs for all agents.
(Consider e.g., the prisoner’s dilemma.) Instead, what we can measure is the
amount that each player could gain by unilaterally deviating from the current
strategy at the “equilibrium” strategy profile computed using each learning ap-
proach. One way of thinking of this value relates to the concept of ε-equilibrium.
(Recall that a strategy profile is an ε-equilibrium if each agent can gain at most
ε by unilaterally deviating from the strategy profile.) Every strategy profile is
an ε-equilibrium for some ε; what we compute is the smallest ε for which the
learned strategies form an ε-equilibrium.

For our auction setting, we observe (from Theorem 1) that no matter what
distributions we use for f and g, our agents will play a strategy in P . As a
result, the true equilibrium strategy (computed from Theorem 1 using the true
distributions) is always a best response to the strategies our agents play. Given
our agent’s valuation v and observed bidding history so far xv , we can compute
the difference between the expected payoff of the best response and the expected
payoff of our agent’s strategy. The ε for the game is then the expectation
of this difference over v, m, and bidding history xv . We approximate this
expectation by sampling v, m, xv and taking the mean of the payoff differences.
We generated bidding histories for 20 auctions using each approach, and for
each bidder in these auctions we computed expected payoff differences for 50
valuations v drawn from the true f(v).

Our results show that strategy profiles computed using the EM approach
are ε-equilibria for much smaller values of ε than the strategy profiles computed
using the simple approach. This means that the EM bidding agent’s strategy
is much closer to the true equilibrium. We computed ε for 15 instances of the
training data set, and Figure 9 gives a box plot of the resulting ε’s.

6 Related Work

Our EM approach is similar in spirit to an approach by Boutilier et al. [1999].
This work concerns a decision-theoretic MDP approach to bidding in sequential
first-price auctions for complementary goods. For the case when these sequen-
tial auctions are repeated, this paper discusses learning a distribution of other
agents’ highest bids for each good, based on the winning bids in past auctions.
If the agent’s own bid wins in an auction, the highest bid by the other agents
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Figure 8: Results for Online Auctions without Proxies: the value distributions
f(v) (left); the distributions of number of bidders g(m) (right).
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Figure 9: Results for Online Auctions without Proxies: box plot of epsilon-
equilibria using the simple and EM approaches

is hidden because only the winning bid is revealed. To overcome this problem
of hidden bids, the paper uses an EM approach to learn the distribution of the
highest bid.

In our English auction setting the highest bids are always hidden, and thus
cannot be directly estimated. Instead we have to estimate the distributions of
bids f(x) and of number of bidders g(m)—which requires us to take into account
bids other than the highest—and then compute the distribution of highest bids
using f(x) and g(m). As a result the learning task in our domain is more
complicated than the problem considered by Boutilier et al. [1999].

Several other papers have tried to solve the hidden bid problem in various
auction settings. Rogers et al. [2005] studied English auctions with discrete bid
levels. They discussed estimating the distributions of valuations and numbers of
bidders (f and g) from data, then using the estimated distributions to compute
an optimal set of bid levels (including the reserve price) for the auctioneer. Their
learning approach is to look at only the final prices of the auctions, and then to
use Bayesian inference to compute posterior distributions of the parameters of
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f and g given the final prices of previous auctions. We note that this approach
ignores all the earlier bids, which carry information about f and g, while our
approach uses all bids observed. Furthermore, Rogers et al.’s [2005] approach
works only for parametric distributions. If the true underlying distributions
are not in the chosen parametric family of distributions, parametric estimation
tends to give poor results. In Section 5.1.3 we showed that our approach can
use nonparametric estimation techniques (kernel density estimation). Finally,
the method of [Rogers et al. 2005] needs to compute the joint distribution of
multiple parameters, which takes exponential time in the number of parameters.
Our EM approach only tries to compute ML/MAP estimates of the parameters,
so each iteration of EM scales roughly linearly with the number of parameters.

Another relevant paper is [Song 2004]. Like us, Song studies the estima-
tion problem in online English auctions in eBay-like environments. However
she used a different approach, based on the theoretical result that the second-
and third-highest valuations uniquely identify the underlying value distribution.
Unfortunately, applying this fact to the eBay model presents a problem: while
the highest observed bid (which is the second-highest actual bid) corresponds
to the second-highest valuations, the second-highest observed bid is not neces-
sarily the third-highest valuation. This is because the first- or second- highest
bidders may have submitted bids higher than the third-highest value before
the third-highest valued bidder had a chance to submit her final bid, which
means her bid can be hidden from the bidding history. Thus the second-highest
observed bid is sometimes less than the third-highest valuation, and ignoring
this fact would introduce bias to the estimation. Song recognizes this problem,
and her solution is to use data from auctions in which the first- or second-
highest bidder submitted bids higher than the second-highest observed bid late
in the auction, because these auctions have relatively higher probability that
their second-highest observed bids are third-highest valuations. However, this
approach merely reduces expected bias rather than avoiding it entirely. Indeed,
we note that there is empirical evidence [Roth and Ockenfels 2002] that bidding
activity late in auctions has much higher density than earlier bidding activ-
ity. This suggests that even for the selected auctions of Song’s approach, there
may be significant probability that second-highest observed bids are less than
third-highest valuations. Our approach models the hidden bidders, so does not
suffer from the bias introduced in her approach, and does not need to drop any
auctions from consideration. Finally, Song [2004] did not discuss how to esti-
mate the distribution of the number of bidders, which is essential for computing
optimal bidding strategies in our repeated auctions setting (see Section 4).

Haile and Tamer [2003] analyzed a different form of the hidden bid problem:
a bidder may have submitted an earlier bid below her valuation, then the current
price rises above her valuation, so she does not bid again. As a result, bidders’
final observed bids may be below their valuations.9 Haile and Tamer [2003]
proposed a method to compute bounds on the value distributions given the

9Like us (although in a different way), Haile and Tamer [2003] also address the problem
that the highest bid is not the actual highest value.
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observed bids. In our model, bidders’ final observed bids are assumed to coincide
with their willingness to pay, so this issue does not arise in our current model.
On the other hand, Haile and Tamer’s [2003] approach was intended for physical
(as opposed to online) auctions. As a result they assume that the number of
potential bidders in each past auction is known. This could cause their technique
to overestimate the value distribution in the online setting because it does not
account for potential bidders who arrive after the auction’s current price exceeds
their valuation. Since in practice, the hidden bidders problem addressed in our
paper and the bidding below valuation problem studied by Haile and Tamer
may both be present, an interesting future research direction is to combine our
approach that deal with hidden bidders with Haile and Tamer [2003]’s technique
for bounding the valuation distribution.

7 Conclusion

In this paper we have described techniques for building bidding agents in online
auction settings that include hidden bids. In particular, we have addressed the
issue of estimating the distributions of the number of bidders and bid amounts
from incomplete auction data. We proposed a learning approach based on the
EM algorithm that takes into account the missing bids by iteratively generating
missing bids and doing maximum likelihood estimates on the completed set of
bids. We applied our approach to both decision-theoretic and game-theoretic
settings, and conducted experiments on both synthetic data as well as on eBay
data. Our results show that our approach never did worse and often did much
better than the the straightforward approach of ignoring the missing data, both
in terms of the quality of the estimates and in terms of expected payoffs under
a decision theoretic bidding model.
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