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Abstract

In the last decade, there has been much research at the interface of computer sci-

ence and game theory. One important class of problems at thisinterface is the

computation of solution concepts (such as Nash equilibriumor correlated equilib-

rium) of a finite game. In order to take advantage of the highly-structured utility

functions in games of practical interest, it is important todesign compact represen-

tations of games as well as efficient algorithms for computing solution concepts

on such representations. In this thesis I present several novel contributions in this

direction:

The design and analysis of Action-Graph Games (AGGs),a fully-expressive mod-

eling language for representing simultaneous-move games.We propose a

polynomial-time algorithm for computing expected utilities given arbitrary

mixed strategy profiles, and leverage the algorithm to achieve exponential

speedups of existing algorithms for computing Nash equilibria.

Designing efficient algorithms for computing pure-strategy Nash equilibria in AGGs.

For symmetric AGGs with bounded treewidth our algorithm runs in polyno-

mial time.

Extending the AGG framework beyond simultaneous-move games. We propose

Temporal Action-Graph Games (TAGGs) for representing dynamic games

and Bayesian Action-Graph Games (BAGGs) for representing Bayesian games.

For certain subclasses of TAGGs and BAGGs we gave efficient algorithms

for equilibria that achieve exponential speedups over existing approaches.

Efficient computation of correlated equilibria. In a landmark paper, Papadim-
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itriou and Roughgarden described a polynomial-time algorithm (”Ellipsoid

Against Hope”) for computing sample correlated equilibriaof compactly-

represented games. Recently, Stein, Parrilo and Ozdaglar showed that this

algorithm can fail to find an exact correlated equilibrium. We present a vari-

ant of the Ellipsoid Against Hope algorithm that guaranteesthe polynomial-

time identification of exact correlated equilibrium.

Efficient computation of optimal correlated equilibria. We show that the polynomial-

time solvability of what we call thedeviation-adjusted social welfare prob-

lemis a sufficient condition for the tractability of the optimalcorrelated equi-

librium problem.
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Preface

Certain chapters of this thesis are based on publications (or submissions to publica-

tions) by my collaborators and me (under the name Albert Xin Jiang). Per require-

ment of UBC Faculty of Graduate Studies, I describe here the relative contributions

of all collaborators.

Chapter 3 is based on the articleAction-Graph Gamesby Albert Xin Jiang,

Kevin Leyton-Brown and Navin Bhat, published in Games and Economic Behav-

ior, Volume 71, Issue 1, January 2011, Pages 141–173, Elsevier. Navin and Kevin

first proposed Action-Graph Games without function nodes (called AGG-/0s in this

thesis), proposed an algorithm for computing expected utility for the symmetric

case, and proposed an approach for computing sample Nash equilibria in symmet-

ric AGG-/0s, by adapting Blum et al. [2006]’s approach for speeding up Govindan

and Wilson’s [2003] global Newton method. My main contributions include: 1) ex-

tending the basic AGG-/0 representation by introducing function nodes and additive

structure, yielding the more general representations AGGswith Function Nodes

(AGG-FNs) and AGG-FNs with Additive Structure (AGG-FNAs);2) proposing

and implementing an algorithm for computing expected utility for general AGGs,

and proving that it runs in polynomial time; 3) implementingsoftware packages

for game-theoretic analysis using AGGs, including programs that speed up exist-

ing algorithms for sample Nash Equilibria [Govindan and Wilson, 2003, van der

Laan et al., 1987] by leveraging the expected utility algorithm; 4) carrying out

computational experiments; 5) preparation of the manuscript. Kevin has played a

supervisory role throughout the project.

Chapter 4 is based on the paperComputing Pure Nash Equilibria in Symmetric

Action Graph Gamesby Albert Xin Jiang and Kevin Leyton-Brown, published
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in the Proceedings of AAAI, 2007, although the chapter contains a significant

amount of new material. My main contributions include: 1) identification of the

research problem and the design of the overall approach; 2) working out the details

of our algorithm and proving its correctness and running time; 3) preparation of

the manuscript. Kevin has played a supervisory role throughout the project.

Chapter 5 is based on the paperTemporal Action-Graph Games: A New Repre-

sentation for Dynamic Gamesby Albert Xin Jiang, Kevin Leyton-Brown and Avi

Pfeffer, published in the Proceedings of UAI, 2009. The identification and design

of the overall research program is done via joint discussions by all three co-authors.

My other contributions include: 1) working out the details of the Temporal Action-

Graph Game representation and our algorithm for computing expected utility, and

proving their properties; 2) implementing our algorithm and carrying out computa-

tional experiments; 3) preparation of a majority of the textin the manuscript. Kevin

has played a supervisory role throughout the project.

Chapter 6 is based on the paperBayesian Action-Graph Games, published in

the Proceedings of NIPS, 2010. The identification and designof the overall re-

search program is done via joint discussions by both co-authors. My other contri-

butions include: 1) working out the details of the Bayesian Action-Graph Game

representation, our algorithm for computing expected utility and our approach for

computing Bayes-Nash equilibrium, and proving their properties; 2) implementing

our algorithm and carrying out computational experiments;3) preparation of the

manuscript. Kevin has played a supervisory role throughoutthe project.

Chapter 7 is based on the paperPolynomial-time Computation of Exact Cor-

related Equilibrium in Compact Gamesby Albert Xin Jiang and Kevin Leyton-

Brown, published in the Proceedings of ACM-EC, 2011. My maincontributions

include: 1) identification of the research program; 2) design of our algorithm and

analysis of its properties; 3) preparation of the manuscript. Kevin has played a

supervisory role throughout the project.

Chapter 8 is based on the manuscriptA General Framework for Computing

Optimal Correlated Equilibria in Compact Gamesby Albert Xin Jiang and Kevin

Leyton-Brown, published in the Proceedings of the Seventh Workshop on Internet

and Network Economics (WINE), 2011. My main contributions include: 1) iden-

tification of the research program; 2) design of our algorithm and analysis of its
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properties; 3) preparation of the manuscript. Kevin has played a supervisory role

throughout the project.
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Chapter 1

Introduction

Game theory is a mathematical theory ofgames, interactions in which multiple

autonomous agents, each with their own utility functions, act according to their

own interests. Game theory has received a great deal of study, and is perhaps the

dominant paradigm in microeconomics [e.g., Fudenberg and Tirole, 1991]. In the

last decade, there has been much research at the interface ofcomputer science and

game theory [e.g., Nisan et al., 2007, Shoham and Leyton-Brown, 2009]. This

interdisciplinary field has been named “algorithmic game theory”, “computational

economics”, and “multiagent systems” by various researchers. This recent interest

in game theory by the computer science community has been partially motivated

by the explosion in the popularity of the Internet, which is essentially a network of

computers controlled by selfish agents. There is thus much recent effort to apply

game theory to various subdomains of the Internet such as TCP/IP routing, peer-

to-peer sharing, auction environments including eBay and AdWords, and social

networks.

One fundamental class of computational problems in game theory is the compu-

tation ofsolution conceptsof a finite game. Examples of solution concepts include

Nash equilibrium and correlated equilibrium. Intuitively, these solution concepts

are answers to the following type of questions: what are the likely outcomes of the

game, under certain models of rationality of the agents? Thus the task of comput-

ing these solution concepts can be understood in the language of AI asreasoning

about the game. The goal is to be able to efficiently carry out such reasoning for
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real-world multiagent systems. One application of such game-theoretic reasoning

is the development of autonomous agents that can act intelligently by taking into

account the strategic behavior of other agents. Another application is to help the

designer of a system to predict its likely outcomes and to optimize the parameters

of the system to achieve preferred outcomes. Furthermore, some computer scien-

tists argue that the complexity of these computational problems have implications

on whether equilibria can be reached in practice. A famous quote by Kamal Jain is

“if your laptop cannot find the equilibrium, neither can the market.”

The input to such computational problems is a description ofthe game. Most

of the game theory literature presumes that simultaneous-action games will be rep-

resented in normal form. This is problematic because in manydomains of interest

the number of players and/or the number of actions per playeris large. In the

normal form representation, the game’s payoff function is stored as a matrix with

one entry for each player’s payoff under each combination ofall players’ actions.

As a result, the size of the representation grows exponentially with the number of

players. A similar problem arises in dynamic games, for which the extensive form

serves as the standard representation. For large games, it becomes infeasible to

store the game in memory. Computations that require time polynomial in the input

size are nevertheless impractical.

Fortunately, most large games of practical interest have highly-structured pay-

off functions, and thus it is possible to represent themcompactly, by which we

mean a representation that is exponentially smaller than its induced normal form.

Intuitively, this helps to explain why people are able to reason about these games

in the first place: we understand the payoffs in terms of simple relationships rather

than in terms of enormous lookup tables. Of course, there areany number of ways

of representing games compactly. For example, games of interest could be assigned

short ID numbers. But we ultimately want to be able to computesolution concepts

of the games, and we would like the running time of our algorithms to depend on

the size of the compact representation rather than the size of the corresponding

normal form.

Can we design representations of games that are able to compactly encode a

wide range of interesting games and are amenable to efficientcomputation? And

how do we design efficient algorithms for computing solutionconcepts in these
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compactly represented games? These are the central questions I tackle in this the-

sis.

Before discussing my contributions, I will first briefly summarize the relevant

literature; I will give a more in-depth survey in Chapter 2. One thread of recent

work in the literature has explored compact game representations (also called con-

cise or succinct representations) that are able to succinctly describe games that

exhibit certain types of structure. Examples of such representations for complete-

information simultaneous-action games include anonymousgames, graphical games

[Kearns et al., 2001], and congestion games [Rosenthal, 1973]. Examples of struc-

ture include symmetry/anonymity, strict and action-specific independence, and ad-

ditivity. However, the existing representations either only capture a subset of these

types of structure, or are only able to represent a subset of games that exhibit a

specific structure. There is a lack of a general modeling language that is fully

expressive (able to express arbitrary games) while also able to compactly encode

utility functions exhibiting commonly-encountered typesof structure.

Nash equilibrium (NE) is perhaps the most well-known and well-studied game-

theoretic solution concept. There is a line of recent results from the computational

complexity theory community on the hardness of various computational problems

regarding Nash equilibria, perhaps most prominently the series of papers [Chen and

Deng, 2006, Daskalakis et al., 2006b, Goldberg and Papadimitriou, 2006] establish-

ing the PPAD-completeness of the the problem of finding a sample mixed-strategy

Nash equilibrium in normal-form games of two or more players. I take the view

that although these hardness results are important for understanding the problems,

they do not imply that practical algorithms cannot be built.For example, there

has been great advances in the design and implementation of practical solvers for

theoretically hard problems such as SAT and integer programming. In terms of

algorithms for finding a Nash equilibrium, earlier literature from economics and

operations research focused on algorithms for the normal form [e.g., Govindan

and Wilson, 2003, van der Laan et al., 1987]. In the last decade, with more com-

pact game representations being proposed, there has been more efforts from the

computer science community on algorithms for compact representations. Such

efforts can roughly be divided into two categories, “black-box” approaches and

“special-purpose” approaches. Ablack-boxalgorithm requires certain subroutines

3



provided by the representation to work, but otherwise treats the representation as

a black box. Examples include efforts to adapt algorithms designed for the nor-

mal form to compact representations [Bhat and Leyton-Brown, 2004, Blum et al.,

2006]. The computation ofexpected utilityhas emerged as a key subtask required

by many black-box algorithms. The ability to carry out this computation efficiently

has become an important design criterion for compact representations. Fortunately,

most existing representations admit polynomial-time algorithms for expected util-

ity. The existing black-box approaches are for the problem of finding a sample

Nash equilibrium; while this problem is very important, we are often interested

in questions regarding the set of equilibria such as finding the optimal equilibrium.

On the other hand, aspecial-purposeapproach tries to exploit certain specific struc-

ture of the game, and is thus specific to the representation. Although not as general

as the black-box approach, a special-purpose approach can often identify tractable

subclasses of games while the general case is hard; furthermore it can sometimes

compute a concise description of the set of equilibria, allowing us to e.g., compute

the optimal equilibrium. Examples include algorithms for computing pure-strategy

Nash equilibria for tree graphical games [Daskalakis and Papadimitriou, 2006, Got-

tlob et al., 2005] and singleton congestion games [Ieong et al., 2005], and for com-

puting mixed-strategy Nash equilibria for symmetric games[Papadimitriou and

Roughgarden, 2005] and anonymous games [Daskalakis and Papadimitriou, 2007].

In terms of software implementations, the GAMBIT [McKelveyet al., 2006] pack-

age contains many of the existing algorithms for the normal form and the extensive

form. There is a relative lack of publicly-available implementations of algorithms

for compact representations, except for the Gametracer [Blum et al., 2002] pack-

age which provides implementations of black-box adaptations of two of Govindan

and Wilson’s algorithms [Govindan and Wilson, 2003, 2004] for finding a sample

Nash equilibrium.

In summary, although there have been many advances in the theoretical under-

standing of how certain types of structure in games can be exploited for efficient

computation, the lack of a general representation and publicly available software

implementations for structured games meant that the computational analysis of

large games has not become practical. Much of this thesis canbe understood as

my efforts to address these problems. Below I give an outlineof my contributions,
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including the design of game representations that can capture a wide variety of

computation-friendly structure, novel algorithms for computing sample equilibria

as well as optimal equilibria in compact games, and softwareimplementations of

tools for modeling and reasoning about structured games.

In Chapter 3 I present work (joint with Kevin Leyton-Brown and Navin Bhat)

regarding Action-graph games (AGGs), a compact representation of complete-information

simultaneous-action games first proposed by Bhat and Leyton-Brown [2004]. We

make several contributions that significantly extends Bhatand Leyton-Brown’s

[2004] original work. First, we extended the original definition of AGGs by in-

troducing function nodes and additive utility functions, capturing a wider vari-

ety of utility structure. The resulting AGG representationis a fully-expressive

modeling language that both extends and unifies previous approaches: it can com-

pactly express games with structure such as strict or context-specific independence,

anonymity, and additivity; it can be used to compactly encode all games that

are compact when represented as graphical games, symmetricgames, anonymous

games, congestion games, and polymatrix games, as well as additional realistic

games that would take exponential space to represent using these existing repre-

sentations. Second, we gave a polynomial-time algorithm for the important task of

computing expected utility for AGGs, which then allows us tospeed up existing

normal-form-based equilibrium-finding algorithms including Govindan and Wil-

son’s [2003] Global Newton Method and the simplicial subdivision algorithm of

van der Laan et al. [1987]. Third, we implemented and made available software

tools for constructing, visualizing, and reasoning with AGGs. We present results

of experiments showing that using AGGs leads to a dramatic increase in the size of

games accessible to computational analysis.

Pure-strategy Nash equilibrium (PSNE) is a more restrictedconcept that Nash

equilibrium, and has certain theoretically and practically attractive properties. In

Chapter 4 I present work (joint with Kevin Leyton-Brown) on computing pure-

strategy Nash equilibria for AGGs. Unlike our black-box approach in Chapter

3 for computing equilibria, here we use a special-purpose approach that exploits

the graph-theoretical properties of the action graph. In particular, we propose a

dynamic-programming algorithm that constructs equilibria of the game from equi-

libria of restricted games played on subgraphs of the actiongraph. If the game is
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symmetric and the action graph has bounded treewidth, our algorithm determines

the existence of pure-strategy Nash equilibrium in polynomial time. We also ex-

tend our approach to certain classes of asymmetric AGGs. Just as AGGs unify and

extend existing representations, our approach can be understood as a generaliza-

tion of existing special-purpose approaches for representations including singleton

congestion games [Ieong et al., 2005] and graphical games [Daskalakis and Pa-

padimitriou, 2006, Gottlob et al., 2005].

So far we have focused on representing and reasoning with simultaneous-action

games. On the other hand, many multi-agent interactions involve decisions made

sequentially over time; such situations are modeled asdynamic gamesin game the-

ory. The standard representation for dynamic games, the extensive form, is ineffi-

cient for large, structured games, while the state-of-the-art compact representation,

multi-agent influence diagrams (MAIDs), only capture strict utility independence

structure. In Chapter 5 I present work (joint with Kevin Leyton-Brown and Avi Pf-

effer), in which we propose temporal action-graph games (TAGGs), an extension

of AGGs that can compactly represent dynamic games exhibiting a wide range of

structure including anonymity or context-specific utilityindependencies. We also

show that TAGGs can be understood as indirect MAID encodingsin which many

deterministic chance nodes are introduced. We provide an efficient algorithm for

computing expected utility for TAGGs, and show both theoretically and empirically

that our approach improves significantly on MAIDs.

Games of incomplete information, or Bayesian games, are an important game-

theoretic model in which players are uncertain about the utilities of the game. De-

spite having many applications in economics, there are relatively fewer results on

the computational aspects of Bayesian games, such as compact representations and

practical algorithms for computing solution concepts likeBayes-Nash equilibria.

In Chapter 6 we extend AGGs to the incomplete-information setting and present

Bayesian action-graph games (BAGGs), a compact representation for Bayesian

games. BAGGs can represent arbitrary Bayesian games, and furthermore can com-

pactly express Bayesian games exhibiting commonly encountered types of struc-

ture including symmetry, action- and type-specific utilityindependence, and proba-

bilistic independence of type distributions. We provide analgorithm for computing

expected utility in BAGGs, and discuss conditions under which the algorithm runs
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in polynomial time. Sample Bayes-Nash equilibria of BAGGs can be computed

by adapting existing algorithms for complete-informationnormal form games and

leveraging our expected utility algorithm.

First proposed by Aumann [1974, 1987], correlated equilibrium (CE) is another

important solution concept. In a landmark paper, Papadimitriou and Roughgar-

den [2008] described a polynomial-time black-box algorithm (“Ellipsoid Against

Hope”) for computing sample correlated equilibria of concisely-represented simultaneous-

move games. Recently, Stein, Parrilo and Ozdaglar [2010] showed that this algo-

rithm can fail to find an exact correlated equilibrium, but can be easily modified

to efficiently compute approximate correlated equilibria.Currently, it remains an

open problem to determine whether the algorithm can be modified to compute an

exact correlated equilibrium. In Chapter 7 we show that it can, presenting a vari-

ant of the Ellipsoid Against Hope algorithm that guaranteesthe polynomial-time

identification of exact correlated equilibrium. Also, our algorithm is the first to

tractably compute correlated equilibria with polynomial-sized supports; such cor-

related equilibria are more natural solutions than the mixtures of product distribu-

tions produced previously, and have several advantages including requiring fewer

bits to represent, being easier to sample from, and being easier to verify.

However, since in general there can be an infinite number of correlated equilib-

ria in a game, finding an arbitrary one is of limited value. In Chapter 8 we focus

on the problem of computing a correlated equilibrium that optimizes some objec-

tive (e.g., social welfare). Papadimitriou and Roughgarden [2008] gave a sufficient

condition for the tractability of the problem, however it only applies to a subset of

existing representations. We propose a different algorithmic approach for the opti-

mal CE problem that applies toall compact representations, and give a sufficient

condition that generalizes Papadimitriou and Roughgarden’s condition. In partic-

ular, we reduce the optimal CE problem to thedeviation-adjusted social welfare

problem, a combinatorial optimization problem closely related to the optimal social

welfare outcome problem. Our algorithm can be understood asan instance of the

black-box approach, with the computation of the deviated social welfare problem

as the key subroutine provided by the game representation. This framework allows

us to identify new classes of games for which the optimal CE problem is tractable,

including graphical polymatrix games on tree graphs. We also study the problem

7



of computing the optimalcoarse correlated equilibrium, a solution concept closely

related to CE. Using a similar approach we derive a sufficientcondition for this

problem, and use it to prove that the problem is tractable forsingleton congestion

games.

In Appendix A I describe software packages we implemented and made avail-

able athttp://agg.cs.ubc.ca.

Taken together, this thesis presents several basic components of an algorithmic

framework for computational analysis of large games: compact representations

for complete-information and incomplete-information simultaneous-action games

as well as dynamic games, a collection of implemented algorithms for comput-

ing sample Nash and correlated equilibria given such games,and some theoretical

foundations for computing PSNE and optimal correlated equilibria. These are parts

of a larger ongoing effort by our research group, that aims toapply computational

game-theoretic analysis to real-world systems, especially the design and analysis

of market mechanisms such as auctions. Suchmechanism designproblems have

traditionally been attacked via purely analytical means, but computational analysis

allows us to tackle settings for which theoretical analysisis difficult or impossi-

ble. Position auctions for advertising slots, such as the Generalized Second-Price

auction used by Google AdWords, have received much recent interest from com-

puter scientists and economists. Thompson and Leyton-Brown [2009] were able

to use AGGs to compactly represent complete-information position auctions and

compute their Nash equilibria, which allows them to analyzethe economic prop-

erties of such auctions such as revenue and efficiency. Building on their work, I

am currently working with David and Kevin to extend this analysis to incomplete-

information models of position auctions using BAGGs.

Finally, I mention a couple of papers on related topics that Ico-authored but do

not include in this thesis. In [Jiang and Safari, 2010], Mohammad Ali Safari and I

analyzed the problem of deciding the existence of pure-strategy Nash equilibria for

graphical games on restricted classes of graphs, and showedthat the problem is in

polynomial time if and only if the class of graphs has boundedtreewidth (after iter-

ated removal of sinks). We proved our result by applying Grohe’s characterization

of the complexity of homomorphism problems. This result illustrated a limitation

of a class of graph-based special-purpose approaches that includes the algorithm
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of Chapter 4, that it cannot be extended much beyond bounded-treewidth graphs.

It influenced my later focus on more general approaches such as those in Chap-

ters 7 and 8. In [Ryan et al., 2010], Chris Ryan, Kevin Leyton-Brown and I ana-

lyzed the problem of computing pure-strategy Nash equilibria in symmetric games

whose utilities are compactly represented, such that the number of players can be

exponential in the representation size. We showed that if the utility functions are

represented as piecewise-linear functions, there exist polynomial-time algorithms

for finding a pure-strategy Nash equilibria and count the number of equilibria. Our

approach made use of the rational generating function method developed by Barvi-

nok and Woods. I do not include these papers here because theydo not fit in with

the focus of the thesis.
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Chapter 2

A Brief Survey on the

Computation of Solution

Concepts

In this chapter we give a brief survey on the economics and computer science lit-

erature on the computation of game-theoretic solution concepts, focusing on Nash

equilibrium and correlated equilibrium. There have been several surveys on various

aspects of this topic: von Stengel [2002] focused on two-player games; McKelvey

and McLennan [1996] focused on algorithms for the normal form; Papadimitriou

[2007] focused on complexity results. In this survey we giveemphasis to topics

most relevant to this thesis, i.e., results that are relevant to large, structured games.

The goal of this chapter is to present a bird’s-eye view of thestate of the art. We

will largely follow the narrative outlined in Chapter 1. In Section 2.1 we look at

representations of games and the types of structure they capture. In Section 2.2

we look at algorithmic and complexity-theoretic results, with emphasis on algo-

rithms for compact representations. In Section 2.3 we survey software packages

for game-theoretic modeling and computation.
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2.1 Representations of Games

A game is a mathematical model of interaction among self-interested agents. Infor-

mally, to specify a game we need to specify a set of agents (also known as players),

a set ofstrategiesfor each agent, and autility function for each agent that assigns a

utility value (also known as payoff) to each outcome of the game. Such models can

be further divided into complete-information static games, incomplete-information

static games and dynamic games.

A game representationis a data structure that stores all information needed to

specify a game. Aninstanceof a representation is a game encoded in that repre-

sentation. Thus it is often useful to think of a game representation as aclass(or

type) in the language of object-oriented software engineering,and an instance of

a representation as anobject in that class. Then thesizeof a representation is the

amount of data required to specify a game instance (i.e., initialize an object) of that

representation.

In this section we survey the existing literature on representing games. Section

2.1.1 focuses on representing complete-information static games; Section 2.1.2

focuses on representing dynamic games; Section 2.1.3 focuses on representing

incomplete-information games.

2.1.1 Representing Complete-information Static Games

In static games, also known as simultaneous-move games, each agent chooses a

strategy simultaneously (e.g., Rock-Paper-Scissors). Bycomplete-informationwe

mean that each agent knows the utility functions of all agents.

Definition 2.1.1. Acomplete-information static gameis a tuple(N,{Ai}i∈N,{ui}i∈N)

where

• N = {1, . . . ,n} is the set of agents;

• for each agent i, Ai is the nonempty set of i’s actions (or pure strategies). We

denote by ai ∈ Ai one of agent i’s actions. An action profile (or pure-strategy

profile) a= (α1, . . . ,αn) ∈ ∏i∈N Ai is a tuple of actions of the n agents. We

also denote by a−i the(n−1)-tuple of actions by agents other than i under
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the action profile a.1

• ui : ∏ j∈N A j → R is i’s utility function, which specifies i’s utility given any

action profile.

A game representation isfully expressiveif it can represent arbitrary games.

We say a game representation haspolynomial type[Daskalakis et al., 2006a] if

the number of players and the number of actions for each player are bounded by

polynomials of the representation size. For example, if theset of players and the

sets of actions are encoded explicitly, then the representation has polynomial type.

This is the case for all representations of static games discussed in this section.

Normal Form

A normal form representation of a game uses a multi-dimensional matrixUi ∈

R∏ j∈N A j to represent each utility functionui . The size of this representation is

approximatelyn∏ j∈N |A j |, which isO(nmn) wherem= maxi∈N |Ai |. Two-player

normal-form games are also called bimatrix games, since theutility functions of

such a game can be specified by twoA1×A2 matrices.

Although these games are fully expressive, the size of the representation grows

exponentially in the number of players. As a result, the normal form is unsuitable

for representing large systems. Although several computational tasks such as find-

ing pure Nash equilibria and computing expected payoff under mixed strategies are

polynomial-time in the size of the normal form representation, they are intractable

for large games because the representation size itself is exponential.

Graphical Games

Fortunately, most real-world large games have structure that allows them to be

represented compactly. A popular compact representation of games isgraphical

games, proposed by Kearns et al. [2001]. A game is associated with agraph whose

1While in complete-information static games the concepts ofactions and pure strategies coincide,
we will see that this is no longer the case for incomplete-information games and dynamic games.
For the cases when pure strategies are distinct from actions, we denote pure strategies bysi ∈ Si and
pure-strategy profiles bys∈ S. For complete-information static games, both thea-based notation
and thes-based notation are commonly used in the literature to denote pure strategies/actions [e.g.,
Fudenberg and Tirole, 1991, Shoham and Leyton-Brown, 2009].
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nodes correspond to the players of the game and edges correspond to payoff influ-

ence between players. In other words, each player’s payoffsdepend only on his

actions and those of his neighbors in the graph. We call this kind of structurestrict

utility independence.

Definition 2.1.2. A graphical gameis a tuple(G,{Ui}i∈N) where

• G= (N,E) is a directed graph,2 with the set of vertices corresponding to the

set of agents. E is a set of ordered tuples corresponding to the arcs of the

graph, i.e.(i, j) ∈ E means there is an arc from i to j. Vertex j is aneighbor

of i if ( j, i) ∈ E.

• for each i∈ N, a local utility function Ui : ∏ j∈ν(i)A j → R whereν(i) =
{i}∪{ j ∈ N|( j, i) ∈ E} is theneighborhoodof i.

Each local utility functionUi is represented as a matrix of size∏ j∈ν(i) |A j |.

Since the size of the local utility functions dominates the size of the graphG, the

total size of the representation isO(nm(I+1)) whereI is the maximum in-degree

of G.

A graphical game(G,{Ui}) specifies a game(N,{Ai},{ui}) where eachAi is

specified by the domain of agenti in Ui, and for all i ∈ N and all action profiles

a we haveui(s) ≡ Ui(aν(i)), whereaν(i) = (a j) j∈ν(i). Graphical games are fully

expressive: an arbitrary game can be represented as a graphical game on a complete

graph.

Symmetric Games and Anonymous Games

A game issymmetricwhen all players are identical and interchangeable. Formally,

a game is symmetric if each player has an identical set of actions and for all per-

mutation of playersπ : {1, . . . ,n} → {1, . . . ,n},

ui(a1, . . . ,an) = uπ(i)(aπ(1), . . . ,aπ(n)).

2Kearns et al. [2001] originally defined graphical games on undirected graphs, while some later
authors [e.g., Daskalakis and Papadimitriou, 2006, Gottlob et al., 2005] used the directed graph
version given here. A undirected graphical game is equivalent to a directed graphical game in which
each edge{i, j} from the undirected graph is replaced by two directed edges(i, j) and( j , i). Thus
the directed graph version is more general.
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Symmetric games have been studied since the beginning of noncooperative game

theory. For example, Nash proved that symmetric games always have symmetric

mixed Nash equilibria [Nash, 1951]. In a symmetric game, a player’s utility de-

pends only on the player’s chosen action and theconfiguration, which is the vector

of integers specifying the numbers of players choosing eachof the actions. We say

such a utility function exhibitsanonymity. As a result, symmetric games can be rep-

resented more compactly than the normal form: we only need tospecify a utility

value for each action and each configuration. For a symmetricgame withn players

andm actions per player, the number of configurations is
(n+m−1

m−1

)

. For fixedm,

this grows likenm−1, in which caseΘ(nm−1) numbers are required to specify the

game.

A straightforward generalization of symmetric games isk-symmetric games,

in which there arek equivalence classes of players. Nash’s [1951] result applies

to a very general notion of symmetry: roughly, if a game is invariant under a per-

mutation group, then there exists a Nash equilibrium strategy profile that is invari-

ant under the same group. Specialized tok-symmetric games, it implies that they

always havek-symmetric Nash equilibria, where strategies within each class are

identical. Any game is ak-symmetric game withk = n. On the other hand, when

k is small compared ton, k-symmetric games can be compactly represented by

specifying utilities for eachk-configuration, where ak-configuration is a tuple ofk

configurations, one for each equivalence class.

There has also been research [e.g., Brandt et al., 2009, Daskalakis and Papadim-

itriou, 2007] on a generalization of symmetric games calledanonymous games, in

which a given player’s utility depends on his identity as well as the action cho-

sen and the configuration. Anonymous games can be compactly represented in a

similar manner, requiringΘ(nm) numbers for fixedm.

Polymatrix Games

Polymatrix games are a class of games in which each player’s utility is the sum of

utilities resulting from her bilateral interactions with each of then−1 other players.

This can be represented by specifying for each pair of players i and j a bimatrix

game (two-player normal form game) with sets of actionsAi andA j .
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When a utility function can be expressed as a sum of other functions, as in

polymatrix games, we say it exhibitsadditivestructure.

Congestion Games

A congestion game [Rosenthal, 1973] is a tuple(N,M,(Ai)i∈N,(K jk) j∈M,k≤n), where

N = {1, . . . ,n} is the set of players,M = {1, . . . ,m} is a set of facilities (or re-

sources);Ai is player i’s set of actions; each actionai ∈ Ai is a subset of the fa-

cilities: ai ⊂ M. K jk is the cost of using facilityj when a total ofk players have

chosen actions that include facilityj. For notational convenience we also define

K j(k) ≡ K jk. Let #( j,a) be the number of players that chose facilityj given the

action profilea. The total cost (or disutility) of playeri under pure strategy profile

a= (ai ,a−i) is the sum of the costs on each of the facilities inai ,

Costi(ai ,a−i) =−ui(ai ,a−i) = ∑
j∈ai

K j(#( j,a)). (2.1.1)

Only nmnumbers are needed to specify the costs(K jk) j∈M,k≤n. The represen-

tation also needs to specify the∑i∈N |Ai| actions, each of which is a subset ofM. If

we use anm-bit binary string to represent each of these subsets, the total size of the

congestion game representation isO(mn+m∑i∈N |Ai|).

From the above definition we can see that congestion games exhibit a specific

combination of anonymity and additive structure, plus a type of utility indepen-

dence which we callcontext-specific independence (CSI). This means that the in-

dependence structure of playeri’s utility function (i.e., which subset of players that

affect playeri’s utility) changes depending on thecontext, which is a certain feature

of the players’ strategies (in this case the facilities included ini’s chosen action).

This is a more general type of independence structure than the strict independen-

cies captured by graphical games. On the other hand, congestion games are not

fully expressive.

Local Effect Games

Local Effect Games (LEGs), proposed by Leyton-Brown and Tennenholtz [2003],

were the first graphical representation of games that focused on actions. In an LEG,
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we have a graph whose nodes correspond to the actions of the game. Each player

can choose any one of the nodes. Define configuration as in symmetric games, and

let the configuration over nodek, denotedc(k), be the number of players choosing

nodek. There is a node functionUk associated with each nodek which maps the

configuration of nodek to a real number. There is an edge functionUk,m associated

with each edge(k,m) of the graph, which maps the configuration over nodesk and

m to a real number. The utility of a playeri choosing nodek is the sum of the node

functionUk and all incoming edge functions, evaluated at the current configuration

c:

Uk(c(k))+ ∑
m∈ν(k)

Um,k(c(m),c(k)).

Like congestion games, LEGs also exhibit a combination of anonymity, additivity

and context-specific independence structure. In this case the context for player

i’s utility independence is theaction chosen byi. We call such structure action-

specific independence. Unfortunately, like congestion games, LEGs are also not

fully expressive.

Action-Graph Games

We have seen representations that capture various types of structure such as strict

and context-specific independence, anonymity, and additivity. However, the exist-

ing representations either only capture a subset of these types of structure (graph-

ical games, symmetric/anonymous games, polymatrix games), or are only able to

represent a subset of games (symmetric/anonymous games, polymatrix games, con-

gestion games, local-effect games).

Action-graph games (AGGs), proposed by Bhat and Leyton-Brown [2004] and

extended by Jiang et al. [2011], are a compact representation of simultaneous-move

games that extends and unifies these previous approaches. AGGs are fully expres-

sive (able to represent arbitrary games), can compactly express games whose util-

ity functions exhibit action-specific independence, anonymity or additivity, and fur-

thermore have nice computational properties. Chapter 3 gives a detailed discussion

of AGGs.
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2.1.2 Representing Dynamic Games

In dynamic games, agents move sequentially. When agents are able to perfectly ob-

serve all moves, dynamic games are said to exhibitperfect information; otherwise,

dynamic games exhibitimperfect information.

The standard representation for dynamic games is theextensive form, which is

a tree whose edges represent moves of players. Thus each nodeof the tree corre-

sponds to a unique sequence of moves. Utilities for all players are specified for

each leaf of the tree. Each internal node is assigned to a player, who can choose

among the edges below that node. Imperfect information is specified usinginfor-

mation sets: each player’s set of internal nodes is partitioned into information sets,

and a player is unable to distinguish nodes in any of his information sets. Random-

ness in the environment can be represented as nodes for the Nature (also known

as Chance) player, who randomizes over his actions according to some fixed distri-

bution. See e.g., [Shoham and Leyton-Brown, 2009] for a formal definition of the

extensive form.

Each extensive-form game can be transformed to aninduced normal form,

where each pure strategy of a player prescribes an action foreach of her infor-

mation sets. The number of pure strategies can be exponential in the size of the

extensive form, so transforming to the induced normal form entails an exponential

blowup in representation size. In this sense the extensive form can be seen as a

compact representation of dynamic games. However, this representation requires

us to specify utilities for every possible sequence of moves; when the game exhibits

more structure than this, a more compact representation is needed.

For imperfect-information dynamic games, the most influential compact rep-

resentation is multiagent influence diagrams (MAIDs) [Koller and Milch, 2003],

which generalize single-agent influence diagrams to multiple agents. A MAID is

represented as a directed graph, consisting of decision nodes, chance nodes and util-

ity nodes. Each chance node corresponds to a random variable, with its domain and

its probability distribution conditioned on its parents (nodes with incoming edges)

specified by input. Each decision node represents a decision(over a finite number

of choices) taken by some player, given her observations which are the instantiated

values of the decision node’s parents. Each utility node represents the payoff to
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some player, as a function of the instantiated values of the node’s parents. MAIDs

are compact when players’ utility functions exhibit strictindependencies, but are

unable to compactly represent utility functions with anonymity or action-specific

independencies.

In Chapter 5 we discuss temporal action-graph games (TAGGs), which are a

generalization of AGGs to the dynamic setting, and are able to compactly represent

dynamic games with anonymity or context-specific utility independencies.

2.1.3 Representing Games of Incomplete Information

In many multi-agent situations, players are uncertain about the game being played.

Harsanyi [1967] proposed games of incomplete information (or Bayesian games)

as a mathematical model of such interactions.

Definition 2.1.3. A Bayesian game is a tuple(N,{Ai}i∈N,Θ,P,{ui}i∈N) where N=

{1, . . . ,n} is the set of players; each Ai is player i’s action set, and A= ∏i Ai is the

set of action profiles;Θ = ∏i Θi is the set of type profiles, whereΘi is player i’s

set of types; P: Θ → R is the type distribution and ui : A×Θ → R is the utility

function for player i.

As in the complete-information case, we denote byai an element ofAi, and

a= (a1, . . . ,an) an action profile. Furthermore we denote byθi an element ofΘi ,

and byθ a type profile.

The game is played as follows. A type profileθ = (θ1, . . . ,θn) ∈ Θ is drawn

according to the distributionP. Each playeri observes her typeθi and, based on

this observation, chooses from her set of actionsAi . Each playeri’s utility is then

given byui(a,θ), wherea is the resulting action profile. Intuitively playeri’s type

represents her private information about the game.

Bayesian games can be encoded as dynamic games with an initial move by

Nature. Thus dynamic game representations such as the extensive form can be

used to represent Bayesian games. This is also why we do not discuss dynamic

games of incomplete information here, as they can also be encoded using existing

dynamic game representations. However, incomplete-information static games do

have independent interest apart from their dynamic game interpretation, as they are

more similar to complete-information static games than to dynamic games.
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In specifying a Bayesian game, the space bottlenecks are thetype distribution

and the utility functions. Without additional structure, we cannot do better than

representing each utility functionui : A×Θ→ Ras a table and the type distribution

as a table as well. We call this representation theBayesian normal form. The size

of this representation isn×∏n
i=1(|Θi |× |Ai|)+∏n

i=1 |Θi |.

A Bayesian game can be converted to itsinduced normal form, which is a

complete-information game with the same set ofn players, in which each player’s

set of actions is her set of pure strategies in the Bayesian game. Each player’s

utility under an action profile is defined to be equal to the player’s expected utility

under the corresponding pure strategy profile in the Bayesian game. Alternatively,

a Bayesian game can be transformed to itsagent form, where each type of each

player in the Bayesian game is turned into one player in a complete-information

game. The sizes of the normal forms for the two complete-information interpreta-

tions are both exponential in the size of the Bayesian normalform.

Singh et al. [2004] proposed a incomplete information version of the graphi-

cal game representation. Gottlob et al. [2007] considered asimilar extension of

the graphical game representation. Like graphical games, such representations are

limited in that they can only exploitstrict utility independencies.

In Chapter 6 we discuss Bayesian Action-Graph Games (BAGGs), a fully-

expressive compact representation for Bayesian games thatcan compactly express

Bayesian games exhibiting commonly encountered types of structure including

symmetry, action- and type-specific utility independence,and probabilistic inde-

pendence of type distributions.

2.2 Computation of Game-theoretic Solution Concepts

Being able to compactly represent structured games is necessary, but often not suf-

ficient for our purposes. We would like to efficiently reason about these games, by

computing game-theoretic solution concepts such as Nash equilibrium and corre-

lated equilibrium.
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2.2.1 Computing Sample Nash Equilibria for Normal-Form Games

In this subsection, we survey the literature on computing Nash equilibria in games

represented in normal form. We start with the definition of Nash equilibrium and

some theoretical results on the complexity of finding a sample Nash equilibrium,

then look at existing algorithms, focusing on approaches for games with more

than two players. In summary, the problem of computing one Nash equilibrium

is PPAD-complete: polynomial time algorithms are unlikelyto exist. Unsurpris-

ingly, existing approaches all require exponential time inthe size of the normal

form.

In a simultaneous-move game, a playeri plays apure strategywhen she deter-

ministically chooses an action from her action setAi. She can also randomize over

her actions, in which case we say that she plays amixed strategy. Formally, let

ϕ(X) denote the set of all probability distributions over a setX. Define the set of

mixed strategies fori asΣi ≡ ϕ(Ai); then a mixed strategyσi ∈ Σi is a probability

distribution overAi. Define the set of all mixed strategy profiles asΣ ≡ ∏i∈N Σi;

then a mixed strategy profileσ ∈ Σ is a tuple of then players’ mixed strategies.

The expected utility(also known as expected payoff) of playeri under the mixed

strategy profileσ , denote byui(σ), is

ui(σ) = ∑
a∈A

ui(a)∏
j∈N

σ j(ai), (2.2.1)

whereσi(ai) denotes the probability thati playsai . Thesupportof a mixed strategy

σ j is the set of actions with positive probability under the distribution σ j . A support

profile is a tuple of all players’ supports. Givenσ−i, a tuple of mixed strategies of

players other thani, we define the best response set ofi to be the set ofi’s mixed

strategies that maximize her expected utility:

BRi(σ−i) = argmax
σi

ui(σi ,σ−i)

Given σ−i, the expected utility ofi playing mixed strategyσi is a convex combi-

nation of the expected utilities of playing pure strategiesin Ai, so at least one of

the pure strategies must be a best response. Thus to check whether σi is a best

response, we just need to compare its expected utility against the expected utilities
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of playing each ofi’s pure strategies.

One of the central solution concepts in game theory is Nash equilibrium.

Definition 2.2.1(Nash Equilibrium). A mixed strategy profileσ is a Nash equilib-

rium if for all i ∈ N, σi ∈ BRi(σ−i).

Intuitively, a Nash equilibrium is strategically stable: no player can profit by

unilaterally deviating from her current mixed strategy. From the above discussion

on best response, an equivalent condition for Nash equilibrium is that for alli ∈ N,

for all ai ∈Ai, ui(σ)≥ ui(ai ,σ−i), where by a slight abuse of notation, we denote by

(ai ,σ−i) the mixed strategy profile wherei plays pure strategyai and other players

play according toσ .

One of the most famous results in game theory is Nash’s proof that any finite

game always has a Nash equilibrium [Nash, 1951]. For a tutorial on Nash’s proof

(as well as a derivation of Brouwer’s fixed-point theorem, which is used by his

proof), see [Jiang and Leyton-Brown, 2007b].

Although a Nash equilibrium always exists, the existence proofs do not give an

efficient algorithm for finding one. The central computational problem we consider

here is the problem of finding asample Nash equilibrium:

Problem 2.2.2(NASH). Given a game represented in normal form, find one Nash

equilibrium.

McKelvey and McLennan [1996] showed that this problem can beformulated

as instances of other of computational problems, e.g.,

• finding a fixed point of a continuous function;

• finding a global minimum of a continuous function;

• solving a system of polynomial equations and inequalities.

A frequently-used notion of approximation for Nash equilibrium is the so-

calledε-Nash equilibrium:

Definition 2.2.3 (ε-Nash Equilibrium). A mixed strategy profileσ is an ε-Nash

equilibrium for someε ≥ 0 if for all i ∈ N, for all ai ∈ Ai , ui(σ)+ ε ≥ ui(ai ,σ−i).

Intuitively, each player cannot gain more thanε by deviating from her mixed

strategy. Whenε = 0, we recover Nash equilibrium.
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Complexity

The NASH problem is different from decision problems studied in complexity the-

ory (e.g. SAT), which have a yes/no answer. Since a Nash equilibrium always

exists, the decision problem asking about the existence of Nash equilibrium can be

solved by a trivial algorithm that always returns “yes”. Instead, we are interested

in finding a Nash equilibrium. This is an example of afunction problem, which re-

quires more complex answers than yes/no. Because we can check whether a given

mixed strategy profile is a Nash equilibrium by computing expected utilities, the

NASH problem is in FNP, the function problem version of NP. Infact it belongs to

TFNP, the class of FNP problems whose solutions are guaranteed to exist.

Another issue is that a Nash equilibrium for a game of more that two players

may require irrational numbers in the probabilities, even if the game itself involves

only rational payoffs. It is impossible to represent such a solution exactly using

floating point numbers. Instead, in such cases we look for algorithms that given

a game and an error toleranceε represented in binary, computes anε-Nash equi-

librium. As always, we evaluate complexity as a function of the input size, which

here includesε .

A recent series of papers [Chen and Deng, 2006, Daskalakis etal., 2006b,

Goldberg and Papadimitriou, 2006] established that the NASH problem is PPAD-

complete for normal form games, even if the game has only two players. The

complexity class PPAD, introduced by Papadimitriou [1994], stands for Polyno-

mial Parity Argument (Directed version). It is the class of TFNP problems whose

solutions are guaranteed by a parity argument. It is widely believed that PPAD-

complete problems are unlikely to be in P [e.g., Papdimitriou, 2007].

Although any Nash equilibrium is close to anε-Nash equilibrium (in the space

of mixed strategy profiles), a givenε-Nash equilibrium may be arbitrarily far from

any Nash equilibrium of the game. Etessami and Yannakakis [2007] studied the

complexity of the problem of finding anε-Nash equilibrium close to some exact

Nash equilibrium. They showed that the problem is at least ashard as the square-

root sum problem, which is not known even to belong to NP.
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Algorithms for Two-Player Games

A two-player game iszero-sumif for all action profilesa, we haveu1(a)+u2(a) =

0. For zero-sum games, Nash equilibria can be computed in polynomial time by

linear programming (see, e.g., [Shoham and Leyton-Brown, 2009, von Neumann

and Morgenstern, 1944]).

For general two-player games, the NASH problem can be formulated as a

linear complementarity problem (LCP). The canonical method for solving such

games is the Lemke-Howson Algorithm [Lemke and Howson, 1964]. Sets of la-

bels are assigned to mixed-strategy profiles and Nash equilibria are characterized

as “completely-labeled” mixed-strategy profiles. The algorithm uses pivoting tech-

niques that are similar to the Simplex Algorithm to trace a path that ends at a

completely-labeled point (i.e., Nash equilibrium). It is guaranteed to find a Nash

equilibrium but in the worst case may require exponential time [Savani and von

Stengel, 2004]. Lemke’s algorithm [Lemke, 1965] is a related method that uses

similar pivoting techniques.

Lipton et al. [2003] used the probabilistic method to show that for any two-

player game, there always exists anε-equilibrium with log-sized support. Their

result implies a quasi-polynomial algorithm for finding anε-equilibrium.

Another interesting property of two-player games is that ifboth of the payoff

matrices have small rank (sayk), then there exists a Nash equilibrium with small

(sizek) support. Such a Nash equilibrium can be found efficiently bygoing through

the small-sized support profiles. This was discussed by Lipton et al. [2003], but

they mentioned that the result was known earlier.

For bimatrix games whose entry-wise sum of the two matrices have small rank,

Kannan and Theobald [2009] proposed a polynomial time algorithm for finding

approximate Nash equilibria. More recently, Adsul et al. [2011] showed that if the

rank of the sum of the two matrices is 1, a Nash equilibrium canbe computed in

polynomial time.

Fictitious Play

We now focus on algorithms forn-player games, wheren> 2. We start with Fic-

titious Play [e.g., Brown, 1951, Shoham and Leyton-Brown, 2009], well-known
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in the study of learning in games but can also be used as an algorithm for finding

Nash equilibria. It is an iterative process; at each step, each playeri plays a best

response assuming each of the other playersj chooses a mixed strategy correspond-

ing to the empirical distribution ofj ’s past actions. For certain classes of games

(e.g., zero-sum games and potential games) the empirical distribution of this pro-

cess converges to a Nash equilibrium. However it is not guaranteed to converge for

all games, hence it is only a heuristic for general games.

Simplicial Subdivision

One influential class of algorithms for computing Nash equilibria inn-player games

aresimplicial subdivisionalgorithms, which are based on Scarf’s algorithm [1967].

A modern version is due to van der Laan, Talman & van der Heyden[1987]. In a

high level, the algorithm does the following:

1. The space of mixed strategy profilesΣ = ∏i Σi is partitioned into a set of

subsimplexes.

2. We assign labels to vertices of the subsimplexes, in a way such that a “com-

pletely labeled” subsimplex corresponds to an approximateNash equilib-

rium.

3. The algorithm follows a path of “almost completely labeled” subsimplexes,

and eventually reaches a “completely labeled” subsimplex.

4. The approximate equilibrium is refined by restarting the algorithm near the

approximate equilibrium, but using a finer grid.

It can be proven (using Sperner’s Lemma) that the algorithm will always find

anε-equilibrium for any givenε . However the running time is exponential. In par-

ticular, the path could go through an exponential number of subsimplexes. Within

each step of the path, one of the computational bottlenecks is computation of labels

of the subsimplex. The computation of labels in turn dependson computation of

expected utilities under mixed strategy profiles.
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Function Minimization

McKelvey and McLennan [1996] discussed formulating Nash equilibria as solu-

tions of a function minimization problem. Given mixed strategy profile σ , let

gi j (σ) be the amount playeri could gain by deviating to actionj (and 0 if j is

worse). A Nash equilibrium then corresponds to a global minimum of the function

v(σ) = ∑
i

∑
j

[gi j (σ)]2,

subject toσ being a mixed strategy profile.

Note that the global minimum ofv(σ) is always 0, due to the existence of

Nash equilibria. Standard function minimization techniques can then be applied.

In order to find a global minimum, a good starting point is essential. According

to McKelvey and McLennan [1996], this approach is “generally slower than other

methods”.

Homotopy Methods and the Global Newton Method

At a high level, a homotopy method starts with a game that has asimple solu-

tion, then continuously deforms the payoffs of the game, until it ends at the orig-

inal game of interest. Meanwhile, the method traces the pathof Nash equilibria

for these games, starting at a Nash equilibrium of the simplegame and ending

at a Nash equilibrium of the game of interest. Several homotopy methods for

computing Nash equilibria have been proposed (a recent survey is [Herings and

Peeters, 2009]). One such approach is Govindan and Wilson’s[2003] global New-

ton method (also known as continuation method [e.g., Blum etal., 2006]), which

can be thought of as a generalization of the Lemke-Howson algorithm to then-

player case. It starts at a deformed game where one action perplayer is given a

large bonus, such that there exists a unique equilibrium. Ateach iteration, it com-

putes the direction of next step by following a gradient. Since the path is nonlinear,

the algorithm needs to periodically correct accumulated error using a local Newton

method.

One implementation of the algorithm is available in GameTracer [Blum et al.,

2002]. The bottleneck of each iteration is the computation of the so-called payoff
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Jacobian matrix given a mixed strategy profile. Entries of the Jacobian correspond

to the expected utility of playeri when i plays actiona, player i′ plays actiona′,

and all other players play according to the given mixed strategy profile.

Iterated Polymatrix Approximation

Iterated Polymatrix Approximation is another algorithm proposed by Govindan

and Wilson [2004]. At a high level, the algorithm can be summarized as follows.

1. Start at some strategy profileσ0.

2. Consider the problem linearized atσ0: we get a polymatrix game, which (as

we will see in Section 2.2.2) can be solved using a variant of the the Lemke-

Howson algorithm, to find equilibriumσ1. The payoffs of the polymatrix

game correspond to entries of the payoff Jacobian.

3. Repeat with starting pointσ1.

If this process converges, it converges to a Nash equilibrium. However the algo-

rithm is not guaranteed to converge. Thus, like fictitious play, this belongs to the

category of heuristics. In cases of non-convergence, the authors propose using the

result of the algorithm as a starting point for the Govindan-Wilson global Newton

method.

Support Enumeration

Porter et al. [2008] proposed an algorithm that finds Nash equilibria by searching

through support profiles. The algorithm can be summarized asfollows.

1. Enumerate all support profiles, starting with small support sizes

2. Given a support profile, determine whether there exists a Nash equilibrium

having that support profile.

• For 2-player games, this involves solving a linear feasibility program.
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• Forn-player games, this involves solving a system of polynomialequa-

tions and inequalities3 of degreen−1.

3. Stop when one equilibrium is found.

Since the number of possible support profiles is exponentialin the size of the

normal form, and forn-player games step 2 requires exponential time, the above

algorithm has exponential worst-case complexity. Nevertheless, the motivation

behind the algorithm is the observation that many games havesmall-support Nash

equilibria. When such equilibria exist, the algorithm can quickly find them.

Another effective speedup Porter et al.’s algorithm employs is to prune off

support profiles by eliminating dominated strategies conditioned on the current

support profile.

2.2.2 Computing Sample Nash Equilibria for Compact
Representations of Static Games

So far we have focused on the NASH problem for normal form games. In this

section we give an overview of literature on the computationof Nash equilibria

under compact representations. Overall, we will see that (1) for many representa-

tions the NASH problem is in PPAD, and is PPAD-complete for fully-expressive

representations, and (2) algorithms for the NASH problem can roughly be divided

into two categories, “black-box” approaches which treat the representation as a

black box, and “special-purpose” approaches which are representation-specific al-

gorithms that exploit the structure of the representation such as symmetry and

graph-theoretic properties.

3One may wonder why not just solve the system of polynomial equations and inequalities charac-
terizing the Nash equilibria of the game (see Section 2.2.1). There are two reasons one might prefer
to solve the support-profile-specific system here: (1) for small support profiles, the resulting systems
are much smaller; (2) it is known that for generic games, the solution set of a support-profile-specific
system minus all the inequality constraints has dimension zero, i.e., it consists of isolated points.
This means one method for solving this system is to solve the system minus all the inequality con-
straints (which is a system of polynomial equations), then check the solutions against the inequality
constraints. Compared to the problem of solving systems of polynomial equations and inequalities,
a wider variety of algorithms are available for solving polynomial equations, including ones based
on (complex) algebraic geometry such as Groebner basis methods and polynomial homotopy contin-
uation methods.
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Complexity

Fully-expressive game representations such as graphical games and AGGs can en-

code arbitrary normal form games. Therefore finding Nash equilibria for these

representations is PPAD-hard. In other words, polynomial time algorithms are un-

likely to exist.

On the other hand, Daskalakis et al. [2006a] proved the following result:

Theorem 2.2.4([Daskalakis et al., 2006a]). If a game representation satisfies the

following properties: (1) the representation haspolynomial type(defined in Sec-

tion 2.1.1), and (2) expected utility can be computed using an arithmetic binary

circuit with polynomial length, with nodes evaluating to constant values or per-

forming addition, substraction, or multiplication on their inputs, then the NASH

problem for this representation can be polynomially reduced to the NASH problem

for some two-player, normal-form game.

Since the NASH problem is in PPAD for two-player, normal-form games, the

theorem implies that if the above properties hold, the NASH problem for such

a compact game representation is in PPAD. Many of the existing representations

satisfy these conditions. This is a positive result: since the NASH problems for

such a compact representation reduces to NASH for a two-player game with size

polynomial in the size of the compact representation, solving such a two-player

game can be much easier than solving the normal form of the original game.

The above result suggests that the computation of expected utility is of funda-

mental importance for the NASH problem. Another example of its importance is

the observation that if we can compute expected utilities, we can verify a solution

of the NASH problem. We will see more useful applications of expected utility

computation throughout this survey.

Speeding up Existing Algorithms and the Black-box Approach

Quite a few of the existing algorithms for finding Nash equilibria of normal form

games use computation of expected utility as a subroutine. Examples include

Govindan and Wilson’s Global Newton Method and Iterated Polymatrix Approxi-

mation, as well as the simplicial subdivision algorithm.
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For many compact representations (including all compact representations in-

troduced in Section 2.1.1), there exist efficient algorithms for computing expected

utility that scale polynomially in the representation size[e.g., Papadimitriou and

Roughgarden, 2008]. Using these methods instead of normal-form-based methods

for the expected utility subroutine, we can achieve exponential speedup of these

existing Nash equilibrium algorithms without introducingany change in the algo-

rithms’ behavior or output. Blum et al. [2006] were the first to propose such an

approach, speeding up Govindan and Wilson’s algorithms [2003, 2004] for graphi-

cal games and MAIDs. In Chapter 3 we discuss our work on speeding up Govindan

and Wilson’s Global Newton Method and the simplicial subdivision algorithm for

AGGs.

From a software-engineering point of view, such algorithmshave a nice modu-

lar structure: an algorithm calls certain subroutines provided by the representation

that access information about the game, but is otherwise unaware of the internal

structure of the representation. At the same time, the representation-specific sub-

routines do not need to know about the details of the calling algorithm. We call

such algorithmsblack-boxalgorithms.

Another example of the black-box approach is the very recentadaptation of

the support-enumeration approach to AGGs and graphical games [Thompson et al.,

2011]. Here there are several required subroutines; one is the formulation of the

polynomial system given a support profile. The polynomial system contains expres-

sions for expected utilities, the construction of which canbe thought of as symbolic

computation of expected utilities. Many techniques for theexpected utility prob-

lem in compact games translate to the symbolic problem. Another subroutine is

the elimination of dominated strategies conditioned on a support profile.

The black-box approach is not limited to the problem of computing a sample

Nash equilibrium. For example, in Section 2.2.7 we look at Papadimitriou and

Roughgarden’s [2008] algorithm for the problem of computing a correlated equi-

librium, which requires a polynomial-time expected utility subroutine. This is also

an example of a black-box algorithm that isn’t a direct adaptation of an existing

algorithm for the normal form.

On the other hand, specific representations may exhibit certain structure that

can be exploited for efficient computation. We call these representation-specific al-
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gorithmsspecial-purposealgorithms. Intuitively, black-box algorithms and special-

purpose algorithms both exploit the compact representation’s structure, albeit at

different levels: a black-box algorithm exploits structure to speed up a subroutine

of the algorithm, keeping the rest of the algorithm intact across different represen-

tations, while in a special-purpose approach the entire algorithm is designed with

a specific representation in mind. We now go through several representations and

their corresponding special-purpose algorithms.

Polymatrix Games

Yanovskaya [1968] showed that Nash equilibria of a polymatrix game are solutions

of an LCP. Such equilibria can be computed using a variant of the Lemke Howson

algorithm [Howson Jr, 1972].

Symmetric Games

As mentioned in Section 2.1.1, Nash [1951] proved that any symmetric game al-

ways has a symmetric Nash equilibrium. The space of symmetric strategy profiles

has lower dimension than the space of mixed strategy profiles, so one might expect

the problem of finding symmetric Nash equilibria to be easierthan NASH in the

general case.

Gale et al. [1950] showed that NASH for bimatrix games can be reduced to

finding a symmetric Nash equilibrium for symmetric bimatrixgames. Therefore,

the recent PPAD-completeness result for bimatrix games implies that finding sym-

metric Nash is also PPAD-complete.

On the other hand, for symmetric games with a large number of players but

a small number of actions, Papadimitriou and Roughgarden [2005] proposed a

polynomial-time algorithm for finding a symmetric Nash equilibrium. The algo-

rithm is based on the enumeration of all symmetric support profiles and the solution

of a polynomial system for each support profile.

Anonymous Games

For anonymous games, the existence of symmetric equilibriais no longer guar-

anteed. Thus the above algorithm for symmetric games with a small number of
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actions does not apply. Nevertheless, in a series of papers Daskalakis and Papadim-

itriou [2007, 2008, 2009] proposed polynomial-time algorithms for finding approx-

imate Nash equilibria for anonymous games having a constantnumber of actions

per player.

Graphical Games

Kearns et al. [2001] presented a polynomial-time algorithmfor finding approxi-

mate Nash equilibrium in graphical games on tree graphs. Thealgorithm is based

on a discretization of the mixed strategy space and a message-passing approach

similar to probabilistic inference algorithms for Bayesian networks. For comput-

ing approximate Nash equilibria in graphical games on general graphs, Ortiz and

Kearns [2003] and Vickrey and Koller [2002] proposed several approaches based

on similar ideas.

Elkind et al. [2006] presented a polynomial-time algorithmfor finding exact

Nash equilibria for graphical games on path graphs. The problem of finding exact

Nash for tree graphs is still open.

Symmetric AGGs

Besides the black-box algorithms that we discuss in Chapter3, Daskalakis et al.

[2009] presented a polynomial-timespecial-purposealgorithm for finding an ap-

proximate symmetric Nash equilibrium in symmetric AGGs on tree graphs. Their

algorithm is based on a discretization of the space of symmetric mixed strategies

and a message-passing/dynamic programming approach.

2.2.3 Computing Sample Bayes-Nash Equilibria for
Incomplete-information Static Games

Bayes-Nash equilibrium is a solution concept for Bayesian games that is analogous

to Nash equilibrium for complete-information games. Before we give its definition

we first need to define strategies in Bayesian games. In a Bayesian game, player

i can deterministically choose apure strategy si , in which given eachθi ∈ Θi she

deterministically chooses an actionsi(θi). Playeri can also randomize and play

a mixed strategyσi , in which her probability of choosingai given θi is σi(ai |θi).
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That is, given a typeθi ∈ Θi , she plays according to distributionσi(·|θi) over her

set of actionsAi. A mixed strategy profileσ = (σ1, . . . ,σn) is a tuple of the players’

mixed strategies.

The expected utilityof i given θi under a mixed strategy profileσ is the ex-

pected value ofi’s utility under the resulting joint distribution ofa andθ , condi-

tioned oni receiving typeθi :

ui(σ |θi) =∑
θ−i

P(θ−i|θi)∑
a

ui(a,θ)∏
j

σ j(a j |θ j). (2.2.2)

A mixed strategy profileσ is a Bayes-Nash equilibriumif for all i, for all θi ,

for all ai ∈ Ai , ui(σ |θi)≥ ui(σ θi→ai |θi), whereσ θi→ai is the mixed strategy profile

that is identical toσ except thati playsai with probability 1 givenθi .

Computing Bayes-Nash Equilibria via Complete-information Interpretations

Harsanyi [1967] showed that a Bayesian game can be interpreted as one of two

equivalent complete-information games via both “induced normal form” and “agent

form” interpretations. Specifically, the Nash equilibria of these complete-information

games correspond to Bayes-Nash equilibria of the Bayesian game. (A detailed de-

scription of these correspondences is given in Chapter 6.) Thus one approach is

to interpret a Bayesian game as a complete-information game, enabling the use of

existing Nash-equilibrium-finding algorithms. However, as mentioned in Section

2.1.3, generating the normal form representations under both of these complete-

information interpretations leads to an exponential blowup in representation size.

Howson and Rosenthal [1974] applied the agent form transformation to 2-

player Bayesian games, resulting in a complete-information polymatrix game which

(recall from Section 2.2.2) can be solved using a variant of the Lemke-Howson al-

gorithm. Their approach was able to avoid the aforementioned exponential blowup

because in this case the agent forms admit a more compact representation (as poly-

matrix games). However, forn-player Bayesian games the corresponding agent

forms do not correspond to polymatrix games or any other known representation.

Nevertheless, in Chapter 6 we propose a general approach forcomputing sam-

ple Bayes-Nash equilibria inn-player Bayesian games (and BAGGs in particular).
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Specifically, our approach solves the agent form of the BAGG using black-box

versions of the Global Newton Method [Govindan and Wilson, 2003] and the sim-

plicial subdivision algorithm [van der Laan et al., 1987], and instead of explicitly

constructing the normal form of the agent form we use the BAGGas a compact

representation of its agent form.

Special-purpose Approaches

Singh et al. [2004] proposed an incomplete information version of the graphical

game representation, and presented efficient algorithms for computing approximate

Bayes-Nash equilibria in the case of tree games. Gottlob et al. [2007] considered

a similar extension of the graphical game representation and analyzed the problem

of finding a pure-strategy Bayes-Nash equilibrium. Oliehoek et al. [2010] pro-

posed a heuristic search algorithm for common-payoff Bayesian games, which has

applications to cooperative multi-agent problems.

2.2.4 Computing Sample Nash Equilibria for Dynamic Games

In perfect-information extensive-form games, all information sets contain a single

node. As a result, each subtree of the extensive-form game tree form asubgame

which can be solved independently of the rest of the tree. Thebackward induction

algorithm computes a Nash equilibrium of the game by solvingsubgames from

the leaves to the root. The running time is linear in the size of the extensive form.

Furthermore, when the game is zero sum, it is possible to prune parts of the game

tree that are not optimal. The canonical algorithm, Alpha-Beta pruning, has been

influential in the design of high-performance game-playingsystems for perfect-

information games such as chess and checkers.

For extensive-form games with imperfect information, transforming to the in-

duced normal form entails an exponential blowup in representation size. This is

the main difficulty of the Nash equilibrium problem for dynamic games compared

to the simultaneous-move case, and avoiding this exponential blowup is the focus

of considerable existing literature.

One common assumption isperfect recall: roughly, that each player remem-

bers all her decisions and observations. For dynamic games with perfect recall,

33



there always exists a Nash equilibrium inbehavior strategies, where a player in-

dependently chooses a distribution over actions at each of her information sets

[Kuhn, 1953]. Computationally, behavior strategies are easier to work with, since

representing a behavior strategy requires space linear in the extensive form, while

representing a mixed strategy (i.e. a distribution over pure strategies) requires ex-

ponential space. For MAIDs, a behavior strategy for a playerentails choosing, at

each of her decision nodes and for each possible instantiation of the node’s parents,

a probability distribution over her choices.

The sequence formformulation of Koller, Meggido and von Stengel [1996]

encodes a behavior strategy as a vector of “realization probabilities”. Using this

formulation, the Nash equilibrium problem for zero-sum dynamic games can be

formulated as a linear program of size polynomial in the extensive form represen-

tation. For two-player general-sum dynamic games, using the sequence form the

Nash equilibrium problem can be formulated as a linear complementarity program

(LCP) and solved using Lemke’s algorithm.

For n-player games, Govindan and Wilson [2002] proposed an extension of

their Global Newton Method to perfect-recall extensive-form games. As with the

sequence form, strategies are encoded as realization probabilities. Daskalakis et al.

[2006a] showed that the problem of finding a Nash equilibriumin behavior strate-

gies for perfect-recall extensive-form games is in PPAD.

For compact representations, existing approaches can again be divided into

black-box and special-purpose ones. Koller and Milch [2001] proposed a special-

purpose approach for decomposing a MAID into subgraphs, each of which can be

solved independently. As in the simultaneous-move case, the computation of ex-

pected utility is again an important subtask used by many game-theoretic compu-

tations. For example, such a subroutine can be used to run fictitious play, although

(like in the simultaneous-move case) it is not guaranteed toconverge. Blum et al.

[2006] proposed a black-box approach for adapting Govindanand Wilson’s Global

Newton Method for extensive-form games to MAIDs, by speeding up the subtask

of computing the Jacobian matrix using a MAID-specific subroutine. In Chapter 5

we show that this algorithm can also be adapted to TAGGs.
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2.2.5 Questions about the Set of All Nash Equilibria of a Game

So far we have focused on finding one arbitrary Nash equilibrium. Since in gen-

eral there can be more than one Nash equilibrium in a game, we are sometimes

more interested in questions about the set of all Nash equilibria. Such problems

include finding all Nash equilibria, counting the number of equilibria, and finding

optimal Nash equilibria according to some objective such associal welfare, which

is defined to be the sum of the players’ utilities. Unsurprisingly, such problems are

usually intractable in the worst case (see e.g. [Conitzer and Sandholm, 2008]).

For the problem of finding all Nash equilibria, Mangasarian [1964] proposed

an algorithm for bimatrix games. More recently, Avis et al. [2010] described and

implemented two algorithms for bimatrix games. Herings andPeeters [2005] pro-

posed an algorithm that computes all Nash equilibria in ann-player normal form

game by enumerating all support profiles. Compared to the support-enumeration

method for finding a sample Nash equilibrium as discussed in Section 2.2.1, here

the algorithm does not stop at a single Nash equilibrium and keeps going until all

support profiles have been visited. At each support profile, the corresponding poly-

nomial system is solved by either polynomial homotopy continuation or Groebner

basis methods.

For the problem of computing optimal Nash equilibria, Sandholm et al. [2005]

proposed and evaluated a practical approach for bimatrix games using mixed-integer

programming.

2.2.6 Computing Pure-Strategy Nash Equilibria

A pure-strategy Nash equilibrium (PSNE), also known aspure Nash equilibriumor

pure equilibrium, is a pure strategy profile that is a Nash equilibrium. Equivalently:

Definition 2.2.5. An action profile a∈A is apure-strategy Nash equilibrium (PSNE)

of the gameΓ if for all i ∈ N, for all a′i ∈ Ai, ui(ai ,a−i)≥ ui(a′i ,a−i).

Unlike mixed strategy Nash equilibria, PSNEs do not always exist in a game.

Nevertheless, in many ways PSNE is a more attractive solution concept than mixed-

strategy Nash equilibrium. First, PSNE can be easier to justify because it does not

require the players to randomize. Second, it can be easier toanalyze because of
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its discrete nature (see, e.g., [Brandt et al., 2009]). There are several versions of

the problem of computing PSNEs: deciding if a PSNE exists, finding one, count-

ing the number of PSNEs, enumerating them, and finding the optimal equilibrium

according to some objective (e.g., social welfare). Unlikethe NASH problem, for

games in normal form these problems can be solved in polynomial time in the in-

put size, by enumerating all pure strategy profiles. Of course, since the size of the

normal form representation grows exponentially in the number of players, this is

problematic in practice. We thus focus on the problem for compact representations.

The problem is hard in the most general case, when utility functions are arbitrary,

efficiently-computable functions represented as circuits[Schoenebeck and Vadhan,

2006] or Turing Machines [Alvarez et al., 2005]. This is in contrast to the NASH

case, where the Nash problems for both the normal form and fully-expressive com-

pact representations are PPAD-complete.

Iterated Best Response

Iterated best response is a well-known both as a learning dynamics and as a heuris-

tic algorithm for PSNE [e.g., Shoham and Leyton-Brown, 2009]. It is an iterative

process starting at some arbitrary pure strategy profile. Ateach step, if there ex-

ists a player that is not playing a best response to the current pure strategy profile,

that player changes her strategy to a best response. The process stops when all

are playing best responses, in which case we have reached a PSNE. A related pro-

cess isiterated better response, in which a deviating player only has to pick a pure

strategy that is better than the current one. These processes can be carried out for

all representations that provide efficient evaluation of utilities under arbitrary pure-

strategy profiles. However, like fictitious play, these are not guaranteed to converge

for games in general.

Graphical Games

Gottlob et al. [2005] were the first to analyze the existence problem of pure-strategy

Nash equilibria in graphical games. They proved that while the problem is NP-

complete in general, on games with graphs of bounded hypertree-width there ex-

ist a dynamic-programming algorithm that determines the existence of PSNE (and
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finds one if it exists) in time polynomial in the size of the representation. Daskalakis

and Papadimitriou [2006] reduced the problem to a Markov Random Field (MRF),

and then applied the standard clique tree algorithm to the resulting MRF. Among

their results they showed that for graphical games on graphswith log-sized treewidth,

and bounded neighborhood size and bounded number of actionsper player, the ex-

istence of pure Nash equilibria can be decided in polynomialtime.

Jiang and Safari [2010] analyzed the problem of deciding theexistence of pure-

strategy Nash equilibria for graphical games on restrictedclasses of graphs, and

gave a complete characterization of hard and easy classes ofgraphical games with

bounded indegree, showing that the only tractable classes of graphs are those with

bounded treewidth (after iterated removal of sinks).

Daskalakis and Papadimitriou [2005] analyzed the complexity of finding pure

and mixed Nash equilibria of graphical games on highly regular graphs (specifi-

cally, thed-dimensional grid) with identical local payoff functions for every player.

Such games can be represented very compactly, as only the local payoff function

at one neighborhood needs to be stored. They showed that finding pure-strategy

Nash equilibria is tractable ifd = 1 and NEXP-complete otherwise.

Symmetric Games

For symmetric games, questions about PSNE can be computed straightforwardly

by checking all configurations, which requires polynomial time in the size of the

representation, and polynomial time inn when the number of actions is fixed. In-

deed, Brandt et al. [2009] proved that the existence problemfor PSNE of symmet-

ric games with constant number of actions is in the complexity classAC0, which

is the set of problems that can be solved by polynomial-sizedconstant-depth cir-

cuits with unlimited-fanin AND- and OR-gates. For anonymous games, efficient

algorithms for PSNE have also been proposed [Brandt et al., 2009, Daskalakis and

Papadimitriou, 2007].

Ryan et al. [2010] considered the problem of finding pure-strategy Nash equi-

libria in symmetric games whose utilities are very compactly represented, such that

the number of players can be exponential in the representation size, and showed

that if the utility functions are represented as piecewise-linear functions, there exist
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polynomial-time algorithms for finding a pure-strategy Nash equilibria and count

the number of equilibria.

Congestion Games

For congestion games, a PSNE always exists [Rosenthal, 1973]. Furthermore, iter-

ated best-response dynamics always converge to a PSNE [Monderer and Shapley,

1996]. However, Fabrikant et al. [2004] showed that such dynamics may require an

exponential number of steps to converge, and furthermore the problem of finding

a PSNE for congestion games is complete for the complexity class PLS (which

stands for Polynomial Local Search), which implies that a polynomial-time algo-

rithm is unlikely to exist.

For singleton congestion games, where the game is symmetric and each ac-

tion consists of choosing only a single resource, Ieong et al. [2005] presented a

polynomial-time algorithm for finding an optimal PSNE.

AGGs

Since AGGs can compactly encode arbitrary graphical games,the existence prob-

lem is NP-complete for AGGs. Conitzer [pers. comm., 2004] and Daskalakis et al.

[2009] showed that the problem is NP-complete even for symmetric AGGs.

In Chapter 4 we present a dynamic programming approach for computing

PSNE in AGGs. For symmetric AGGs with bounded treewidth, ouralgorithm de-

termines the existence of PSNE (and returns one if any exists) in polynomial time.

We also show that our approach can be extended to certain classes of asymmetric

AGGs.

2.2.7 Computing Correlated Equilibrium

First proposed by Aumann [1974, 1987], correlated equilibrium (CE) is another

important solution concept. Whereas in a mixed strategy Nash equilibrium play-

ers randomize independently, in a correlated equilibrium the players are allowed

to coordinate their behavior based on signals from an intermediary. CE has in-

teresting connections to the theory of online learning: theempirical distribution

of no-internal-regret learning dynamics converge to the set of CE [e.g., Hart and
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Mas-Colell, 2000, Nisan et al., 2007].

A correlated equilibrium is defined as a distributionx over action profiles, such

that when a trusted intermediary draws a strategy profilea from this distribution,

privately announcing to each playeri her own componentai , i will have no in-

centive to choose another strategy, assuming others followthe suggestions. This

requirement can be written as a set of linearincentive constraintsonx. Combining

these with the constraints thatx is a distribution, the set of correlated equilibria can

be formulated as a linear feasibility program with size polynomial in the size of

the normal form. (A detailed description of this formulation is given in Chapter 7.)

Thus it takes polynomial time in the size of the normal form tocompute one CE,

and indeed to compute an optimal CE according to some linear objective function.

For compact representations, the same LP can have an exponential number of

variables, due to the fact that the input size can be exponentially smaller. Thus,

the above approach is not efficient for compact representations. Another challenge

is that even explicitly representing a solution vectorx can take exponential space.

Thus, a compact representation for the distributionx is required. Furthermore,

in order for the intermediary to be able to tractably implement such a correlated

equilibrium, we also need an efficient algorithm for sampling from the distribution.

In a landmark paper, Papadimitriou and Roughgarden [2008] proposed a black-

box algorithm for computing a sample CE, which runs in polynomial time when

the game representation has polynomial type and when there is a polynomial-time

algorithm for computing expected utility given mixed strategy profiles. The solu-

tions are represented as mixtures of product distributions. Recently, Stein, Parrilo

and Ozdaglar [2010] showed that this algorithm can fail to find an exact correlated

equilibrium, but can be (easily) modified to efficiently compute approximate corre-

lated equilibria. In Chapter 7 we present a variant of the Ellipsoid Against Hope

algorithm that guarantees the polynomial-time identification of exact correlated

equilibrium.

For the problem of computing the optimal CE, Papadimitriou and Roughgar-

den [2008] showed that the problem is NP-hard for many existing representations,

and gave a sufficient condition for the problem to be tractable. They showed that

symmetric games, anonymous games and graphical games on tree graphs satisfy

such a condition. In Chapter 8 we give a sufficient condition that generalizes Pa-
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padimitriou and Roughgarden’s condition. In particular, we reduce the optimal

CE problem to thedeviation-adjusted social welfare problem, a combinatorial op-

timization problem closely related to the optimal social welfare outcome problem.

This framework allows us to identify new classes of games forwhich the optimal

CE problem is tractable, including graphical polymatrix games on tree graphs. Our

algorithm can be understood as a black-box algorithm, withdeviation-adjusted so-

cial welfare problemas the required subroutine.

A couple of special-purpose approaches have been proposed for graphical games.

Kakade et al. [2003] proposed an algorithm for computing a CEwith maximum en-

tropy in tree graphical games in polynomial time. More recently, Kamisetty et al.

[2011] proposed a practical approach for approximating theoptimal CE in graphi-

cal games.

Computing Coarse Correlated Equilibria

Coarse correlated equilibrium (CCE) [Hannan, 1957] is a solution concept closely

related to CE. The difference between the two is the class of deviations they con-

sider. Whereas CE requires that each player have no profitable deviation even if she

takes into account the signal she receives from the intermediary, CCE only requires

that each player have no profitableunconditional deviation. CCE is also related to

online learning: the empirical distribution of a no-external-regret learning dynam-

ics converge to the set of CCE.

As in the case of CE, the set of CCE can also be formulated as an LP. A formal

description is given in Chapter 8. A CE is also a CCE, and henceresults for the

polynomial-time computation of a sample CE also apply to thecomputation of a

sample CCE.

On the other hand, since the optimal CE problem is not always tractable, the

optimal CCE problem could be easier than the optimal CE problem for some repre-

sentations. In Chapter 8 we show that for singleton congestion games, the optimal

CCE problem can be solved in polynomial time, while the complexity of the opti-

mal CE problem for this class of games is unknown.
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Computing Extensive-form Correlated Equilibria

Recently, von Stengel and Forges [2008] proposed extensive-form correlated equi-

librium (EFCE), a solution concept for perfect-recall extensive-form games that is

closely related to correlated equilibrium. Recall that in an extensive-form game,

each pure strategy of a player prescribes a move for each of her information sets.

Like correlated equilibria, an EFCE is a distribution over pure-strategy profiles.

Whereas in a CE of the induced normal form of the game the intermediary rec-

ommends a pure strategy to each player at the start of the game, in an EFCE the

intermediary recommends a move to the player only when the corresponding infor-

mation set is reached.

Huang and Von Stengel [2008] described a polynomial-time algorithm for com-

puting sample extensive-form correlated equilibria. Their algorithm follows a very

similar structure as Papadimitriou and Roughgarden’s Ellipsoid Against Hope algo-

rithm, and the flaws of the Ellipsoid Against Hope algorithm pointed out by Stein

et al. [2010] also carry over. As a result, the algorithm can fail to find an exact

EFCE. In Chapter 7 we extend our fix for Papadimitriou and Roughgarden’s Ellip-

soid Against Hope algorithm to Huang and Von Stengel’s algorithm, allowing it to

compute an exact EFCE.

2.2.8 Computing Other Solution Concepts

Other solution concepts have been proposed in the economicsliterature to represent

different notions of rational behavior. Computer scientists have studied the corre-

sponding computational problems, including the computation of (iterated) elimina-

tion of dominated strategies [Conitzer and Sandholm, 2005], Stackelberg equilib-

rium [Conitzer and Sandholm, 2006, Paruchuri et al., 2008],closed under rational

behavior (CURB) sets [M. Benisch and Sandholm, 2010], and sink equilibrium

[Goemans et al., 2005].

While these are interesting problems, they are not directlyrelated to this thesis

and we refer interested readers to the papers referenced above.
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2.3 Software

GAMBIT [McKelvey et al., 2006] is a collection of software tools for game theo-

retic analysis. It includes implementations of many of the existing algorithms for

the normal form and the extensive form. It also provides a graphical user inter-

face for creating normal form and extensive form games, running algorithms for

computing Nash equilibria, and visualizing the resulting profiles. It is available at

http://www.gambit-project.org.

Gametracer [Blum et al., 2002] provides black-box adaptations of two of Govin-

dan and Wilson’s algorithms for finding a sample Nash equilibrium: Global New-

ton Method [Govindan and Wilson, 2003] and Iterated Polymatrix Approximation

[Govindan and Wilson, 2004]. The algorithms are written as C++ functions that

takes an instance of “gnmgame”, an abstract class with an abstract method4 for

computing expected utilities.5 As a result, in order to apply these algorithms to a

specific game representation, one merely has to implement the representation as a

subclass ofgnmgame. The package itself only provides a subclass for the normal

form representation. Gametracer’s source code is available for download at

http://dags.stanford.edu/Games/gametracer.html. It has also been adapted and in-

corporated into GAMBIT.

GAMUT [Nudelman et al., 2004] is a suite of game instance generators. It

includes many classes of games studied in the economics and computer science

literature, and parameterization options for the dimensions of the game, the types

of utility functions and randomization. The stated purposeof GAMUT is for eval-

uating game-theoretic algorithms. The main output format for GAMUT is normal

form. GAMUT is available athttp://gamut.stanford.edu.

In Appendix A we describe the software tools we implemented and make avail-

able athttp://agg.cs.ubc.ca. They include command-line programs for finding sam-

ple Nash equilibria in AGGs and BAGGs, a graphical user interface for creating,

editing and visualizing AGGs, and extensions of GAMUT that generate AGG in-

stances.

4An abstract method in C++ means that only the interface of method is given; any subclass that
is not also abstract needs to provide an implementation of the method.

5Another abstract method is for computing payoff Jacobians (see Chapter 3 for the definition),
which usually requires similar types of computations as expected utilities.
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Chapter 3

Action-Graph Games

3.1 Introduction

In this chapter we focus on complete-information simultaneous-action games. An

overview of the literature on compact representations and computation of solution

concepts for such games is given in Chapter 2, specifically Sections 2.1.1, 2.2.2

and 2.2.7. As we summarized in Chapter 1, the existing representations either

only capture a subset of the known types of structure (anonymity, strict and action-

specific independence, and additivity), or are only able to represent a subset of

games. Meanwhile, the computation ofexpected utilityhas emerged as a key sub-

task required by many black-box algorithms for computing solution concepts.

3.1.1 Our Contributions

Action-graph games (AGGs) are a general game representation that can be under-

stood as offering the advantages of—and, indeed, unifying—existing representa-

tions including graphical games and congestion games. Likegraphical games,

AGGs can represent any game, and important game-theoretic computations can

be performed efficiently when the AGG representation is compact. Hence, AGGs

offer a general representational framework for game-theoretic computation. Like

congestion games, AGGs compactly represent context-specific independence, anonymity,

and additivity, though unlike congestion games they do not require any of these.

Finally, AGGs can also compactly represent many games that are not compact as
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either graphical games or as congestion games.

We begin this chapter in Section 3.2 by defining action-graphgames, includ-

ing the basic representation and extensions with function nodes and additive utility

functions, and characterizing their representation sizes. In Section 3.3 we provide

several more examples of structured games which can be compactly represented as

AGGs. Then we turn from representational to computational issues. In Section 3.4

we present a dynamic programming algorithm for computing anagent’s expected

utility under an arbitrary mixed-strategy profile, prove its complexity, and explore

several elaborations. In Section 3.5 we show that (as a corollary of the polynomial

complexity of our expected utility algorithm) the problem of finding an ε-Nash

equilibrium of an AGG is in PPAD: this is a positive result, asAGGs can be ex-

ponentially smaller than normal-form games. We also show how to use our dy-

namic programming algorithm to speed up existing methods for computing sample

ε-Nash andε-correlated equilibria. Finally, in Section 3.6 we presentthe results

of extensive experiments with some of these algorithms, demonstrating that AGGs

can feasibly be used to reason about interesting games that were inaccessible to any

previous techniques. The largest game that we tackled in ourexperiments had 20

agents and 13 actions per agent; we found its Nash equilibrium in 14.3 minutes. A

normal form representation of this game would have involved9.4×10134 numbers,

requiring an outrageous 7.5×10126 gigabytes even to store.

Finally, let us describe the relationship between this chapter and past work

on AGGs. Leyton-Brown and Tennenholtz [2003] introduced local-effect games,

which can be understood as symmetric AGGs in which utility functions are re-

quired to satisfy a particular linearity property. Bhat andLeyton-Brown [2004]

introduced the basic AGG representation and some of the computational ideas for

reasoning with them. The dynamic programming algorithm wasfirst proposed in

Jiang and Leyton-Brown [2006], as was the idea of function nodes. An extended

version of that paper appeared as Chapter 2 of the MSc thesis [Jiang, 2006]. The

current chapter is based on the journal publication [Jiang et al., 2011], which sub-

stantially elaborates upon and extends the representations and methods from these

earlier papers. Specifically, [Jiang et al., 2011] introduced the additive structure

model and the encoding of congestion games, several of the examples, our compu-

tational methods fork-symmetric games and for additive structure, our speedup of
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the simplicial subdivision algorithm, and all experimentspresented in this chapter

(Section 3.6).

3.2 Action Graph Games

This section has three parts, each of which defines a different AGG variant. In Sec-

tion 3.2.1 we define the basic AGG representation (which we dub AGG-/0), char-

acterize its representation size, and show how it can be usedto represent normal-

form, graphical, and symmetric games. In Section 3.2.2 we introduce the idea

of function nodes, show how AGGs with function nodes (AGG-FNs) can capture

additional structure in several example games, and show howto represent anony-

mous games as AGG-FNs. In Section 3.2.3 we introduce AGG-FNswith additive

structure (AGG-FNA), which compactly represent additive structure in the utility

functions of AGGs, and show how congestion games can be succinctly written as

AGG-FNAs.

3.2.1 Basic Action Graph Games

We begin with an intuitive description of basic action-graph games. Consider a

directed graph with nodesA and edgesE, and a set of agentsN = {1, . . . ,n}.

Identical tokens are given to each agenti ∈ N. To play the game, each agenti

simultaneously places her token on a nodeai ∈ Ai, whereAi ⊆ A . Each node in

the graph thus corresponds to an action choice that is available to one or more of

the agents; this is where action-graph games get their name.Each agent’s utility is

calculated according to an arbitrary function of the node she chose and thenumbers

of tokens placed on the nodes that neighbor that chosen node in the graph. We will

argue below that any simultaneous-move game can be represented in this way, and

that action-graph games are often much more compact than games represented in

other ways.

We now turn to a formal definition of basic action-graph games. Let N =

{1, . . . ,n} be the set of agents. Central to our model is theaction graph.

Definition 3.2.1 (Action graph). An action graphG= (A ,E) is a directed graph

where:
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• A is the set of nodes. We call each nodeα ∈ A anaction, andA theset of

distinct actions. For each agent i∈ N, let Ai be the set of actions available

to i, with A =
⋃

i∈N Ai.1 We denote by ai ∈ Ai one of agent i’s actions. An

action profile(or pure strategy profile) is a tuple a= (a1, . . . ,an). Denote

by A the set of action profiles. Then A= ∏i∈N Ai where∏ is the Cartesian

product.

• E is a set of directed edges, where self edges are allowed. We say α ′ is

a neighborof α if there is an edge fromα ′ to α , i.e., (α ′,α) ∈ E. Let

the neighborhoodof α , denotedν(α), be the set of neighbors ofα , i.e.,

ν(α)≡ {α ′ ∈ A |(α ′,α) ∈ E}.

Given an action graph and a set of agents, we can further defineaconfiguration,

which is a feasible arrangement of agents across nodes in an action graph.

Definition 3.2.2(Configuration). Given an action graph(A ,E) and a set of action

profiles A, aconfigurationc is a tuple of|A | non-negative integers(c(α))α∈A ,

where c(α) is interpreted as the number of agents who chose actionα ∈ A , and

where there exists some a∈ A that would give rise to c. Denote the set of all

configurations as C. LetC : A → C be the function that maps from an action

profile a to the corresponding configuration c. Formally, if c= C (a) then c(α) =

|{i ∈ N : ai = α}| for all α ∈ A .

We can also restrict a configuration to a given node’s neighborhood.

Definition 3.2.3(Configuration over a neighborhood). Given a configuration c∈C

and a nodeα ∈ A , let theconfiguration over the neighborhoodof α , denoted c(α),

be the restriction of c toν(α), i.e., c(α) = (c(α ′))α ′∈ν(α). Similarly, let C(α) denote

the set of configurations overν(α) in which at least one player playsα .2 LetC (α) :

A→C(α) be the function which maps from an action profile to the corresponding

configuration overν(α).

1Different agents’ action setsAi ,A j may (partially or completely) overlap. The implications of
this will become clear once we define the utility functions.

2If action α is in multiple players’ action sets (say playersi, j), and these action sets do not
completely overlap, then it is possible that the set of configurations given thati playedα (denoted
C(s,i)) is different from the set of configurations given thatj playedα. C(α) is the union of these sets
of configurations.
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Now we can state the formal definition of basic action-graph games as follows.

Definition 3.2.4 (Basic action-graph game). A basic action-graph game (AGG-/0)

is a tuple(N, A, G, u) where

• N is the set of agents;

• A= ∏i∈N Ai is the set of action profiles;

• G = (A ,E) is an action graph, whereA =
⋃

i∈N Ai is the set of distinct

actions;

• u= (uα)α∈A is a tuple of|A | functions, where each uα : C(α) → R is the

utility function for actionα . Semantically, uα(c(α)) is the utility of an agent

who choseα , when the configuration overν(α) is c(α).

For notational convenience, we defineu(α ,c(α))≡ uα(c(α)) andui(a)≡ u(ai ,C
(ai)(a)).

We also defineA−i ≡ ∏ j 6=i A j as the set of action profiles of agents other thani, and

denote an element ofA−i by a−i .

Example: Ice Cream Vendors

The following example helps to illustrate the elements of the AGG-/0 representa-

tion, and also exhibits context-specificity and anonymity in utility functions. This

example would not be compact under the existing game representations discussed

in the introduction. It was inspired by Hotelling [1929], and elaborates an example

used in Leyton-Brown and Tennenholtz [2003].

Example 3.2.5(Ice Cream Vendor game). Consider a setting in which n vendors

sell ice cream or strawberries, and must choose one of four locations along a beach.

There are three kinds of vendors: nI ice cream vendors, nS strawberry vendors,

and nW vendors who can sell both ice cream and strawberry, but only on the west

side. Ice cream (strawberry) vendors are negatively affected by the presence of

other ice cream (strawberry) vendors in the same or neighboring locations, and

are simultaneously positively affected by the presence of nearby strawberry (ice

cream) vendors.

The AGG-/0 representation of this game is illustrated in Figure 3.1. Asal-

ways, nodes represent actions and directed edges representmembership in a node’s
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Figure 3.1: AGG-/0 representation of the Ice Cream Vendor game.

neighborhood. The dotted boxes represent the action sets for each group of players;

for example, the ice cream vendors have action set AI . Note that this game exhibits

context-specific independence without any strict independence, and that the graph

structure is independent of n.

Size of an AGG-/0 Representation

Intuitively, AGG-/0s capture two types of structure in games:

1. Shared actions capture the game’sanonymitystructure: agenti’s utility de-

pends only on her actionai and the configuration. Thus, agenti cares about

the numberof players that play each action, but not the identities of those

players.

2. The (lack of) edges between nodes in the action graph expressescontext-

specific independenciesof utilities of the game: for alli ∈ N, if i chose

action α ∈ A , then i’s utility depends only on the configuration over the

neighborhood ofα . In other words, the configuration over actions not in

ν(α) does not affecti’s utility.

We have claimed informally that action graph games provide away of repre-

senting games compactly. But what exactly is the size of an AGG-/0 representation,

and how does it grow with the number of agentsn? In this subsection we give a
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bound on the size of an AGG-/0, and show that asymptotically it is never worse than

the size of the equivalent normal form.

From Definition 3.2.4 we observe that to completely specify an AGG-/0 we

need to specify (1) the set of agents, (2) each agent’s set of actions, (3) the ac-

tion graph, and (4) the utility functions. The first three caneasily be compactly

represented:

1. The set of agentsN = {1, . . . ,n} can be specified by the integern.

2. The set of actionsA can be specified by the integer|A |. Each agent’s action

setAi ⊆ A can be specified inO(|A |) space.

3. The action graphG= (A ,E) can be straightforwardly represented as neigh-

bor lists: for each nodeα ∈ A we specify its list of neighborsν(α) ⊆ A .

The space required is∑α∈A |ν(α)|, which is bounded by|A |I , where

I = maxα |ν(α)|, i.e., the maximum in-degree ofG.

We observe that whereas the first three components of an AGG-/0 (N,A,G,u)

can always be represented in space polynomial inn and|Ai |, the size of the utility

functions is worst-case exponential. So the size of the utility functions determines

whether an AGG-/0 can be tractably represented. Indeed, forthe rest of the paper

we will refer to the number of payoff values stored as the representation size of the

AGG-/0. The following proposition gives an upper bound on the number of payoff

values stored.

Proposition 3.2.6. Given an AGG-/0, the number of payoff values stored by its

utility functions is at most|A | (n−1+I )!
(n−1)!I ! . If I is bounded by a constant as n grows,

the number of payoff values is O(|A |nI ), i.e. polynomial with respect to n.

Proof. For each utility functionuα : C(α) → R, we need to specify a utility value

for each distinct configurationc(α) ∈ C(α). The set of configurationsC(α) can be

derived from the action graph, and can be sorted in lexicographical order. Thus, we

can just specify a list of|C(α)| utility values that correspond to the (ordered) set of

configurations.3 In general there is no closed form expression for|C(α)|, the num-

ber of distinct configurations overν(α). Instead, we consider the operation of ex-

tending all agents’ action sets via∀i : Ai 7→ A . The number of configurations over
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ν(α) under the new action sets is an upper bound on|C(α)|. This is the number of

(ordered) combinatorial compositions ofn−1 (since one player has already chosen

α) into |ν(α)|+1 nonnegative integers, which is
(n−1+|ν(α)|

|ν(α)|

)

= (n−1+|ν(α)|)!
(n−1)!|ν(α)|! . Then

the total space required for the utilities is bounded from above by|A | (n−1+I )!
(n−1)!I ! . If

I is bounded by a constant asn grows, this grows likeO(|A |nI ).

For each AGG-/0, there exists a uniqueinduced normal formrepresentation

with the same set of players and|Ai | actions for eachi; its utility function is a

matrix that specifies each playeri’s payoff for each possible action profilea ∈ A.

This implies a space complexity ofn∏n
i=1 |Ai|. WhenAi ≥ 2 for all i, the size of

the induced normal form representation grows exponentially with respect ton. On

the other hand, we observe that the number of payoff values stored in an AGG-/0

representation is always less than or equal to the number of payoff values in the

induced normal form representation. Of course, the AGG-/0 representation has the

extra overhead of representing the action graph, which is bounded by|A |I . But

this overhead is dominated by the size of the induced normal form,n∏ j |A j |. Thus,

an AGG-/0’s asymptotic space complexity is never worse thanthat of its induced

normal form game.

It is also possible to describe a reverse transformation that encodes any arbi-

trary game in normal form as an AGG-/0. Specifically, a uniquenodeai must be

created for each action available to each agenti. Thus∀α ∈ A , c(α) ∈ {0,1},

and∀i, ∑α∈Ai
c(α) must equal 1. The configuration simply indicates each agent’s

action choice, and expresses no anonymity or context-specific independence struc-

ture.

This representation is no more or less compact than the normal form. More

precisely, the number of distinct configurations overν(ai) is the number of action

profiles of the other players, which is∏ j 6=i |A j |. Sincei has|Ai | actions,∏ j |A j |

payoff values are needed to representi’s payoffs. So in totaln∏ j |A j | payoff values

are stored, exactly the number in the normal form.

3This is the most compact way of representing the utility functions, but does not provide easy
random access to the utilities. Therefore, when we want to docomputation using AGGs, we may
convert each utility functionuα to a data structure that efficiently implements a mapping from se-
quences of integers to (floating-point) numbers, (e.g. tries, hash tables or Red-Black trees), with
space complexityO(I |C(α)|).
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Figure 3.2: AGG-/0 representation of a 3-player, 3-action graphical game.

One might ask whether AGG-/0s can compactly represent knownclasses of

structured games. Consider the graphical game representation as defined in Defini-

tion 2.1.2. Graphical games can be represented as AGG-/0s byreplacing each node

i in the graphical game by a distinct cluster of nodesAi representing the action set

of agenti. If the graphical game has an edge fromi to j, edges must be created

in the AGG-/0 so that∀ai ∈ Ai ,∀a j ∈ A j , ai ∈ ν(a j). The resulting AGG-/0s are as

compact as the original graphical games. Figure 3.2 shows the AGG-/0 representa-

tion of a graphical game having three nodes and two edges (i.e., player 1 and player

3 do not directly affect each others’ payoffs).

Another important class of structured games are symmetric games as defined in

Section 2.1.1. An arbitrary symmetric game can be encoded asan AGG-/0 without

an increase in asymptotic size. Specifically, letAi = A for all i ∈ N. The resulting

action graph is a clique, i.e.,ν(α) = A for all α ∈ A .

3.2.2 AGGs with Function Nodes

There are games with certain kinds of context-specific independence structures that

AGG-/0s are not able to exploit (see, e.g., Example 3.2.7 below). In this section we

extend the AGG-/0 representation by introducingfunction nodes, allowing us to

exploit a much wider variety of utility structures. Of course, as always, compact

representation is not interesting as an end in itself. In Section 3.4.2 we identify

broad subclasses of AGG-FNs—indeed, rich enough to encompass all AGG-FN

examples presented in this chapter —which are amenable to efficient computation.
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Examples: Coffee Shops and Parity

Example 3.2.7(Coffee Shop game). Consider a game involving n players; each

player plans to open a coffee shop in a downtown area, represented by a r×k grid.

Each player can choose to open a shop located within any of theB≡ rk blocks or

decide not to enter the market. Conditioned on player i choosing some locationα ,

her utility depends on the numbers of players who chose (i) the same block; (ii) any

of the surrounding blocks; and (iii) any other location.

The normal form representation of this game has sizen|A |n = n(B+1)n. Since

there are no strict independencies in the utility function,the asymptotic size of the

graphical game representation is the same. Let us now represent the game as an

AGG-/0. We observe that if agenti chooses an actionα corresponding to one of

theB locations, then her payoff is affected by the configuration over allB locations.

Hence,ν(α) must consist ofB action nodes corresponding to theB locations, and

so the action graph has in-degreeI = B. Since the action sets completely overlap,

the representation size isΘ(|A ||C(α)|) = Θ
(

B(n−1+B)!
(n−1)!B!

)

. If we hold B constant,

this becomesΘ(BnB), which is exponentially more compact than the normal form

and the graphical game representation. If we instead holdn constant, the size of

the representation isΘ(Bn), which is only slightly better than the normal form and

graphical game representations.

Intuitively, the AGG-/0 representation is able to exploit anonymity structure in

this game. However, this game’s payoff function also has context-specific struc-

ture that the AGG-/0 does not capture. Observe thatuα depends only on three

quantities: the number of players who chose the same block, the number of play-

ers who chose an adjacent block, and the number of players whochose another

location. In other words,uα can be written as a functiong of only three integers:

uα(c(α)) = g(c(α),∑α ′∈A ′ c(α ′),∑α ′′∈A ′′ c(α ′′)) whereA ′ is the set of actions

surroundingα andA ′′ the set of actions corresponding to other locations. The

AGG-/0 representation is not able to exploit this context-specific information, and

so duplicates some utility values.

There exist many similar examples in which the utility functions uα can be

expressed as functions of a small number of intermediate parameters. Here we

give one more.
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Example 3.2.8(Parity game). In a “parity game”, each uα depends only on whether

the number of agents at neighboring nodes is even or odd, as follows:

uα =

{

1 if ∑α ′∈ν(α)c(α ′) mod 2= 0;

0 otherwise.

Observe that in the Parity gameuα can take just two distinct values; however,

the AGG-/0 representation must specify a value for every configurationc(α).

Definition of AGG-FNs

Structure such as that in Examples 3.2.7 and 3.2.8 can be exploited within the AGG

framework by introducingfunction nodesto the action graphG; intuitively, we

use them to describe intermediate parameters upon which players’ utilities depend.

Now G’s vertices consist of both the set of action nodesA and the set of function

nodesP, i.e. G = (A ∪P,E). We require that no function nodep ∈ P can

be in any player’s action set:A ∩P = {}. Thus, the total number of nodes in

G is |A |+ |P|. Each node inG can have action nodes and/or function nodes

as neighbors. We associate a functionf p : C(p) → R with eachp ∈ P, where

c(p) ∈ C(p) denotes configurations overp’s neighbors. The configurationsc are

extended to include the function nodes by the definitionc(p)≡ f p(c(p)). If p∈ P

has no neighbors,f p is a constant function. To ensure that the AGG is meaningful,

the graphG restricted to nodes inP is required to be a directed acyclic graph

(DAG). This condition ensures that for allα andp, c(α) andc(p) are well defined.

To ensure that everyp ∈ P is “useful”, we also require thatp has at least one

outgoing edge. As before, for each action nodeα we define a utility function

uα : C(α) →R. We call this extended representation an Action Graph Game with

Function Nodes (AGG-FN), and define it formally as follows.

Definition 3.2.9(AGG-FN). An Action Graph Game with Function Nodes (AGG-FN)

is a tuple(N,A,P,G, f ,u), where:

• N is the set of agents;

• A= ∏i∈N Ai is the set of action profiles;

• P is a finite set of function nodes;
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• G= (A ∪P,E) is an action graph, whereA =
⋃

i∈N Ai is the set of distinct

actions. We require that the restriction of G to the nodesP is acyclic and

that for every p∈ P there exists an m∈ A ∪P such that(p,m) ∈ E;

• f is a tuple( f p)p∈P , where each fp : C(p) → R is an arbitrary mapping

from neighbors of p to real numbers;

• u is a tuple(uα)α∈A , where each uα : C(α) → R is theutility function for

actionα .

Given an AGG-FN, we can construct an equivalent AGG-/0 with the same play-

ers N and actionsA and equivalent utility functions, but without any function

nodes. We call this theinduced AGG-/0 of the AGG-FN. There is an edge fromα ′

to α in the induced AGG-/0 either if there is an edge fromα ′ to α in the AGG-FN,

or if there is a path fromα ′ to α through a chain consisting entirely of function

nodes. From the definition of AGG-FNs, the utility of playingactionα is uniquely

determined by the configurationc(α), which is uniquely determined by the config-

uration over the actions that are neighbors ofα in the induced AGG-/0. As a result,

the utility tables of the induced AGG-/0 can be filled in unambiguously. We observe

that the number of utility values stored in an AGG-FN is no greater than the num-

ber of utility values in the induced AGG-/0. On the other hand, AGG-FNs have to

represent the functionsf p for eachp∈ P. In the worst case, these functions can

be represented as explicit mappings similar to the utility functionsuα . However, it

is often possible to define these functions algebraically bycombining elementary

operations, as we do in most of the examples given in this chapter . In this case the

functions’ representations require a negligible amount ofspace.

Representation Size

What is the size of an AGG-FN(N,A,P,G, f ,u)? The following proposition gives

a sufficient condition for the representation size to be polynomial. Here we speak

about aclassof AGG-FNs because our statement is about the asymptotic behavior

of the representation size. This is in contrast to Proposition 3.2.6, where we gave

an exact bound on the size of an individual AGG-/0.

Proposition 3.2.10. A class of AGG-FNs has representation size bounded by a

function polynomial in n,|A | and |P| if the following conditions hold:
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1. for all function nodes p∈ P, the size of p’s range|R( f p)| is bounded by a

function polynomial in n,|A | and |P|; and

2. maxm∈A∪P ν(m) (the maximum in-degree in the action graph) is bounded by

a constant.

Proof. Given an AGG-FN(N,A,P,G, f ,u), it is straightforward to check that all

components exceptu and f are polynomial inn, |A | and|P|.

First, consider an action nodeα ∈A . Recall that the size of the utility function

uα is C(α). Partitionν(α), the set ofα ’s neighbors, intoνA (α) = ν(α)∩A and

νP(α) = ν(α)∩P (neighboring action nodes and function nodes respectively).

Since for each actionα ′ ∈ νA (α), c(α ′) ∈ {0, . . . ,n}, and for eachp′ ∈ νP(α),

c(p) ∈ R( f p), thenC(α) ≤ (n+ 1)|νA (α)|∏p∈νP (α) |R( f p)|. This is polynomial

because all action node in-degrees are bounded by a constant.

Now consider a function nodep ∈ P. Without loss of generality, assume

that its function f p is represented explicitly as a mapping. (Any other repre-

sentation off p can be transformed into this explicit representation.) Therepre-

sentation size off p is thenC(p). Using the same reasoning as above, we have

C(p) ≤ (n+1)|νA (p)|∏q∈νP(p) |R( f q)|, which is polynomial since all function node

in-degrees are bounded by a constant.

When the functionsf p do not have to be represented explicitly, we can drop

the requirement on the in-degree of function nodes.

Corollary 3.2.11. A class of AGG-FNs has representation size bounded by a func-

tion polynomial in n,|A | and |P| if the following conditions hold:

1. for all function nodes p∈ P, the function fp has a representation whose

size is polynomial in n,|A | and |P|;

2. for each function node p∈ P that is a neighbor of some action nodeα , the

size of p’s range|R( f p)| is bounded by a function polynomial in n,|A | and

|P|; and

3. maxα∈A ν(α) (the maximum in-degree among action nodes) is bounded by a

constant.

A very useful type of function node is thesimple aggregator.
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Definition 3.2.12(Simple aggregator). A function node p∈P is asimple aggrega-

tor if each of its neighborsν(p) are action nodes and fp is the summation function:

f p(c(p)) = ∑m∈ν(p) c(m).

Simple aggregator function nodes take the value of the totalnumber of players

who chose any of the node’s neighbors. Since these functionscan be specified in

constant space, and sinceR( f p) = {0, . . . ,n} for all p, Corollary 3.2.11 applies.

That is, the representation sizes of AGG-FNs whose functionnodes are all simple

aggregators are polynomial whenever the in-degrees of action nodes are bounded

by a constant. In fact, under certain assumptions we can prove an even tighter

bound on the representation size, analogous to Proposition3.2.6 for AGG-/0s. Intu-

itively, this works because both configurations on action nodes and configurations

on simple aggregators count the numbers of players who behave in certain ways.

Proposition 3.2.13. Consider a class of AGG-FNs whose function nodes are all

simple aggregators. For each m∈ A ∪P, define the function

β (m) =

{

m m∈ A;

ν(m) otherwise.

Intuitively, β (m) is the set of nodes whose counts are aggregated by node m. If for

eachα ∈A and for each m,m′ ∈ ν(α), β (m)∩β (m′) = {} unless m= m′ (i.e., no

action node affectsα in more than one way), then the AGG-FNs’ representation

sizes are bounded by|A |
(n−1+I

I

)

whereI = maxα∈A |ν(α)| is the maximum in-

degree of action nodes.

Proof. Consider the utility functionuα for an arbitrary actionα . Each neighbor

m∈ ν(α) is either an action or a simple aggregator. Observe that a configura-

tion c(α) ∈C(α) is a tuple of integers specifying the numbers of players choosing

each action in the setβ (m) for eachm∈ ν(α). As in the proof of Proposition

3.2.6, we extend each player’s set of actions to|A |, making the game symmet-

ric. This weakly increases the number of configurations. Since the setsβ (m)

are non-overlapping, the number of configurations possiblein the extended action

space is equal to the number of (ordered) combinatorial compositions ofn−1 into

|ν(α)|+ 1 nonnegative integers, which is
(n−1+|ν(α)|

|ν(α)|

)

. This includes one bin for
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Figure 3.3: A 5×6 Coffee Shop game: Left: the AGG-/0 representation with-
out function nodes (looking at only the neighborhood ofα). Middle:
we introduce two function nodes,p′ (bottom) andp′′ (top). Right: α
now has only 3 neighbors.

each action or simple aggregator inν(α), plus one bin for agents that take an action

that is neither inν(α) nor in the neighborhood of any simple aggregator inν(α).

Then the total space required for representingu is bounded by|A |
(n−1+I

I

)

where

I = maxα∈A |ν(α)|.

Consider the Coffee Shop game from Example 3.2.7. For each action nodeα
corresponding to a location, we introduce two simple aggregator function nodes,

p′α and p′′α . Let ν(p′α) be the set of actions surroundingα , and ν(p′′α ) be the

set of actions corresponding to other locations. Then we setν(α) = {α , p′α , p
′′
α},

as shown in Figure 3.3. Now eachc(α) is a configuration over only three nodes.

Since eachf p is a simple aggregator, Corollary 3.2.11 applies and the size of this

AGG-FN is polynomial inn andA . In fact since the game is symmetric and the

β ()’s as defined in Proposition 3.2.13 are non-overlapping, we can calculate the

exact value of|C(α)| as the number of compositions ofn−1 into four nonnegative

integers, (n+2)!
(n−1)!3! = n(n+ 1)(n+ 2)/6 = O(n3). We must therefore storeBn(n+

1)(n+2)/6 = O(Bn3) utility values. This is significantly more compact than the

AGG-/0 representation, which has a representation size ofO(B(n−1+B)!
(n−1)!B! ).

We can represent the parity game from Example 3.2.8 in a similar way. For

each actionα we create a function nodepα , and letν(pα ) = ν(α). We then

modify ν(α) so that it has only one member,pα . For each function nodep we

define f p as f p(c(p)) = ∑α∈ν(p)c(α) mod 2. SinceR( f p) = {0,1}, Corollary

3.2.11 applies. In fact, each utility function just needs tostore two values, and so

the representation size isO(|A |) plus the size of the action graph.
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3.2.3 AGG-FNs with Additive Structure

So far we have assumed that the utility functionsuα : C(α) → R are represented

explicitly, i.e., by specifying the payoffs for allc(α) ∈ C(α). This is not the only

way to represent a mapping; the utility functions could be defined as analytical

functions, decision trees, logic programs, circuits, or even arbitrary algorithms.

These alternative representations might be more natural for humans to specify, and

in many cases are more compact than the explicit representation. However, this

extra compactness does not always allow us to reason more efficiently with the

games. In this section, we look at utility functions withadditive structure. These

functions can be represented compactly and do allow more efficient computation.

Definition of AGG-FNs with Additive Structure

We say that a multivariate function hasadditive structureif it can be written as a

(weighted) sum of functions of subsets of the variables. This form is more compact

because we only need to represent the summands, which have lower dimensionality

than the entire function.

We extend the AGG-FN representation by allowinguα to be represented as a

weighted sum of the configuration of the neighbors ofα .4

Definition 3.2.14.A utility function uα of an AGG-FN isadditiveif for all m∈ ν(α)

there existλm ∈R, such that

uα(c(α))≡ ∑
m∈ν(α)

λmc(m). (3.2.1)

Such an additive utility function can be represented as the tuple (λm)m∈ν(α).

This is a very versatile representation of additivity, because the neighbors ofα can

be function nodes. Thus additive utility functions can represent weighted sums of

arbitrary functions of configurations over action nodes. Wenow formally define an

AGG-FN representation where some of the utility functions are additive.

4Such a utility function could also be represented using standard function nodes representing
summation. However, we treat the common case of additivity separately because it is amenable
to special-purpose computational methods (intuitively, leveraging the linearity of expectation; see
Section 3.4.3).
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Definition 3.2.15. AnAGG-FN with additive structure (AGG-FNA)is a tuple(N,

A,P,G, f ,A+, Λ,u) where N,A,P,G, f are as defined in Definition 3.2.9, and

• A+ ⊆ A is the set of actions whose utility functions are additive;

• Λ = (λ α+)α+∈A+
, where eachλ α+ = (λ α+

m )m∈ν(α) is the tuple of coefficients

representing the additive utility function uα+ ;

• u= (uα)α∈A \A+
, where each uα is as defined in Definition 3.2.9. These are

the non-additive utility functions of the game, which are represented explic-

itly.

Representation Size

We only need|ν(α)| numbers to represent the coefficients of an additive utility

functionuα , whereas the explicit representation requires|C(α)| numbers. Of course

we also need to take into account the sizes of the neighboringfunction nodesp∈

ν(α) and their corresponding functionsf p, which represent the summands of the

additive functions. Eachf p either has a simple description requiring negligible

space, or is represented explicitly as a mapping. In the latter case its size can

be analyzed the same way as utility functions on action nodes. That is, when

the neighbors ofp are all actions then Proposition 3.2.6 applies; otherwise the

discussion in Section 3.2.2 applies.

Representing Congestion Games as AGG-FNAs

An arbitrary congestion game can be encoded as an AGG-FNA with no loss of

compactness, where alluα are represented as additive utility functions. Given a

congestion game(N,M, (Ai)i∈N,(K jk) j∈M,k≤n) as defined in Definition 2.1.1, we

construct an AGG-FNA with the same number of players and samenumber of

actions for each player as follows.

• Create∑i∈N |Ai | action nodes, corresponding to the actions in the congestion

game. In other words, the action sets do not overlap.

• Create 2m function nodes, labeled(p1, . . . , pm,q1, . . . ,qm). For eachj ∈ M,

there is an edge fromp j to q j . For all j ∈ M and for allα ∈ A , if facility j
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Figure 3.4: Left: a two-player congestion game with three facilities. The
actions are shown as ovals containing their respective facilities. Right:
the AGG-FNA representation of the same congestion game.

is included in actionα in the congestion game, then in the action graph there

is an edge from the action nodeα to p j , and also an edge fromq j to α .

• For eachp j , definec(p j ) ≡ ∑α∈ν( j)c(α), i.e., p j is a simple aggregator.

Since its neighbors are the actions that includes facilityj, thusc(p j) is the

number of players that chose facilityj, which is #( j,a).

• Assign eachq j only one neighbor, namelyp j , and definec(q j)≡ f qj (c(p j))≡

K j(c(p j )). In other words,c(q j) is exactlyK j(#( j,a)), the cost on facilityj.

• For each action nodeα , represent the utility functionuα as an additive func-

tion with weight−1 for each of its neighbors,

uα(c(α)) = ∑
j∈ν(α)

−c( j) =− ∑
j∈ν(α)

K j(#( j,a)). (3.2.2)

Example 3.2.16(Congestion game). Consider the AGG-FNA representation of

a two-player congestion game (see Figure 3.4). The congestion game has three

facilities labeled{1, 2, 3}. Player A has actions A1={1} and A2={1, 2}; Player

B has actions B1={2, 3} and B2={3}.

Now let us consider the representation size of this AGG-FNA.The action graph

has|A |+2mnodes andO(m|A |) edges; the function nodesp1, . . . , pm are simple

aggregators and each only requires constant space; eachf qj requiresn numbers to

specify so the total size of the AGG-FNA isΘ(mn+m|A |) = Θ(mn+m∑i∈N |Ai |).
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Figure 3.5: AGG-/0 representation of the Job Market game.

Thus this AGG-FNA representation has the same space complexity as the original

congestion game representation.

One extension of congestion games isplayer-specific congestion games[Milch-

taich, 1996, Monderer, 2007]. Instead of all players havingthe same costsK jk, in

these games each player has a different set of costs. This canbe easily represented

as an AGG-FNA by following the construction above, but usinga different set of

function nodesqi1, . . . ,qim for each playeri.

3.3 Further Examples

In this section we provide several more examples of structured games that can be

compactly represented as AGGs.

3.3.1 A Job Market

Here we describe a class of example games that can be compactly represented as

AGG-/0s. Unlike the Ice Cream Vendor game, the following example does not

involve choosing among actions that correspond to geographical locations.

Example 3.3.1(Job Market game). Consider the individuals competing in a job

market. Each player chooses a field of study and a level of education to achieve.
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The utility of player i is the sum of two terms: (a) a constant cost depending only

on the chosen field and education level, capturing the difficulty of studies and the

cost of tuition and forgone wages; and (b) a variable reward,depending on (i)

the number of players who chose the same field and education level as i, (ii) the

number of players who chose a related field at the same education level, and (iii)

the number of players who chose the same field at one level above or below i.

Figure 3.5 gives an action graph modeling one such job marketscenario, in

which there are three fields, Economics, Computer Science and Electrical Engi-

neering . For each field there are four levels of postsecondary study: Diploma,

Bachelor, Master and PhD. Economics and Computer Science are considered re-

lated fields, and so are Computer Science and Electrical Engineering. There is an-

other action representing high school education, which does not require a choice

of field. The maximum in-degree of the action graph is five, whereas a naive repre-

sentation of the game as a symmetric game (see Section 3.2.1)would correspond to

a complete action graph with in-degree 13. Thus this AGG-/0 representation is able

to take advantage of anonymity as well as context-specific independence structure.

3.3.2 Representing Anonymous Games as AGG-FNs

One property of the AGG-/0 representation as defined in Section 3.2.1 is that utility

function uα is shared by all players who haveα in their action sets. What if we

want to represent games withagent-specificutility functions, where utilities depend

not only onα andc(α), but also on theidentityof the player playingα?

As mentioned in Section 2.1.1, researchers have studiedanonymous games,

which deviate from symmetric games by allowing agent-specific utility functions

[Daskalakis and Papadimitriou, 2007, Kalai, 2004, 2005]. To represent games of

this type as AGGs, we cannot just let multiple players share action α , because

that would force those players to have the same utility function uα . It does work

to give agents non-overlapping action sets, replicating each action once for each

agent. However, the resulting AGG-/0 is not compact; it doesnot take advantage

of the fact that each of the replicated actions affects otherplayers’ utilities in the

same way. Using function nodes, it is possible to compactly represent this kind

of structure. We again splitα into separate action nodesαi for each playeri able
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Figure 3.6: AGG-FN representation of a game with agent-specific utility
functions.

to take the action. Now we also introduce a function nodep with everyαi as a

neighbor, and definef p to be a simple aggregator. Nowp gives the total number of

agents who chose actionα , expressing anonymity, and action nodes includep as a

neighbor instead of eachαi . This allows agents to have different utility functions

without sacrificing representational compactness.

Example 3.3.2(Anonymous game). Consider an anonymous game with two classes

of players, each class sharing the same utility functions. The AGG-FN representa-

tion of the game is shown in Figure 3.6. Players from the first class have action set

{A1, A2, A3}, and players from the second class have action set{B1, B2, B3}. Fur-

thermore, the utility functions of the second class of players exhibit certain context-

specific independence structure, which are expressed by theabsence of some of the

possible edges from function nodes to action nodes B1, B2, B3.

3.3.3 Representing Polymatrix Games as AGG-FNAs

A polymatrix game (defined in Section 2.1.1) can be compactlyrepresented as

an AGG-FNA. The encoding is as follows. The AGG-FNA has non-overlapping

action sets. For each pair of players(i, j), we create two function nodes to represent

i and j ’s payoffs under the bimatrix game between them. Each of these function

nodes has incoming edges from all ofi’s and j ’s actions. For each playeri and

each of his actionsai , there are incoming edges from then− 1 function nodes

representingi’s payoffs in his bimatrix games against each of the other players.
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Figure 3.7: AGG-FNA representation of a 3-player polymatrix game. Func-
tion nodeUAB represents player A’s payoffs in his bimatrix game against
B,UBA represents player B’s payoffs in his bimatrix game against A, and
so on. To avoid clutter we do not show the edges from the actionnodes
to the function nodes in this graph. Such edges exist from A and B’s
actions toUAB andUBA, from A and C’s actions toUAC andUCA, and
from B and C’s actions toUBC andUCB.

uai is an additive utility function with weights equal to 1. Based on arguments

similar to those in Section 3.2.1, this AGG-FNA representation has the same space

complexity as the total size of the bimatrix games.

Example 3.3.3(Polymatrix game). Consider the AGG-FNA representation of a

three-player polymatrix game, given in Figure 3.7. Each player’s payoff is the sum

of her payoffs in2×2 game with played with each of the other players; she is only

able to choose her action once. This additive utility function can be captured by

introducing a function node Ui j to represent each player i’s utility in the bimatrix

game played with player j.

3.3.4 Congestion Games with Action-Specific Rewards

So far the only use we have shown for AGG-FNAs is bringing existing game rep-

resentations into the AGG framework. Of course, another keyadvantage of our

approach is the ability to compactly represent games that would not have been

compact under these existing game representations. We now give such an exam-

ple.
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Example 3.3.4(Congestion game with action-specific rewards). Consider the fol-

lowing game with n players. As in a congestion game, there is aset of facilities M,

each action involves choosing a subset of the facilities, and the cost for facility j de-

pends only on the number of players that chose facility j. Nowfurther assume that,

in addition to the cost of using the facilities, each player ialso derives some utility

Ri depending only on her own action ai , i.e., the set of facilities she chose. This

utility is not necessarily additive across facilities. That is, in general if A,B⊂ M

and A∩B= /0, Ri(A∪B) 6= Ri(A)+Ri(B). So i’s total utility is

ui(a) = Ri(ai)− ∑
j∈ai

K j(#( j,a)). (3.3.1)

This game can model a situation in which the players use the facilities to complete

a task, and the utility of the task depends on the facilities chosen. Another interpre-

tation is given by Ben-Sasson et al. [2006], in their analysis of “congestion games

with strategy costs,” which also have exactly this type of utility function. This work

interpreted (the negative of) Ri(ai) as the computational cost of choosing the pure

strategy ai in a congestion game.

Due to the extra Ri(ai) term in the utility expression(3.3.1), this game cannot be

directly represented as a congestion game or a player-specific congestion game,5

but it can be compactly represented as an AGG-FNA. We create∑i |Ai | action

nodes, giving the agents nonoverlapping action sets. We have shown in Section

3.2.3 that we can use function nodes and additive utility functions to represent

the congestion-game-like costs. Beyond this construction, we just need to create

a function node ri for each player i and define c(r i) to be equal to Ri(ai). The

neighbors of ri are i’s entire action set:ν(r i) = Ai. Since the action sets do not

overlap, there are only|Ai| distinct configurations over Ai. In other words,|C(r i)|=

|Ai | and we need only O(|Ai|) space to represent each Ri. The total size of the

representation is O(mn+m∑i∈N |Ai|).

5Interestingly, Ben-Sasson et al. [2006] showed that this game belongs to the set of potential
games, which implies that there exists an equivalent congestion game. However, building such a
congestion game from the potential function following Monderer and Shapley’s [1996] construction
yields an exponential number of facilities, meaning that this congestion game representation is expo-
nentially larger than the AGG-FNA representation presented here.
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3.4 Computing Expected Payoff with AGGs

Up to this point, we have concentrated on how AGGs may be used to compactly

represent games of interest. But compact representation isonly half the story, and

indeed by itself is relatively easy to achieve. Our goal is toidentify a compact repre-

sentation that can be used directly (e.g., without conversion to its induced normal

form) for the computation of game-theoretic quantities of interest. We now turn

to this computational perspective, and show that we can indeed leverage AGG’s

representational compactness in the computation of game-theoretic quantities. In

this section we focus on the computational task of computingan agent’s expected

payoff under a mixed strategy profile. As we discussed in Section 2.2, this task

is important as an inner-loop problem in the computation of many game-theoretic

quantities, including Govindan and Wilson’s [2003, 2004] algorithms for finding

Nash equilibria, the simplicial subdivision algorithm forfinding Nash equilibria

[van der Laan et al., 1987], and Papadimitriou and Roughgarden’s [2008] algo-

rithm for finding correlated equilibria. We discuss some of these applications in

Section 3.5.

Our main result of this section is an algorithm that efficiently computes ex-

pected payoffs of AGGs by exploiting their context-specificindependence, anonymity

and additivity structure. In Section 3.4.1 we introduce ourexpected payoff algo-

rithm for AGG-/0s, and show (in Theorem 3.4.1) that the algorithm runs in time

polynomial in the size of the input AGG-/0. For the special case of symmetric

strategies in symmetric AGG-/0s, we present a different algorithm in Section 3.4.1

which runs asymptotically faster than our general algorithm for AGG-/0s; in Section

3.4.1 we extend this approach to the broader class ofk-symmetricAGG-/0s. Finally,

in Sections 3.4.2 and 3.4.3 we extend our expected payoff algorithm to AGG-FNs

and AGG-FNAs respectively, and identify (in Theorems 3.4.5and 3.4.6) conditions

under which these extended algorithms run in polynomial time.

3.4.1 Computing Expected Payoff for AGG-/0s

Following the notation of Section 2.2, we denote a mixed strategy of i by σi ∈ Σi , a

mixed-strategy profile byσ ∈ Σ, and the probability thati plays actionα asσi(α).

Now we can write the expected utility to agenti for playing pure strategyai ,
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given that all other agents play the mixed strategy profileσ−i, as

V i
ai
(σ−i)≡ ∑

a−i∈A−i

ui(ai ,a−i)Pr(a−i |σ−i), (3.4.1)

Pr(a−i|σ−i)≡ ∏
j 6=i

σ j(a j). (3.4.2)

Note that Equation 3.4.2 gives the probability ofa−i under the mixed strategyσ−i.

In the rest of this section we focus on the problem of computing V i
ai
(σ−i) given

i, ai and σ−i. Having established the machinery to computeV i
ai
(σ−i), we can

then compute the expected utility of playeri under a mixed strategy profileσ as

∑ai∈Ai
σi(ai)V i

ai
(σ−i).

One might wonder why Equations (3.4.1) and (3.4.2) are not the end of the

story. Notice that Equation (3.4.1) is a sum over the setA−i of action profiles of

players other thani. The number of terms is∏ j 6=i |A j |, which grows exponentially

in n. If we were to use the normal form representation, there really would be|A−i|

different outcomes to consider, each with potentially distinct payoff values. Thus,

using normal form the evaluation of Equation (3.4.1) would be the best possible

algorithm for computingV i
ai

. Since AGGs are fully expressive, the same is true for

games without any structure represented as AGGs. However, what about games

that are exponentially more compact when represented as AGGs than when repre-

sented in the normal form? For these games, evaluating Equation (3.4.1) amounts

to an exponential-time algorithm.

In this section we present an algorithm that given anyi, ai andσ−i, computes

the expected payoffV i
ai
(σ−i) in time polynomial in the size of the AGG-/0 repre-

sentation. In other words, our algorithm is efficient if the AGG-/0 is compact, and

requires time exponential inn if it is not. In particular, recall from Proposition 3.2.6

any AGG-/0 with maximum in-degree bounded by a constant has arepresentation

size that is polynomial inn. As a result our algorithm is polynomial inn for such

games.

Exploiting Context-Specific Independence: Projection

First, we consider how to take advantage of the context-specific independence

structure of an AGG-/0: the fact thati’s payoff when playingai only depends on
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configurations over the neighborhood ofi. The key idea is that we canprojectother

players’ strategies onto a smaller action space that is strategically the same from

the point of view of an agent who chose actionai . That is, we construct a graph

from the point of view of a given agent, expressing his sense that actions that do

not affect his chosen action are in a sense the “same action.”This can be seen as in-

ducing a context-specific graphical game. Formally, for every actionα ∈A define

a reduced graphG(α) by including only the nodesν(α) and a new node denoted

/0. The only edges included inG(α) are the directed edges from each of the nodes

ν(α) to the nodeα . Player j ’s actiona j is projected to a nodea(α)
j in the reduced

graphG(α) by the mapping

a(α)
j ≡

{

a j a j ∈ ν(α)

/0 a j 6∈ ν(α)
. (3.4.3)

In other words, actions that are not inν(α) (and therefore do not affect the payoffs

of agents playingα) are projected onto a new action, /0. The resultingprojected

action setA(α)
j has cardinality at most min(|A j |, |ν(α)|+1). This is illustrated in

Figure 3.8, using the Ice Cream Vendor game described in Example 3.2.5.

We define the set of mixed strategies on the projected action setA(α)
j by Σ(α)

j ≡

ϕ(A(α)
j ). A mixed strategyσ j on the original action setA j is projected toσ (α)

j ∈

Σ(α)
j by the mapping

σ (α)
j (a(α)

j )≡

{

σ j(a j) a j ∈ ν(α)

∑α ′∈A j\ν(α)σ j(α ′) a(α)
j = /0

. (3.4.4)

So givenai andσ−i, we can computeσ (ai)
−i in O(n|A |) time in the worst case. Now

we can operate entirely on the projected space, and write theexpected payoff as

V i
ai
(σ−i) = ∑

a
(ai )
−i ∈A

(ai )
−i

u
(

ai ,C
(ai)(ai ,a−i)

)

Pr
(

a(ai )
−i |σ

(ai)
−i

)

,

Pr
(

a(ai)
−i |σ

(ai)
−i

)

= ∏
j 6=i

σ (ai)
j

(

a(ai)
j

)

.

The summation is overA(ai)
−i , which in the worst case has(|ν(ai)|+1)(n−1) terms.
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Figure 3.8: Projection of the action graph. Left: action graph of the Ice
Cream Vendor game. Right: projected action graph and actionsets with
respect to the action C1.

So for AGG-/0s with strict or context-specific independencestructure, computing

V i
ai
(σ−i) in this way is exponentially faster than doing the summationin (3.4.1)

directly. However, the time complexity of this approach is still exponential inn.

Exploiting Anonymity: Summing over Configurations

Next, we want to take advantage of the anonymity structure ofthe AGG-/0. Recall

from our discussion of representation size that the number of distinct configura-

tions is usually smaller than the number of distinct pure action profiles. So ideally,

we want to compute the expected payoffV i
ai
(σ−i) as a sum over the possible con-

figurations, weighted by their probabilities:

V i
ai
(σ−i) = ∑

c(ai )∈C(ai ,i)

ui

(

ai ,c
(ai )
)

Pr
(

c(ai )|σ (ai)
)

, (3.4.5)

Pr
(

c(ai)|σ (ai)
)

= ∑
a :

C (ai)(a) = c(ai )

n

∏
j=1

σ j(a j). (3.4.6)

whereσ (ai)≡ (ai ,σ
(ai)
−i ) and Pr(c(ai )|σ (ai)) is the probability ofc(ai ) given the mixed

strategy profileσ (ai). Recall thatC(ai ,i) is the set of configurations overν(ai) given

that i playedai . So Equation (3.4.5) is a summation of size|C(ai ,i)|, the number of

configurations given thati playedai , which is polynomial inn if |ν(ai)| is bounded

by a constant. The difficult task is to compute Pr(c(ai)|σ (ai)) for all c(ai) ∈ C(ai ,i),
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i.e., the probability distribution overC(ai ,i) induced byσ (ai). We observe that the

sum in Equation (3.4.6) is over the set of all action profiles corresponding to the

configurationc(ai). The size of this set is exponential in the number of players.

Therefore directly computing the probability distribution using Equation (3.4.6)

would take time exponential inn.

Can we do better? We observe that the players’ mixed strategies are indepen-

dent, i.e.,σ is a product probability distributionσ(a) = ∏i σi(ai). Also, each

player affects the configurationc independently. This structure allows us to use dy-

namic programming (DP) to efficiently compute the probability distribution Pr(c(ai )|σ (ai)).

The intuition behind our algorithm is to apply one agent’s mixed strategy at a time,

effectively adding one agent at a time to the action graph. Let σ (ai)
1...k denote the pro-

jected strategy profile of agents{1, . . . ,k}. Denote byC(ai)
k the set of configurations

induced by actions of agents{1, . . . ,k}. Similarly, writec(ai)
k ∈C(ai)

k . Denote byPk

the probability distribution onC(ai)
k induced byσ (ai)

1...k, and byPk[c] the probability of

configurationc. At iterationk of the algorithm, we computePk from Pk−1 andσ (ai)
k .

After iterationn, the algorithm stops and returnsPn. The pseudocode of our DP

algorithm is shown as Algorithm 1, and our full algorithm forcomputingV i
ai
(σ−i)

is summarized in Algorithm 2.

Eachc(ai)
k is represented as a sequence of integers, soPk is a mapping from

sequences of integers to real numbers. We need a data structure to manipulate

such probability distributions over configurations (sequences of integers) which

permits quick lookup, insertion and enumeration. An efficient data structure for

this purpose is atrie [Fredkin, 1962]. Tries are commonly used in text processing

to store strings of characters, e.g. as dictionaries for spell checkers. Here we use

tries to store strings of integers rather than characters. Both lookup and insertion

complexity is linear in|ν(ai)|. To achieve efficient enumeration of all elements of

a trie, we store the elements in a list, in the order of their insertion. We omit the

proof of correctness of our algorithm, which is relatively straightforward.

Complexity

Let C(ai ,i)(σ−i) denote the set of configurations overν(ai) that have positive prob-

ability of occurring under the mixed strategy(ai ,σ−i). In other words, this is the
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Algorithm 1: Computing the induced probability distribution Pr(c(ai)|σ (ai)).

Input : ai , σ (ai)

Output : Pn, which is the distribution Pr(c(ai )|σ (ai)) represented as a trie.

c(ai )
0 = (0, . . . ,0);

P0[c
(ai )
0 ] = 1.0 ; // Initialization: C(ai)

0 = {c(ai )
0 }

for k= 1 to ndo
Initialize Pk to be an empty trie;

foreach c(ai)
k−1 from Pk−1 do

foreach a(ai )
k ∈ A(ai)

k such thatσ (ai)
k (a(ai)

k )> 0 do
c(ai)

k = c(ai)
k−1;

if a(ai)
k 6= /0 then
c(ai )

k (a(ai )
k ) += 1 ;// Apply action a(ai )

k

if Pk[c
(ai)
k ] does not exist yetthen

Pk[c
(ai )
k ] = 0.0;

Pk[c
(ai )
k ] += Pk−1[c

(ai)
k−1]×σ (ai)

k (a(ai)
k );

return Pn

number of terms we need to add together when doing the weighted sum in Equation

(3.4.5). Whenσ−i has full support,C(ai ,i)(σ−i) =C(ai ,i).

Theorem 3.4.1. Given an AGG-/0 representation of a game, i’s expected payoff

V i
ai
(σ−i) can be computed inΘ(n|A |+n|ν(ai)|

2|C(ai ,i)(σ−i)|) time, which is poly-

nomial in the size of the representation. IfI , the in-degree of the action graph, is

bounded by a constant, Viai
(σ−i) can be computed in time polynomial in n.

Proof. Since looking up an entry in a trie takes time linear in the size of the key,

which is|ν(ai)| in our case, the complexity of doing the weighted sum in Equation

(3.4.5) isO(|ν(ai)||C(ai ,i)(σ−i)|).

Algorithm 1 requiresn iterations; in iterationk, we look at all possible combi-

nations ofc(ai )
k−1 andα(ai)

k , and in each case do a trie look-up which costsΘ(|ν(ai)|).

Since|A (ai)
k | ≤ |ν(ai)|+ 1, and|C(ai )

k−1| ≤ |C(ai ,i)|, the complexity of Algorithm 1

is Θ(n|ν(ai)|
2|C(ai ,i)(σ−i)|). This dominates the complexity of summing up Equa-

tion (3.4.5). Adding the cost of computingσ (α)
−i , we get the overall complexity of
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Algorithm 2 Computing expected utilityV i
ai
(σ−i), givenai andσ−i.

1. for eachj 6= i, compute the projected mixed strategyσ (ai)
j using Equation (3.4.4):

σ (ai)
j (a(ai)

j )≡

{

σ j(a j) a j ∈ ν(ai)

∑α ′∈A j\ν(ai) σ j(α ′) a(ai)
j = /0

.

2. compute the probability distribution Pr(c(ai)|ai ,σ
(ai)
−i ) by following Algorithm 1.

3. calculate the expected utility using the following weighted sum (Equation (3.4.5)):

V i
ai
(σ−i) = ∑

c(ai )∈C(ai ,i)

ui

(

ai ,c
(ai)
)

Pr
(

c(ai)|σ (ai)
)

.

expected payoff computationΘ(n|A |+n|ν(ai)|
2|C(ai ,i)(σ−i)|).

Since|C(ai ,i)(σ−i)| ≤ |C(ai ,i)| ≤ |C(ai)|, and|C(ai)| is the number of payoff values

stored in payoff functionuai , this means that expected payoffs can be computed in

polynomial time with respect to the size of the AGG-/0. Furthermore, our algorithm

is able to exploit strategies with small supports which leadto a small|C(ai ,i)(σ−i)|.

Since|C(ai)| is bounded by(n−1+|ν(ai)|)!
(n−1)!|ν(ai)|!

, this implies that if the in-degree of the

graph is bounded by a constant, then the complexity of computing expected payoffs

is O(n|A |+nI+1).

The proof of Theorem 3.4.1 shows that besides exploiting thecompactness of

the AGG-/0 representation, our algorithm is also able to exploit the cases where the

mixed strategy profiles given have small support sizes, because the time complex-

ity depends on|C(ai ,i)(σ−i)| which is small when support sizes are small. This is

important in practice, since we will often need to carry out expected utility com-

putations for strategy profiles with small supports. Porteret al. [2008] observed

that quite often games have Nash equilibria with small support, and proposed algo-

rithms that explicitly search for such equilibria. In otheralgorithms for computing

Nash equilibria such as Govindan-Wilson and simplicial subdivision, it is also quite

often necessary to compute expected payoffs for mixed strategy profiles with small

support.

Of course it is not necessary to apply the agents’ mixed strategies in the order
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1. . .n. In fact, we can apply the strategies in any order. Although the number of

configurations|C(ai ,i)(σ−i)| remains the same, the ordering does affect the interme-

diate configurationsC(ai)
k . We can use the following heuristic to try to minimize

the number of intermediate configurations: sort the playersin ascending order of

the sizes of their projected action sets. This reduces the amount of work we do in

earlier iterations of Algorithm 1, but does not change its overall complexity.

The Case of Symmetric Strategies in Symmetric AGG-/0s

As described in Section 3.2.1, if a game is symmetric it can berepresented as an

AGG-/0 withAi =A for all i ∈N. Given a symmetric game, we are often interested

in computing expected utilities undersymmetricmixed strategy profiles, where a

mixed strategy profileσ is symmetric ifσi = σ j ≡ σ∗ for all i, j ∈ N. In Section

3.5.2 we will discuss algorithms that make use of expected utility computation

under symmetric strategy profiles to compute a symmetric Nash equilibrium of

symmetric games.

To compute the expected utilityV i
ai
(σ∗), we could use the algorithm we pro-

posed for general AGG-/0s under arbitrary mixed strategies, which requires time

polynomial in the size of the AGG-/0. But we can gain additional computational

speedup by exploiting the symmetry in the game and the strategy profile.

As before, we want to use Equation (3.4.5) to compute the expected utility, so

the crucial task is again computing the probability distribution over projected con-

figurations, Pr(c(ai)|σ (ai)). Recall thatσ (ai) ≡ (ai ,σ
(ai)
−i ). Define Pr(c(ai )|σ (ai)

∗ ) to

be the distribution induced byσ (ai)
−i , the partial mixed strategy profile of players

other thani, each playing the symmetric strategyσ (ai)
∗ . Once we have the distri-

bution Pr(c(ai)|σ (ai)
∗ ), we can then compute the distribution Pr(c(ai)|σ (ai)) straight-

forwardly by applying playeri’s strategyai . In the rest of this section we focus on

computing Pr(c(ai)|σ (ai)
∗ ).

DefineS (c(ai )) to be the set containing all action profilesa(ai) such thatC (a(ai))=

c(ai ). Since all agents have the same mixed strategies, each pure action profile in
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S (c(ai )) is equally likely, so for anya(ai ) ∈ S (c(ai))

Pr
(

c(ai)|σ (ai)
∗

)

=
∣

∣

∣
S (c(ai))

∣

∣

∣
Pr
(

a(ai )|σ (ai)
∗

)

, (3.4.7)

Pr
(

a(ai)|σ (ai)
∗

)

= ∏
α∈A (ai )

(σ (ai)
∗ (α))c(ai )(α). (3.4.8)

The sizes ofS (c(ai)) are given by the multinomial coefficient

∣

∣

∣
S

(

c(ai)
)∣

∣

∣
=

(n−1)!

∏α∈A (ai )

(

c(ai)(α)
)

!
. (3.4.9)

Better still, using a Gray code technique we can avoid reevaluating these equa-

tions for everyc(ai ) ∈C(ai). Denote the configuration obtained fromc(ai) by decre-

menting by one the number of agents taking actionα ∈ A (ai) and incrementing

by one the number of agents taking actionα ′ ∈ A (ai) asc(ai )
′
≡ c(ai)

(α→α ′). Then

consider the graphHC(ai ) whose nodes are the elements of the setC(ai), and whose

directed edges indicate the effect of the operation(α → α ′). This graph is a regu-

lar triangular lattice inscribed within a(|A (ai)|−1)-dimensional simplex. Having

computedPr(c(ai )|σ (ai)
∗ ) for one node ofHC(ai ) corresponding to configurationc(ai ),

we can compute the result for an adjacent node inO(1) time,

Pr
(

c(ai)
(α→α ′)|σ

(ai)
∗

)

=
σ (ai)
∗ (α ′)c(ai)(α)

σ (ai)
∗ (α)

(

c(ai)(α ′)+1
)

Pr
(

c(ai )|σ (ai)
∗

)

. (3.4.10)

HC(ai ) always has a Hamiltonian path (attributed to an unpublishedresult of

Knuth by Klingsberg [1982]), so having computed Pr(c(ai )|σ (ai)
∗ ) for an initial c(ai)

using Equation (3.4.8), the results for all other projectedconfigurations (nodes in

HC(ai )) can be computed by using Equation (3.4.10) at each subsequent step on the

path. Generating the Hamiltonian path corresponds to finding a combinatorial Gray

code for compositions; an algorithm with constant amortized running time is given

by Klingsberg [1982]. Intuitively, it is easy to see that a simple, “lawnmower”

Hamiltonian path exists for any lower-dimensional projection of HC(ai ) , with the

only state required to compute the next node in the path beinga direction value for

each dimension.

Our algorithm for computing the distribution Pr
(

c(ai)|σ (ai)
∗

)

is summarized in
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Algorithm 3 Computing distribution Pr
(

c(ai )|σ (ai)
∗

)

in a symmetric AGG-/0

1. letc(ai) = c(ai)
0 , wherec(ai)

0 is the initial node of a Hamiltonian path ofHC(ai ) .

2. compute Pr
(

c(ai)|σ (ai)
∗

)

using Equation (3.4.7):

Pr
(

c(ai)|σ (ai)
∗

)

=
(n−1)!

∏α∈A (ai )

(

c(ai)(α)
)

! ∏
α∈A (ai )

(σ (ai)
∗ (α))c(ai )(α).

3. While there are more configurations inC(ai):

(a) get the next configurationc(ai)
(α→α ′)

in the Hamiltonian path, using Klingsberg’s
algorithm [Klingsberg, 1982].

(b) compute Pr
(

c(ai)
(α→α ′)

|σ (ai)
∗

)

using Equation (3.4.10):

Pr
(

c(ai)
(α→α ′)|σ

(ai)
∗

)

=
σ (ai)
∗ (α ′)c(ai)(α)

σ (ai)
∗ (α)

(

c(ai)(α ′)+1
)

Pr
(

c(ai)|σ (ai)
∗

)

.

(c) letc(ai) = c(ai)
(α→α ′)

.

4. output Pr
(

c(ai)|σ (ai)
∗

)

for all c(ai) ∈C(ai).

Algorithm 3. For computing expected utility, we again use Algorithm 2, except

with Algorithm 3 replacing Algorithm 1 as the subroutine forcomputing the distri-

bution Pr
(

c(ai)|σ (ai)
∗

)

.

Theorem 3.4.2. Computation of the expected utility Vi
ai
(σ∗) under a symmetric

strategy profile for symmetric action-graph games using Equations(3.4.5), (3.4.7),

(3.4.8)and (3.4.10)takes time O(|A |+ |ν(ai)|
∣

∣C(ai)(σ (ai))
∣

∣).

Proof. Projection toσ (ai)
∗ takesO(|A |) time since the strategies are symmetric.

Equation (3.4.5) has
∣

∣C(ai)(σ (ai))
∣

∣ summands. The probability for the initial con-

figuration requiresO(n) time. Using Gray codes the computation of subsequent

probabilities can be done in constant amortized time for each configuration. Since

each look-up of the utility function takesO(|ν(ai)|) time, the total complexity of

the algorithm isO(|A |+ |ν(ai)|
∣

∣C(ai)(σ (ai))
∣

∣).
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Algorithm 4 Computing the probability distribution Pr(c(ai)|σ (ai)) in a k-
symmetric AGG-/0 under ak-symmetric mixed strategy profileσ (ai).

1. Partition the players according to{N1, . . . ,Nk}.

2. For eachl ∈ {1, . . . ,k}, compute Pr(c(ai)|σ (ai)
Nl

), the probability distribution induced

by σ (ai)
Nl

, the partial strategy profile of players inNl . Sinceσ (ai)
Nl

is symmetric, this
can be computed efficiently using Algorithm 3 as discussed inSection 3.4.1.

3. Combine thek probability distributions together using Algorithm 1, resulting in the
distribution Pr(c(ai)|σ (ai)).

Note that this is faster than our dynamic programming algorithm for general

AGG-/0s under arbitrary strategies, whose complexity isΘ(n|A |+n|ν(ai)|
2
∣

∣C(ai)(σ (ai))
∣

∣)

by Theorem 3.4.1. In the usual case where the second term dominates the first, the

algorithm for symmetric strategies is faster by a factor ofn|ν(ai)|.

k-symmetric Games

We now move to a generalization of symmetry in games that we call k-symmetry.

Definition 3.4.3. An AGG-/0 is k-symmetric if there exists a partition{N1, . . . ,Nk}

of N such that for all l∈ {1, . . . ,k}, for all i, j ∈ Nl , Ai = A j .

Intuitively, k-symmetric AGG-/0s represent games withk classes of identical

agents, where agents within each class are identical. Note that all games are triv-

ially n-symmetric. The Ice Cream Vendor game of Example 3.2.5 is a nontrivial

k-symmetric AGG-/0 withk= 3.

Given ak-symmetric AGG-/0 with partition{N1, . . . ,Nk}, a mixed strategy pro-

file σ is k-symmetric if for alll ∈ {1, . . . ,k}, for all i, j ∈ Nl , σi = σ j . We are often

interested in computing expected utility underk-symmetric strategy profiles. For

example in Section 3.5.2 we will discuss algorithms that make use of such expected

utility computations to findk-symmetric Nash equilibria ink-symmetric games. To

compute expected utility under ak-symmetric mixed strategy profile, we can use a

hybrid approach when computing the probability distribution over configurations,

shown in Algorithm 4. Observe that this algorithm combines our specialized Algo-

rithm 3 for handling symmetric games from Section 3.4.1 withthe idea of running
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Algorithm 1 on the joint mixed strategies of subgroups of agents discussed at the

end of Section 3.4.1.

3.4.2 Computing Expected Payoff with AGG-FNs

Algorithm 1 cannot be directly applied to AGG-FNs with arbitrary f p. First of

all, projection of strategies does not work directly, because a playerj playing an

actiona j 6∈ ν(α) could still affectc(α) via function nodes. Furthermore, the gen-

eral idea of using dynamic programming to build up the probability distribution

by adding one player at a time does not work because for an arbitrary function

nodep∈ ν(α), each player would not be guaranteed to affectc(p) independently.

We could convert the AGG-FN to an AGG-/0 in order to apply our algorithm, but

then we would not be able to translate the extra compactness of AGG-FNs over

AGG-/0s into more efficient computation. In this section we identify two sub-

classes of AGG-FN for which expected utility can be efficiently computed. In

Section 3.4.2 we show that when all function nodes belong to arestricted class

of contribution-independent function nodes, expected utility can be computed in

polynomial time. In Section 3.4.2 we reinterpret the expected utility problem as a

Bayesian network inference problem, which can be computed in polynomial time

if the resulting Bayesian network has bounded treewidth.

Contribution-Independent Function Nodes

Definition 3.4.4. A function node p in an AGG-FN iscontribution-independent

(CI) if

• ν(p)⊆ A , i.e., the neighbors of p are action nodes.

• There exists a commutative and associative operator∗, and for eachα ∈

ν(p) an integer wα , such that given an action profile a= (a1, . . . ,an), c(p) =

∗i∈N:ai∈ν(p)wai .

• The running time of each∗ operation is bounded by a polynomial in n,|A |

and |P|. Furthermore,∗ can be represented in space polynomial in n,|A |

and |P|.
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An AGG-FN is contribution-independent if all its function nodes are contribution-

independent.

Note that it follows from this definition thatc(p) can be written as a function

of c(p) by collecting terms:c(p)≡ f p(c(p)) = ∗α∈ν(p)(∗
c(α)
k=1 wα).

Simple aggregators can be represented as contribution-independent function

nodes, with the+ operator serving as∗, andwα = 1 for all α . The Coffee Shop

game is thus an example of a contribution-independent AGG-FN. For the parity

game in Example 3.2.8,∗ is instead addition mod 2. An example of a non-additive

CI function node arises in a perfect-information model of an(advertising) auction

in which actions correspond to bid amounts [Thompson and Leyton-Brown, 2009].

Here we wantc(p) to represent the amount of the winning bid, and so we letwα

be the bid amount corresponding to actionα , and∗ be the max operator.

The advantage of contribution-independent AGG-FNs is thatfor all function

nodesp, each player’s strategy affectsc(p) independently. This fact allows us

to adapt our algorithm to efficiently compute the expected utility V i
ai
(σ−i). For

simplicity we present the algorithm for the case where we have one operator∗

for all p ∈ P, but our approach can be directly applied to games with different

operators andwα associated with different function nodes.

We define thecontributionof actionα to nodem∈A ∪P, denotedδα(m), as

1 if m= α , 0 if m∈ A \{α}, and∗m′∈ν(m)(∗
δα (m′)
k=1 wα) if m∈ P. Then it is easy

to verify that given an action profilea = (a1, . . . ,an), c(α) = ∑n
j=1δaj (α) for all

α ∈ A andc(p) = ∗n
j=1 δaj (p) for all p∈ P. Given that playeri playedai , and

for all α ∈ A , we define theprojected contributionof actionα underai , denoted

δ (ai)
α , as the tuple(δα(m))m∈ν(ai). Note that different actionsα may have identical

projected contributions underai . Player j ’s mixed strategyσ j induces a probabil-

ity distribution overj ’s projected contributions, Pr(δ (ai)|σ j) = ∑
aj :δ

(ai )
aj =δ (ai )

σ j(a j).

Now we can operate entirely using the probabilities on projected contributions in-

stead of the mixed strategy probabilities. This is analogous to the projection ofσ j

to σ (ai)
j in our algorithm for AGG-/0s.

Algorithm 1 for computing the distribution Pr(c(ai )|σ) can be straightforwardly

adopted to work with contribution-independent AGG-FNs. Whenever we apply

playerk’s contributionδ (ai)
ak to c(ai)

k−1, the resulting configurationc(ai)
k is computed
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componentwise as follows:c(ai)
k (m) = δ (ai)

ak (m)+c(ai )
k−1(m) if m∈A , andc(ai )

k (m)=

δ (ai)
ak (m)∗c(ai )

k−1(m) if m∈ P.

To analyze the complexity of computing expected utility, itis necessary to

know the representation size of a contribution-independent AGG-FN. For each

function nodep we need to specify∗ and(wα)α∈ν(p) instead off p directly. Let

‖∗‖ denote the representation size of∗. Then the total size of a contribution-

independent AGG-FN isO(∑α∈A |C(α)|+ ‖∗‖). As discussed in Section 3.2.2,

this size is not necessarily polynomial inn, |A | and|P|; although when the con-

ditions in Corollary 3.2.11 are satisfied, the representation size is polynomial.

Theorem 3.4.5.Expected utility can be computed in time polynomial in the size of

a contribution-independent AGG-FN. Furthermore, if the in-degrees of the action

nodes are bounded by a constant and the sizes of ranges|R( f p)| for all p∈P are

bounded by a polynomial in n,|A | and|P|, then expected utility can be computed

in time polynomial in n,|A | and |P|.

Proof Sketch.Following similar complexity analysis as Theorem 3.4.1, ifan AGG-FN

is contribution-independent, expected utilityV i
ai
(σ−i) can be computed inO(n|A ||C(ai )|(T∗+

|ν(ai)|)) time, whereT∗ denotes the maximum running time of an∗ operation.

SinceT∗ is polynomial inn, |A | and|P| by Definition 3.4.4, the running time for

computing expected utility is polynomial in the size of the AGG-FN representa-

tion. The second part of the theorem follows from a direct application of Corollary

3.2.11.

For AGG-FNs whose function nodes are all simple aggregators, each player’s

set of projected contributions has size at most|ν(ai)+1|, as opposed to|A | in the

general case. This leads to a run time complexity ofO(n|A |+ n|ν(ai)|
2|C(ai)|),

which is better than the complexity of the general case proved in Theorem 3.4.5.

Applied to the Coffee Shop game, since|C(α)|= O(n3) and all function nodes are

simple aggregators, our algorithm takesO(n|A |+n4) time, which growslinearly

in |A |.
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Beyond Contribution Independence

What about the case where not all function nodes are contribution-independent—is

there anything we can do besides converting the AGG-FN into its induced AGG-/0?

It turns out that by reducing the problem of computing expected utility to a Bayesian

network inference problem, we can still efficiently computeexpected utilities for

certain additional classes of AGG-FNs.

Bayesian networks compactly represent probability distributions exhibiting con-

ditional independence structure (see, e.g., [Pearl, 1988,Russell and Norvig, 2003]).

A Bayesian network is a DAG in which nodes represent random variables and edges

represent direct probabilistic dependence. Each nodeX is associated with a condi-

tional probability distribution (CPD) specifying the probability of each realization

of random variableX conditional on the realizations of its parent random variables.

A key step in our approach for computing expected utility in AGG-FNs is com-

puting the probability distribution over configurations Pr(c(ai)|σ (ai)). If we treat

each nodem’s configurationc(m) as a random variable, then the distribution over

configurations can be interpreted as the joint probability distribution over the set

of random variables{c(m)}m∈ν(ai). Given an AGG-FN, a playeri and an action

ai ∈ Ai, we can construct aninduced Bayesian networkB i
ai

:

• The nodes ofB i
ai

consist of (i) one node for each element ofν(ai); (ii) one

node for each neighbor of a function node belonging toν(ai); and (iii) one

node for each neighbor of a function node added in the previous step, and so

on until no more function nodes are added. Each of these nodesm represents

the random variablec(m). We further introduce another kind of node: (iv)n

nodesσ1, . . . ,σn, representing each player’s mixed strategy. The domain of

each random variableσi is Ai.

• The edges ofB i
ai

are constructed by keeping all edges that go into the func-

tion nodes that are included inB, ignoring edges that go into action nodes.

Furthermore for each playerj, we create an edge fromσ j to each of j ’s

actionsa j ∈ A j .

• The conditional probability distribution (CPD) at each function nodep is

just the deterministic functionf p. The CPD at each action nodeα ′ is a de-

terministic function that returns the number of its parents(observe that these
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are all mixed strategy nodes) that take the valueα ′. Mixed strategy nodes

have no incoming edges; their (unconditional) probabilitydistributions are

the mixed strategies of the corresponding players, except for playeri, whose

nodeσi takes the deterministic valueai .

It is straightforward to verify thatB i
ai

is a DAG, and that the joint distribution

on random variables{c(m)}m∈ν(α) is exactly the distribution over configurations

Pr(c(ai )|(ai ,σ
(ai)
−i )). This joint distribution can then be computed using a standard

algorithm such as clique tree propagation or variable elimination. The running

times of such algorithms are worst-case exponential; however, for Bayesian net-

works with bounded tree-width, their running times are polynomial.

Further speedups are possible at nodes in the induced Bayesian network that

correspond to action nodes and contribution-independent function nodes. The de-

terministic CPDs at such nodes can be formulated using independent contributions

from each player’s strategy. This is an example ofcausal independencestructure in

Bayesian networks studied by Heckerman and Breese [1996] and Zhang and Poole

[1996], who proposed different methods for exploiting suchstructure to speed up

Bayesian network inference. Such methods share the common underlying idea of

decomposing the CPDs into independent contributions, which is intuitively similar

to our approach in Algorithm 1.6

3.4.3 Computing Expected Payoff with AGG-FNAs

Due to the linearity of expectation, the expected utility ofi playing an actionai

with an additive utility function with coefficients(λm)m∈ν(ai) is

V i
ai
(σ−i) = ∑

m∈ν(ai)

λmE[c(m)|ai ,σ−i], (3.4.11)

whereE[c(m)|ai ,σ−i] is the expected value ofc(m) given the strategy profile(ai ,σ−i).

Thus we can compute these expected values for eachm∈ ν(ai), then sum them

up as in Equation (3.4.11) to get the expected utility. Ifm is an action node,

then E[c(m)|ai ,σ−i] is the expected number of players that chosem, which is

6This approach of reducing expected utility computation to Bayesian network inference is fur-
ther developed in Chapters 5 and 6, for Temporal Action-Graph Games and Bayesian Action-Graph
Games respectively.
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∑i∈N σi(m). The more interesting case is whenm is a function node. Recall that

c(m) ≡ f m(c(m)) wherec(m) is the configuration over the neighbors ofm. We can

write the expected value ofc(m) as

E[c(m)|ai ,σ−i] = ∑
c(m)∈C(m)

f m(c(m))Pr(c(m)|ai ,σ−i). (3.4.12)

This has the same form as Equation (3.4.5) for the expected utility V i
ai
(σ−i), except

that we havef m instead ofuα . Thus our results for the computation of Equation

(3.4.5) also apply here. That is, if the neighbors ofm are action nodes and/or

contribution-independent function nodes, thenE[c(m)|ai ,σ−i] can be computed in

polynomial time.

Theorem 3.4.6.Suppose uα is represented as an additive utility function in a given

AGG-FNA. If each of the neighbors ofα is either (i) an action node, or (ii) a func-

tion node whose neighbors are action nodes and/or contribution-independent func-

tion nodes, then the expected utility Vi
α(σ−i) can be computed in time polynomial

in the size of the representation. Furthermore, if the in-degrees of the neighbors

of α are bounded by a constant, and the sizes of ranges|R( f p)| for all p ∈ P

are bounded by a polynomial in n,|A | and |P|, then the expected utility can be

computed in time polynomial in n,|A | and |P|.

It is straightforward to verify that our AGG-FNA representations of polyma-

trix games, congestion games, player-specific congestion games and the game in

Example 3.3.4 all satisfy the conditions of Theorem 3.4.6.

3.5 Computing Sample Equilibria with AGGs

In this section we consider some theoretical and practical applications of our ex-

pected utility algorithm. In Section 3.5.1 we analyze the complexity of finding a

sampleε-Nash equilibrium in an AGG and show that it is PPAD-complete. In Sec-

tion 3.5.2 we extend our expected utility algorithm to the computation of payoff

Jacobians, which is a key step in several algorithms for computing ε-Nash equilib-

ria, including the Govindan-Wilson algorithm. In Section 3.5.3 we show that it can

also speed up the simplicial subdivision algorithm, and in Section 3.5.4 we show

that it can be used to find a correlated equilibrium in polynomial time.
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3.5.1 Complexity of Finding a Nash Equilibrium

In this section we consider the complexity of finding a Nash equilibrium of an

AGG. As discussed in Section 2.2.1, since a Nash equilibriumfor a game of more

that two players may require irrational numbers in the probabilities, for practical

computation it is necessary to consider approximations to Nash equilibria. Here we

consider the frequently-used notion ofε-Nash equilibrium as defined in Definition

2.2.3. Recall from Section 2.2 that for any game representation, its NASH problem

is defined to be the problem of finding anε-Nash equilibrium of a game encoded

in that representation, for someε given as part of the input. Also recall from

Section 2.2.1 that the NASH problem forn-player normal-form games withn≥ 2 is

complete for the complexity class PPAD, which is contained in NP but not known

to be in P. Turning to compact representations, recall from Section 2.2.2 and in

particular Theorem 2.2.4 that the complexity of computing expected utility plays

a vital role in the complexity of finding anε-Nash equilibrium. By leveraging

Algorithm 1, we are able to apply Theorem 2.2.4 to AGGs.

Corollary 3.5.1. The complexity of NASH for AGG-/0s is PPAD-complete.

Remark. It may not be clear why this would be surprising or encouraging; indeed,

the PPAD-hardness part of the claim is neither. However, thePPAD-membership

part of the claim is a positive result. Specifically, it implies that the problem of

finding a Nash equilibrium in an AGG-/0 can be reduced to the problem of finding

a Nash equilibrium in a two-player normal-form game with size polynomial in

the size of the AGG-/0. This is in contrast to the normal form representation of

the original game, which can be exponentially larger than the AGG-/0. In other

words, if we instead try to solve for a Nash equilibrium usingthe normal form

representation of the original game, we would face a PPAD-complete problem with

an input exponentially larger than the AGG-/0 representation.

Proof sketch.The first condition of Theorem 2.2.4—polynomial type—is satisfied

by all AGG variants, since action sets are represented explicitly. We first show that

the problem belongs to PPAD, by constructing a circuit that computes expected util-

ity and satisfies the second condition of Theorem 2.2.4.7 Recall that our expected

utility algorithm consists of Equation (3.4.4), then Algorithm 1, and finally Equa-
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tion (3.4.5). Equations (3.4.4) and (3.4.5) can be straightforwardly translated into

arithmetic circuits using addition and multiplication nodes. Algorithm 1 involves

for loops that cannot be directly translated to an arithmetic circuit, but we observe

that we can unroll the for loops and still end up with a polynomial number of op-

erations. The resulting circuit resembles a lattice withn levels; at thek-th level

there are|C(ai)
k | addition nodes. Each addition node corresponds to a configuration

c(ai )
k ∈C(ai)

k , and calculatesPk[c
(ai )
k ] as in iterationk of Algorithm 1. Also there are

|A(ai)
k | multiplication nodes for eachc(ai )

k , in order to carry out the multiplications

in iterationk of Algorithm 1.

To show PPAD-hardness, we observe that an arbitrary graphical game can be

encoded as an AGG-/0 without loss of compactness (see Section 3.2.1). Thus the

problem of finding a Nash equilibrium in a graphical game can be reduced to the

problem of finding a Nash equilibrium in an AGG-/0. Since finding a Nash equilib-

rium in a graphical game is known to be PPAD-hard, finding a Nash equilibrium in

an AGG-/0 is PPAD-hard.

For AGG-FNs that satisfy the conditions for Theorem 3.4.5 orAGG-FNAs

that satisfy Theorem 3.4.6, similar arguments apply, and wecan prove PPAD-

completeness for those subclasses of games if we make the reasonable assump-

tion that the operator∗ used to define the CI function nodes can be implemented

as an arithmetic circuit of polynomial length that satisfiesthe second condition of

Theorem 2.2.4.

3.5.2 Computing a Nash Equilibrium: The Govindan-Wilson
Algorithm

Now we move from the theoretical to the practical. The PPAD-hardness result of

Corollary 3.5.1 implies that a polynomial-time algorithm for Nash equilibrium is

unlikely to exist, and indeed known algorithms for identifying sample Nash equi-

libria have worst-case exponential running times. Nevertheless, we will show that

our dynamic programming algorithm for expected utility canbe used to achieve

exponential speedups in such algorithms, as well as an algorithm for computing a

7Observe that the second condition in Theorem 2.2.4 implies that the expected utility algorithm
must take polynomial time; however, some polynomial algorithms (e.g., those that rely on division)
do not satisfy this condition.
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sample correlated equilibrium. Specifically, we use ablack-boxapproach as dis-

cussed in Section 2.2.2.

First we consider Govindan and Wilson’s [2003] global Newton method, a

state-of-the-art method for finding mixed-strategy Nash equilibria in multi-player

games. Recall from Sections 2.2.1 and 2.3 that a bottleneck of the algorithm is the

computation of payoff Jacobians, and the Gametracer package provides a black-

box implementation of the global Newton method that allows one to directly plug

in representation-specific subroutines for this task.

The payoff Jacobian is defined to be the Jacobian of the function V : Σ →

R∑i |Ai |, whose(i,αi)-th component is the expected utilityV i
αi
(σ−i). The corre-

sponding Jacobian atσ is a(∑i |Ai |)× (∑i |Ai|) matrix with entries

∂V i
ai
(σ−i )

∂σi′(ai′)
≡ ∇V i,i′

ai ,ai′
(σ) (3.5.1)

= ∑
a∈A

u(ai ,C (ai ,ai′ ,a))Pr(a|σ) (3.5.2)

if i 6= i′, and zero otherwise. Here an overbar is shorthand for the subscript−{i, i′}

wherei 6= i′ are two players; e.g.,a≡ a−{i,i′}. The rows of the matrix are indexed

by i andai while the columns are indexed byi′ andai′ . Given entry∇V i,i′
ai ,ai′

(σ), we

call ai its primary action node, andai′ its secondary action node.

We note that efficient computation of the payoff Jacobian is important for

more than simply Govindan and Wilson’s global Newton method. For example,

recall from Section 2.2.1 that the iterated polymatrix approximation (IPA) method

[Govindan and Wilson, 2004] has the same computational problem at its core.

Computing the Payoff Jacobian

Now we consider how the payoff Jacobian may be computed. Equation (3.5.2)

shows that the∇V i,i′
ai ,ai′

(σ) element of the Jacobian can be interpreted as the ex-

pected utility of agenti when she takes actionai , agenti′ takes actionai′ , and all

other agents use mixed strategies according toσ . So a straightforward—and quite

effective—approach is to use our expected utility algorithm to compute each entry

of the Jacobian.

However, the Jacobian matrix has certain extra structure that allows us to achieve
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further speedup. For example, observe that some entries of the Jacobian are iden-

tical. If two entries have the same primary action nodeα , then they are expected

payoffs on the same utility functionuα , and so have the same values if their in-

duced probability distributions overC(α) are the same. We need to consider two

cases:

1. The two entries come from the same row of the Jacobian, say playeri’s action

ai . There are two sub-cases to consider:

(a) The columns of the two entries belong to the same playerj, but differ-

ent actionsa j anda′j . If a(ai )
j = a′(ai)

j , i.e.,a j anda′j both project to the

same projected action inai ’s projected action graph,8 then ∇V i, j
ai ,aj =

∇V i, j
ai ,a′j

. This implies that whena j ,a′j 6∈ ν(ai), ∇V i, j
ai ,aj = ∇V i, j

ai ,a′j
.

(b) The columns of the entries correspond to actions of different players.

We observe that for allj anda j such thatσ (ai)(a(ai )
j ) = 1, ∇V i, j

ai ,aj (σ) =

V i
ai
(σ−i). As a special case, ifA(ai)

j = { /0}, i.e., agentj does not affect

i’s payoff wheni playsai , then for alla j ∈ A j , ∇V i, j
ai ,aj (σ) =V i

ai
(σ−i).

2. If ai anda j correspond to the same action nodeα (but owned by agentsi

and j respectively), thus sharing the same payoff functionuα , then∇V i, j
ai ,aj =

∇V j,i
aj ,ai . Furthermore, if there exista′i ∈ Ai,a′j ∈ A j such thata′i

(α) = a′j
(α) (or

δ (α)
a′i

= δ (α)
a′j

for contribution-independent AGG-FNs), then∇V i, j
ai ,a′j

= ∇V j,i
aj ,a′i

.

A consequence of 1(a) is that any Jacobian of an AGG has at most∑i ∑ai∈Ai
(n−

1)(ν(ai)+1) distinct entries. For AGGs with bounded in-degree, this isO(n∑i |Ai|).

For each set of identical entries, we only need to do the expected utility computa-

tion once. Even when two entries in the Jacobian are not identical, we can exploit

the similarity of the projected strategy profiles (and thus the similarity of the in-

duced distributions) between entries, reusing intermediate results when computing

the induced distributions of different entries. Since computing the induced proba-

bility distributions is the bottleneck of our expected payoff algorithm, this provides

significant speedup.

8For contribution-independent AGG-FNs, the condition becomesδ (ai)
aj = δ (ai )

a′j
, i.e., a j and a′j

have the same projected contribution underai .
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First we observe that if we fix the row(i,ai) and the column’s playerj, then

σ is the same for all secondary actionsa j ∈ A j . We can compute the probability

distribution Pr(cn−1|ai ,σ (ai)), then for alla j ∈ A j , we just need to apply the action

a j to get the induced probability distribution for the entry∇V i, j
ai ,aj .

Now suppose we fix the row(i,ai). For two column playersj and j ′, their

corresponding strategy profilesσ−{i, j} andσ−{i, j ′} are very similar, in fact they are

identical inn−3 of then−2 components. For AGG-/0s, we can exploit this similar-

ity by computing the distribution Pr(cn−1|σ
(ai)
−i ), then for eachj 6= i, we “undo” j ’s

mixed strategy to get the distribution induced byσ−{i, j}, by treating distributions

Pr(cn−1|σ
(ai)
−i ) andσ j as coefficients of polynomials and computing their quotient

using long division. (See Section 2.3.5 of [Jiang, 2006] fora more detailed discus-

sion of interpreting distributions over configurations as polynomials.)

Finding equilibria of symmetric and k-symmetric games

Nash proved [1951] that all finite symmetric games have at least one symmetric

Nash equilibrium. The Govindan-Wilson algorithm can be adapted to find symmet-

ric Nash equilibria in symmetric AGG-/0s. The modified algorithm now operates in

the space of symmetric mixed strategy profilesΣ∗ = ϕ(A ), and follows a path of

symmetric equilibria of perturbed symmetric games to a symmetric equilibrium of

the unperturbed game. A key step of the algorithm is the computation of the Jaco-

bian of the functionV : Σ∗ →R|A |, whoseα-th entryVα(σ∗) is the expected utility

of one player choosingα while the others play mixed strategyσ∗. This Jacobian at

σ∗ is a|A |×|A | matrix whose entry at rowα and columnα ′ is n−1 multiplied by

the expected utility of a player choosing actionα , when another player is choosing

actionα ′ and the rest of the players play mixed strategyσ∗. Such an entry can be

efficiently computed using the techniques for symmetric expected utility computa-

tion discussed in Section 3.4.1, which are faster than our expected utility algorithm

for general AGGs. Techniques discussed in the current section can further be used

to speed up the computation of Jacobians in the symmetric case. In particular, it is

straightforward to check that the Jacobian has at most∑α∈A (ν(α)+1) = O(|E|)

identical entries, whereE is the set of edges of the action graph.

A straightforward corollary of Nash’s [1951] proof is that any k-symmetric
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AGG-/0 has at least onek-symmetric Nash equilibrium. For each equivalence class

ℓ of the players letΣℓ
∗ denote the set of symmetric strategy profiles forNℓ, and

let Aℓ denote the set of actions of a player inNℓ. Relying on similar arguments as

above, we can adapt the Govindan-Wilson algorithm to findk-symmetric equilibria

in k-symmetric AGG-/0s. The bottleneck is the computation of the Jacobian of the

functionV : ∏ℓ Σℓ
∗ → R∑ℓ |A

ℓ|, whose(ℓ,α)-th entry is the utility of a player inNℓ

playing actionα , while the others play according to the givenk-symmetric strategy

profile (σ1
∗ , . . . ,σ k

∗ ). The entry at rowℓ,α and columnℓ′,α ′ of the Jacobian matrix

is equal to(|Nℓ′ |−1ℓ=ℓ′) multiplied by the expected utility of a player inNℓ choos-

ing actionα , when another player inN′
ℓ is choosing actionα ′ and the others play

according to the givenk-symmetric strategy profile. Such expected utilities can be

efficiently computed using the techniques discussed in Section 3.4.1.

3.5.3 Computing a Nash Equilibrium: The Simplicial Subdivision
Algorithm

Another algorithm for computing a sample Nash equilibrium is van der Laan, Tal-

man & van der Heyden’s [1987] simplicial subdivision algorithm. Recall from

Section 2.2.1 that one of the bottlenecks is the computationof labels of a given sub-

simplex in a simplicial subdivision ofΣ, which in turn depends on computation of

expected utilities under mixed strategy profiles. The GAMBIT package [McKelvey

et al., 2006] provides an implementation of the simplicial subdivision algorithm for

the normal form. We adapted this code into a black-box implementation that allows

one to plug in representation-specific subroutines for expected utility computation.

Combining this with an implementation of our AGG-based Algorithm 2 is then

sufficient for an exponential speedup compared to the normal-form-based imple-

mentation of the simplicial subdivision algorithm. An advantage of the black-box

implementation is that this is useful for other representations besides AGGs; e.g.,

in Chapter 6 we are able to use this for computing sample Bayes-Nash equilibria

for Bayesian Action-Graph Games.
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3.5.4 Computing a Correlated Equilibrium

In Section 2.2.7 we gave an overview of the literature on the computation of a sam-

ple correlated equilibrium. In summary, Papadimitriou andRoughgarden [2008]

proposed a polynomial-time algorithm for computing a sample correlated equilib-

rium given a game representation with polynomial type and a polynomial-time

subroutine for computing expected utility under mixed strategy profiles. Recently,

Stein et al. [2010] showed that Papadimitriou and Roughgarden’s algorithm can fail

to find an exact correlated equilibrium, and presented a slight modification of the

algorithm that efficiently computes anε-correlated equilibrium. (Anε-correlated

equilibrium is an approximation of the correlated equilibrium solution concept,

whereε measures the extent to which the incentive constraints for correlated equi-

librium are violated.) Incorporating this fix, we have the following.

Theorem 3.5.2([Papadimitriou and Roughgarden, 2008]). If a game representa-

tion has polynomial type, and has a polynomial algorithm forcomputing expected

utility, then anε-correlated equilibrium can be computed in time polynomialin

log 1
ε and the representation size.

In Chapter 7 we present a modified version of Papadimitriou and Roughgar-

den’s algorithm that is able to compute an exact correlated equilibrium in polyno-

mial time.

Theorem 3.5.3(Restatement of Theorem 7.4.5; also [Jiang and Leyton-Brown,

2011]). If a game representation has polynomial type, and has a polynomial al-

gorithm for computing expected utility, then a correlated equilibrium can be com-

puted in time polynomial in the representation size.

The second condition in both theorems involve the computation of expected

utility. As a direct corollary of Theorem 3.5.3 and Theorem 3.4.1, there exists

a polynomial algorithm for computing an exact correlated equilibrium given an

AGG-/0.

Corollary 3.5.4. Given a game represented as an AGG-/0, an exact correlated

equilibrium can be computed in time polynomial in the size ofthe AGG-/0.
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Similarly, for AGG-FNs and AGG-FNAs for which the expected utility prob-

lem can be solved in polynomial time (see Theorems 3.4.5 and 3.4.6), correlated

equilibria can be computed in polynomial time.

3.6 Experiments

Although our theoretical results show that there are significant benefits to working

with AGGs, they might leave the reader with two worries. First, the reader might

be concerned that while AGGs offer asymptotic computational benefits, they might

not be practically useful. Second, even if convinced about the usefulness of AGGs,

the reader might want to know the size of problems that can be tackled by the com-

putational tools we have developed so far. We address both ofthese worries in this

section, by reporting on the results of extensive computational experiments. Specif-

ically, we compare the performance of the AGG representation and our AGG-based

algorithms against normal-form-based solutions using the(highly optimized) Ga-

meTracer package [Blum et al., 2002]. As benchmarks, we usedAGG and normal-

form representations of instances of Coffee Shop games, JobMarket games, and

symmetric AGG-/0s on random graphs. We compared the representation sizes of

AGG and normal-form representations, and compared their performance resulting

from using these representations to compute expected utility, to compute Nash equi-

libria using the Govindan-Wilson algorithm, and to computeNash equilibria using

the simplicial subdivision algorithm. Finally, we show howsample equilibria of

these games can be visualized on action graphs.

3.6.1 Software Implementation and Experimental Setup

We implemented our algorithms in a freely-available software package, in order to

make it easy for other researchers to use AGGs to model problems of interest. Our

software is capable of:

• reading in a description of an AGG;

• computing expected utility and Jacobian given mixed strategy profile;

• computing Nash equilibria by adapting GameTracer’s [Blum et al., 2002]

implementation of Govindan and Wilson’s [2003] global Newton method;
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and

• computing Nash equilibria by adapting GAMBIT’s [McKelvey et al., 2006]

implementation of the simplicial subdivision algorithm [van der Laan et al.,

1987].

We extended GAMUT [Nudelman et al., 2004], a suite of game instance generators,

by implementing generators of instances of AGGs including Ice Cream Vendor

games (Example 3.2.5), Coffee Shop games (Example 3.2.7), Job Market games

(Example 3.3.1) and symmetric AGG-/0s on a random action graph with random

payoffs. Finally, with Damien Bargiacchi, we also developed a graphical user in-

terface for creating and editing AGGs. More details on theseas well as software

implementations of other algorithms from this thesis are given in Appendix A. All

of our software is freely available athttp://agg.cs.ubc.ca.

When using Coffee Shop games in our experiments, we set payoffs randomly

in order to test on a wide set of utility functions. For the visualization of equilibria

in Section 3.6.7 we set the Coffee Shop game utility functions to be

uα(c(α),c(p′α ),c(p
′′
α )) = 20− [c(α)]2−c(p′α)− log(c(p′′α)+1),

where p′α is the function node representing the number of players choosing ad-

jacent locations andp′′α is the function node representing the number of players

choosing other locations.

When using Job Market games in our experiments, we set the utility functions

to be

uα(c(α)) =
Rα

c(α)+∑α ′∈ν(α)−{α}0.1c(α ′)
−Kα ,

with Rα set to 2,4,6,8,10 andKα set to 1,2,3,4,5 for the five levels from high

school to PhD.

When using Ice Cream Vendor games for the visualization of equilibria in Sec-

tion 3.6.7 we set the utilities so that for a playeri choosing actionα , each vendor

choosing a locationα ′ ∈ ν(α) contributeswf wl utility to i. wf is -1 whenα ′ has

the same food type asα , and 0.8 otherwise.wl is 1 whenα ′ andα correspond

to the same location, and 0.6 when they correspond to different (but neighboring)

locations. In other words, there is a negative effect from players choosing the same
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food type, and a weaker positive effect from players choosing a different food type.

Furthermore, effects from neighboring locations are weaker than effects from the

same location.

All our experiments were performed using a computer clusterconsisting of 55

machines with dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running

Suse Linux 10.1.

3.6.2 Representation Size

First, we compared the representation sizes of AGG-FNs and their induced normal

forms. For each game instance we counted the number of payoffvalues that needed

to be stored.

We first looked at 5×5 block Coffee Shop games, varying the number of play-

ers. Figure 3.9 (left) has a log-scale plot of the number of payoff values in each

representation versus the number of players. The normal form representation grew

exponentially with respect to the number of players, and quickly became imprac-

tical. The size of the AGG representation grew polynomiallywith respect ton.

As we can see from Figure 3.9 (right), even for a game instancewith 80 play-

ers, the AGG-FN representation stored only about 2 million numbers. In contrast,

the corresponding normal form representation would have had to store 1.2×10115

numbers.

We then fixed the number of players at 4 and varied the number ofactions; for

ease of comparison we fixed the number of columns at 5 and only changed the

number of rows. Recall from Section 3.2.2 that the representation size of Coffee

Shop games—expressed both as AGGs and in the normal form—depends only on

the number of players and number of actions, but not on the shape of the region.

(Recall that the number of actions isB+1, whereB is the total number of blocks.)

Figure 3.9 (left) shows a log-scale plot of the number of payoff values versus the

number of actions, and Figure 3.9 (right) gives a plot for just the AGG-FN rep-

resentation. The size of the AGG representation grew linearly with the number

of rows, whereas the size of the normal form representation grew like a higher-

order polynomial. For a Coffee Shop game with 4 players on an 80×5 grid, the

AGG-FN representation stores only about 8000 numbers, whereas the normal form
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Figure 3.9: Representation sizes of coffee shop games. Top left: 5× 5 grid
with 3 to 16 players (log scale). Top right: AGG only, 5×5 grid with
up to 80 players (log scale). Bottom left: 4-playerr ×5 grid, r varying
from 3 to 15 (log scale). Bottom right: AGG only, up to 80 rows.

representation would have to store 1.0×1011 numbers.

We also tested on Job Market games from Example 3.3.1, which have 13 ac-

tions. We varied the number of players from 3 to 24. The results are similar, as

shown in Figure 3.11 (left). This is consistent with our theoretical observation that

the sizes of normal form representations grow exponentially in n while the sizes of

AGG representations grow polynomially inn.

3.6.3 Expected Utility Computation

We tested the performance of our dynamic programming algorithm for computing

expected utilities in AGG-FNs against GameTracer’s normal-form-based algorithm

for computing expected utilities. For each game instance, we generated 1000 ran-

dom strategy profiles with full support, and measured the CPU(user) time spent

computingVn
an
(σ−n) under these strategy profiles. Then we divided this measure-

ment by 1000 to obtain the average CPU time.

We first looked at Coffee Shop games of different sizes. We fixed the size

of blocks at 5× 5 and varied the number of players. Figure 3.10 shows plots of

the results. For very small games the normal-form-based algorithm is faster due
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to its smaller bookkeeping overhead; as the number of players grows larger, our

AGG-based algorithm’s running time grows polynomially, while the normal-form-

based algorithm scales exponentially. For more than five players, we were not able

to store the normal form representation in memory. Meanwhile, our AGG-based

algorithm scaled to much larger numbers of players, averaging about a second to

compute an expected utility for an 80-player Coffee Shop game.

Next, we fixed the number of players at 4 and the number of columns at 5,

and varied the number of rows. Our algorithm’s running time grew roughly lin-

early with the number of rows, while the normal-form-based algorithm grew like a

higher-order polynomial. This was consistent with our theoretical observation that

our algorithm takesO(n|A |+n4) time for this class of games while normal-form-

based algorithms takeO(|A |n−1) time.

We also considered strategy profiles having partial support. While ensuring that

each player’s support included at least one action, we generated strategy profiles

with each action included in the support with probability 0.4. GameTracer took

about 60% of its full-support running times to compute expected utilities for the

Coffee Shop game instances mentioned above, while our AGG-based algorithm

required about 20% of its full-support running times.

We also tested on Job Market games, varying the numbers of players. The

results are shown in Figure 3.11 (right). The normal-form-based implementation

ran out of memory for more than 6 players, while the AGG-basedimplementation

averaged about a quarter of a second to compute expected utility in a 24-player

game.

3.6.4 Computing Payoff Jacobians

We ran similar experiments to investigate the computation of payoff Jacobians. As

discussed in Section 3.5.2, the entries of a Jacobian can be formulated as expected

payoffs, so a Jacobian can be computed by doing an expected payoff computation

for each of its entries. In Section 3.5.2 we discussed methods that exploit the struc-

ture of the Jacobian to further speed up the computation. GameTracer’s normal-

form-based implementation also exploits the structure of the Jacobian by reusing

partial results of expected payoff computations. When comparing our AGG-based
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Figure 3.10: Running times for payoff computation in the Coffee Shop game.
Top left: 5×5 grid with 3 to 16 players. Top right: AGG only, 5×5
grid with up to 80 players. Bottom left: 4-playerr ×5 grid, r varying
from 3 to 15. Bottom right: AGG only, up to 80 rows.
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Figure 3.11: Job Market games, varying numbers of players. Left: compar-
ing representation sizes. Right: running times for computing 1000
expected utilities.

Jacobian algorithm (as described in Section 3.5.2) to GameTracer’s implementa-

tion, we observed results very similar to those for computing expected payoffs:

our implementation scaled polynomially inn while GameTracer scaled exponen-

tially in n. We instead focus on the question of how much speedup the methods

in Section 3.5.2 provided, by comparing our algorithm in Section 3.5.2 against

the algorithm that computes expected payoffs (using our AGG-based algorithm de-

scribed in Section 3.4) for each of the Jacobian’s entries. We tested on Coffee Shop

games on a 5×5 grid with 3 to 10 players, as well as Coffee Shop games with 4
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players, 5 columns and varying numbers of rows. For each instance of the game

we randomly generated 100 strategy profiles with partial support. For each of these

game instances, our algorithm as described in Section 3.5.2was consistently about

50 times faster than computing expected payoffs for each of the Jacobian’s en-

tries. This confirms that the methods discussed in Section 3.5.2 provide significant

speedup for computing payoff Jacobians.

3.6.5 Finding a Nash Equilibrium Using Govindan-Wilson

Now we show experimentally that the speedup we achieved for computing Jaco-

bians using the AGG representation led to a speedup in the Govindan-Wilson algo-

rithm. We compared two versions of the Govindan-Wilson algorithm: one is the

implementation in GameTracer, where the Jacobian computation is based on the

normal-form representation; the other is identical to the GameTracer implemen-

tation, except that the Jacobians are computed using our algorithm for the AGG

representation. Both techniques compute the Jacobians exactly. As a result, given

an initial perturbation to the original game, these two implementations follow the

same path and return exactly the same Nash equilibrium.

Again, we tested the two algorithms on Coffee Shop games of varying sizes:

first we fixed the sizes of blocks at 4× 4 and varied the number of players; then

we fixed the number of players at 4 and number of columns at 4 andvaried the

number of rows. For each game instance, we randomly generated 10 initial per-

turbation vectors, and for each initial perturbation we ranthe two versions of the

Govindan-Wilson algorithm. Although the algorithm can (sometimes) find more

than one equilibrium, we stopped both versions of the algorithm after one equilib-

rium was found. Since the running time of the Govindan-Wilson algorithm is very

sensitive to the initial perturbation, for each game instance the running times with

different initial perturbations had large variance. To control for this, for each ini-

tial perturbation we looked at theratio of running times between the normal-form

implementation and the AGG implementation (i.e., a ratio greater than 1 means

the AGG implementation ran more quickly than the normal formimplementation).

We present the results in Figure 3.12 (left). We see that as the size of the games

grew (either in the number of players or in the number of actions), the speedup of
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the AGG implementation over that of the normal-form implementation increased.

The normal-form implementation ran out of memory for game instances with more

than 5 players, preventing us from reporting ratios aboven= 5. Thus, we ran the

AGG-based implementation alone on game instances with larger numbers of play-

ers, giving the algorithm a one-day cutoff time. As shown by the log-scale boxplot

of CPU times in Figure 3.12 (top right), for game instances with up to 12 players,

the algorithm terminated within one day for most initial perturbations. A normal

form representation of such a game would have needed to store7.0×1015 numbers.

Figure 3.12 (bottom right) shows a boxplot of the CPU times for the AGG-based

implementation, varying the number of actions while fixing the number of players

at 4. For game instances with up to 49 actions (a 4×12 grid plus one action for not

entering the market), the algorithm terminated within an hour.

We also tested on Job Market games with varying numbers of players. The

results are shown in Figure 3.13. For the game instance with 6players, the AGG-

based implementation was about 100 times faster than the normal-form-based im-

plementation. While the normal-form-based implementation ran out of memory

for Job Market games with more than 6 players, the AGG-based implementation

was able to solve games with 16 players in an average of 24 minutes.

3.6.6 Finding a Nash Equilibrium Using Simplicial Subdivision

As discussed in Section 3.5.3, we can speed up the normal-form-based simplicial

subdivision algorithm by replacing the subroutine that computes expected utility

by our AGG-based algorithm. We have done so to GAMBIT’s implementation

of simplicial subdivision. As with the Govindan-Wilson algorithm, from a given

starting point both the original version of simplicial subdivision and our AGG ver-

sion follow a deterministic path to determine exactly the same equilibrium. Thus,

all performance differences are due to the choice of representation. We compared

the performance of AGG-based simplicial subdivision against normal-form-based

simplicial subdivision on instances of Coffee Shop games aswell as instances of

randomly-generated symmetric AGG-/0s on small world graphs. We always started

from the mixed strategy profile in which each player gives equal probability to each

of her actions.
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Figure 3.12: Govindan-Wilson algorithm; Coffee Shop game. Top row: 4×4
grid, varying number of players. Bottom row: 4-playerr × 4 grid,
r varying from 3 to 12. For each row, the left figure shows ratio of
running times; the right figure shows logscale plot of CPU times for
the AGG-based implementation. The dashed horizontal line indicates
the one day cutoff time.

We first considered instances of Coffee Shop games with 4 rows, 4 columns and

varying numbers of players. For each game size we generated 10 instances with

random payoffs. Figure 3.14 (left) gives a boxplot of the ratio of running times

between the two implementations. The AGG-based implementation was about 3

times faster for the 3-player instances and about 30 times faster for the 4-player

instances. We also tested on Coffee Shop games with 3 players, 3 columns and

numbers of rows varying from 4 to 7, again generating 10 instances with random

payoffs at each size. Figure 3.14 (right) gives a boxplot of the ratio of running

times. As expected, the AGG-based implementation was faster and the gap in

performance widened as games grew.

We then investigated symmetric AGG-/0s on randomly generated small world
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Figure 3.13: Govindan-Wilson algorithm; Job Market games, varying num-
bers of players. Left: ratios of running times. Right: logscale plot of
CPU times for the AGG-based implementation.
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Figure 3.14: Ratios of running times of simplicial subdivision algorithms on
Coffee Shop games. Left: 4× 4 grid with 3 to 4 players. Right: 3-
playerr ×3 grid, r varying from 4 to 7.

graphs with random payoffs. The small world graphs were generated using GAMUT’s

implementation with parametersK = 1 andp= 0.5. For each game size we gener-

ated 10 instances. We first fixed the number of action nodes at 5and varied the num-

ber of players. Results are shown in Figure 3.15 (top row). While there was large

variance in the absolute running times across different instances, the ratios of run-

ning times between normal-form-based and AGG-based implementations showed a

clear increasing trend as the number of players increased. The normal-form-based

implementation ran out of memory for instances with more than 5 players. Mean-

while, we ran the AGG-based implementation on larger instances with a one-day

cutoff time. As shown by the boxplot, the AGG-based implementation solved most
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Figure 3.15: Simplicial subdivision algorithm; symmetric AGG-/0s on small
world graphs. Top row: 5 actions, varying number of players.Bottom
row: 4 players, varying number of actions. The left figures show ratios
of running times; the right figures show logscale plots of CPUtimes for
the AGG-based implementation. The dashed horizontal line indicates
the one day cutoff time.

instances with up to 8 players within 24 hours. We then fixed the number of play-

ers at 4 and varied the number of action nodes from 4 to 16. Results are shown

in Figure 3.15 (bottom row). Again, while the actual runningtimes on different

instances varied substantially, the ratios of running times showed a clear increas-

ing trend as the number of actions increased. The AGG-based implementation

was able to solve a 16-action instance in an average of about 3minutes, while the

normal-form-based implementation averaged about 2 hours.

3.6.7 Visualizing Equilibria on the Action Graph

Besides facilitating representation and computation, theaction graph can also be

used to visualize strategy profiles in a natural way. A strategy profileσ (e.g., a Nash
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Figure 3.16: Visualization of a Nash equilibrium of a 16-player Coffee Shop
game on a 4×4 grid. The function nodes and the edges of the action
graph are not shown. The action node at the bottom corresponds to not
entering the market.

equilibrium) can be visualized on the action graph by displaying the expected num-

bers of players that choose each of the actions. We call such atuple theexpected

configurationunderσ . This can be easily computed givenσ : for each action node

α , we sum the probabilities of playingα , i.e. E[c(α)] = ∑i∈N σi(α) whereσi(α)

is 0 whenα 6∈ Ai. When the strategy profile consists of pure strategies, the result is

simply the corresponding configuration.

The expected configuration often has natural interpretations. For example in

Coffee Shop games and other scenarios where actions correspond to location choices,

an expected configuration can be seen as a density map describing expected player

locations. We illustrate using a 16-player Coffee Shop gameon a 4×4 grid. We

ran the (AGG-based) Govindan-Wilson algorithm, finding a Nash equilibrium in

77 seconds. The expected configuration of this (pure strategy) equilibrium is visu-

alized in Figure 3.16.

We also examined a Job Market game with 20 players. A normal form repre-

sentation of this game would have needed to store 9.4×10134 numbers. We ran the

AGG-based Govindan-Wilson algorithm, finding a Nash equilibrium in 860 sec-
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Figure 3.17: Visualization of a Nash equilibrium of a Job Market game with
20 players. Left: expected configuration of the equilibrium. Right:
two mixed equilibrium strategies.

onds. The expected configuration of this equilibrium is visualized in Figure 3.17

(left). Note that the equilibrium expected configuration onsome of the nodes are

non-integer values, as a result of mixed strategies by some of the players. We also

visualize two players’ mixed equilibrium strategies in Figure 3.17 (right).

Finally, we examined an Ice Cream Vendor game (Example 3.2.5) with 4 lo-

cations, 6 ice cream vendors, 6 strawberry vendors, and 4 west-side vendors. The

Govindan-Wilson algorithm found an equilibrium in 9 seconds. The expected con-

figuration of this (pure strategy) equilibrium is visualized in Figure 3.18. Observe

that the west side is relatively denser due to the west-side vendors. The locations at

the east and west ends were chosen relatively more often thanthe middle locations,

because the ends have fewer neighbors and thus experience less competition.

3.7 Conclusions

We proposed action-graph games (AGGs), a fully expressive game representation

that can compactly express utility functions with structure such as context-specific

independence and anonymity. We also extended the basic AGG representation by
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Figure 3.18: Visualization of a Nash equilibrium of an Ice Cream Vendor
game.

introducing function nodes and additive utility functions, allowing us to compactly

represent a wider range of structured utility functions. Weshowed that AGGs

can efficiently represent games from many previously studied compact classes in-

cluding graphical games, symmetric games, anonymous games, and congestion

games. We presented a polynomial-time algorithm for computing expected util-

ities in AGG-/0s and contribution-independent AGG-FNs. For symmetric andk-

symmetric AGG-/0s, we gave more efficient, specialized algorithms for computing

expected utilities under symmetric andk-symmetric strategy profiles respectively.

We also showed how to use these algorithms to achieve exponential speedups of

existing methods for computing a sample Nash equilibrium and a sample corre-

lated equilibrium. We showed experimentally that using AGGs allows us to model

and analyze dramatically larger games than can be addressedwith the normal-form

representation.

In several later chapters of this thesis we present our efforts to extend and gen-

eralize our AGG framework. In Chapter 4 we consider the problem of computing

PSNE. In Chapter 6 we propose Bayesian action-graph games (BAGGs) for rep-

resenting Bayesian games, and in Chapter 5 we propose temporal action-graph

games (TAGGs) for representing imperfect-information dynamic games.
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Chapter 4

Computing Pure-strategy Nash

Equilibria in Action-Graph

Games

4.1 Introduction

In this chapter, we analyze the problem of computing pure-strategy Nash equilibria

(PSNE) in AGGs. Recall from Section 2.2.6 that PSNEs do not always exist in

a game. We focus on the problems of deciding if a PSNE exists, and of finding

a PSNE, and later extend our analysis to the problem of computing a PSNE with

optimal social welfare. The existence problem for AGGs is known to be NP-

complete, even for symmetric AGG-/0s with bounded in-degrees. Our goal in this

chapter is to identify classes of AGGs for which this problemis tractable. We pro-

pose a dynamic programming approach and show that if the AGG-/0 is symmetric

and the action graph has bounded treewidth, our algorithm determines the exis-

tence of pure equilibria in polynomial time. We then extend our approach beyond

symmetric AGG-/0s.1

1This chapter is based on joint work with Kevin Leyton-Brown.Our earlier publication [Jiang
and Leyton-Brown, 2007a] was restricted to the case of symmetric AGG-/0s, and furthermore the
proposed algorithm contained an error. In the current chapter we describe the corrected algorithm
for symmetric AGGs, and furthermore extend the algorithm tocertain classes of asymmetric AGGs.
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We give a brief overview of our approach, and contrast it withsome of the

related literature mentioned in Section 2.2.6. Recall fromDefinition 2.2.5 that a

PSNE is a pure-strategy profile satisfying certain incentive constraints. For sym-

metric AGGs, we can cast the problem in terms of configurations and constraints

on configurations. With the graphical structure of AGGs, a natural idea is to con-

struct global solutions (i.e., configurations corresponding to PSNE) frompartial

solutions, which are configurations over a subset of action nodes satisfying certain

local constraints on the corresponding subgraph of the action graph. One difficulty

when combining partial solutions from subgraphs is that ofinconsistency. For

the PSNE problem on graphical games, Gottlob et al. [2005] and Daskalakis and

Papadimitriou [2006] showed that an effective technique for dealing with inconsis-

tency is tree decomposition (and the related concept of hypertree decomposition).

Roughly, a tree decomposition [Robertson and Seymour, 1986] of a graph consists

of a family of overlapping subsets of vertices of the graph, and a tree structure with

these subsets as nodes, satisfying certain properties suchthat algorithms for trees

can be adapted to work on the tree decomposition, with running time exponen-

tial only in the tree decomposition’s width (which measuresthe size of the largest

subset). Thetreewidthof a graph is defined to be the width of the best tree de-

composition for that graph. As a result, many NP-hard problems on graphs can be

solved in polynomial time for graphs with bounded treewidth(see e.g., the recent

survey by Bodlaender [2007]). For graphical games on bounded-treewidth graphs,

it is sufficient to combine partial solutions from the leavesto the root of the tree de-

composition while maintaining consistency across adjacent subsets, resulting in a

polynomial-time algorithm for PSNE [Daskalakis and Papadimitriou, 2006]. How-

ever, whereas in graphical games the incentive constraintscan be defined locally

at each neighborhood, for AGGs we face an additional difficulty, because an agent

could profitably deviate from playing an action in one part ofthe action graph to an-

other. That is, the incentive constraints for PSNE in an AGG cannot be entirely cap-

tured by local constraints on subgraphs of the action graph.A simplified version of

this difficulty was successfully dealt with in Ieong et al. [2005]’s polynomial-time

algorithm for finding PSNE insingleton congestion games, which correspond to

symmetric AGGs with only self edges. Their dynamic-programming algorithm is

able to check against such deviations without having to store the exponential-sized
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set of partial solutions, by maintainingsufficient statistics(specifically, bounds on

utilities) that summarize the partial solutions compactly. Recall fromChapter3

that AGGs unify these existing representations; it turns out that our algorithm for

AGGs also generalizes the existing algorithms for graphical games and singleton

congestion games. Specifically, we definerestricted gamesas AGGs played on

subgraphs, equilibria of which satisfy the local incentiveconstraints; we then use

tree-decomposition techniques to divide the action graph into subgraphs, allowing

us construct equilibria of the game from equilibria of restricted games while main-

taining consistency; and we use sufficient statistics (corresponding to the concept

of characteristics [e.g., Bodlaender, 2007]) to check against deviations across par-

tial solutions. Compared to the case of singleton congestion games, the edges (i.e.,

utility dependence) between action nodes in AGGs complicates the design of the

sufficient static. Nevertheless we are able to overcome thistechnical challenge by

further exploiting properties of tree decompositions.

4.2 Preliminaries

4.2.1 AGGs

We refer readers to Chapter 3 for definitions of AGG-/0s, symmetric AGG-/0s and

k-symmetric AGG-/0s. Recall thatI is the maximum in-degree of the action graph.

For an AGG-/0Γ = (N, A, G, u), let ||Γ|| denote the number of utility values the

representation stores. Recall from Proposition 3.2.6 thatthis number is less or

equal to|A | (n−1+I )!
(n−1)!I ! , with equality holding when the AGG-/0 is symmetric. Let

U be the set of distinct utilities of the gameΓ.

Whereas in Chapter 3 we only need to consider configurations restricted to

the neighborhood of some action node, in this chapter we willneed to talk about

configurations over arbitrary sets of action nodes. For a configurationc and a set

of actionsX ⊂A , let c[X] denote the restriction ofc overX, i.e. c[X] = (c[α ])α∈X ,

wherec[α ] is the number of players choosing actionα . Let C [X] denote the set

of restricted configurations overX. Given an action graphG = (A ,E) and a

set of actionsX ⊂ A , let GX be the action graph restricted to the action nodes

X. Formally, GX ≡ (X,{(α ,α ′) ∈ E|α ,α ′ ∈ X}). For a set of actionsX ⊂ A ,
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defineν(X) ≡ {α ∈ A \X|∃x ∈ X such that(α ,x) ∈ E}: the set of actions not

in X that are neighbors of some action inX. Also defineX ≡ A \X to be the

complement ofX. Thenν(X)≡ {x∈ X|∃α ∈ A \X such that(x,α) ∈ E}, the set

of actions inX that are neighbors of some action not inX. Defineτ(X) ≡ {x ∈

X|∃α ∈ A \X such that(x,α) ∈ E or (α ,x) ∈ E}. Given a configurationc[X], let

#c[X]≡ ∑x∈X c[x].

4.2.2 Complexity of Computing PSNE

Consider the problem determining whether a PSNE exists in a given AGG-/0. Re-

call from Section 2.2.6 that the obvious algorithm of checking every possible action

profile runs in linear time in the normal form representationof the game. However,

since AGGs can be exponentially more compact than the normalform, the running

time of this algorithm is worst-case exponential in the sizeof the AGG. Indeed, the

PSNE problem becomes NP-complete when the input is an AGG-/0.

Proposition 4.2.1. The problem of determining whether a pure Nash equilibrium

exists in an AGG-/0 is NP-complete.

Proof Sketch.It is straightforward to see that the problem is in NP, because given

a pure strategy profile it takes polynomial time to verify whether that profile is

a Nash equilibrium. NP-hardness follows from the fact that any graphical game

can be transformed (in polynomial time) to an equivalent AGG-/0 having the same

space complexity, and the fact that the problem of determining the existence of pure

equilibrium in graphical games is NP-hard [Daskalakis and Papadimitriou, 2006,

Gottlob et al., 2005].

Perhaps more interestingly, the problem remains hard even if we restrict the

games to be symmetric, in which case we cannot leverage existing results about

graphical games. The following theorem was proved independently by Vincent

Conitzer (personal communication) and Daskalakis et al. [2009].

Theorem 4.2.2(Conitzer [pers. comm., 2004], Daskalakis et al. [2009]). The prob-

lem of determining whether a pure Nash equilibrium exists ina symmetric AGG is

NP-complete, even when the in-degree of the action graph is at most 3.
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4.3 Computing PSNE in AGGs with Bounded Number of
Action Nodes

Now we look at classes of AGGs in which|A |, the number of action nodes, is

bounded by some constant. We show that in this case, the problem of finding pure

equilibria can be solved in polynomial time. While this is a very restricted class of

AGGs, we will use these results as building blocks for our dynamic programming

approach for solving more complex AGGs.

We first look at symmetric AGGs. We restate the following well-known prop-

erty of symmetric games [e.g., Brandt et al., 2009] in the language of AGGs:

Lemma 4.3.1.SupposeΓ is a symmetric AGG. If a andα ′ induce the same config-

uration, then a is a PSNE ofΓ iff α ′ is a PSNE ofΓ.

This is because the configuration determines the utilities,and since in a sym-

metric AGG any player can choose any action inA , the configuration determines

whether the incentive constraints for PSNE are satisfied. Note that this argument

requires the symmetry property; in particular, the lemma nolonger holds for asym-

metric AGGs.

Lemma 4.3.1 allows us to consider only the configurations instead of all the

pure strategy profiles. We say a configurationc is a PSNE ofΓ if its corresponding

pure strategy profiles are PSNE. The following straightforward lemma (a special-

ization of known facts about symmetric games [e.g., Brandt et al., 2009]) gives the

incentive constraints for PSNE in terms of configurations.

Lemma 4.3.2.A configuration c∗ is a PSNE of a symmetric game iff for allα ,α ′ ∈

A , if c∗[α ]> 0,

uα(c∗)≥ uα ′
(c∗α→α ′) (4.3.1)

where c∗α→α ′ is the resulting configuration when one agent playingα in c∗ deviates

to α ′. Formally, for all x∈ A ,

c∗α→α ′[x] =











c∗[x]−1 if x = α
c∗[x]+1 if x = α ′

c∗[x] otherwise
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Given a configurationc, we can check whether it is a pure equilibrium in poly-

nomial time.

Theorem 4.3.3. The problem of determining whether a pure Nash equilibrium

exists in a symmetric AGG with bounded|A | is in P.

Proof. A polynomial algorithm is to check all configurations. Since|A | is bounded,

the number of configurations
(n+|A |−1

|A |−1

)

= O(n|A |−1) is polynomial.

This can easily be extended tok-symmetric AGGs.

Definition 4.3.4. SupposeΓ is a k-symmetric AGG in which the players are par-

titioned into equivalence classes{N1, . . . ,Nk} with the corresponding distinct ac-

tion sets{A 1, . . . ,A k}. Then given a pure strategy profile a, its corresponding

k-configurationis a tuple(cℓ)1≤ℓ≤k where cℓ is the configuration overA ℓ induced

by the players in Nℓ. In other words, for allα ∈ A ℓ, cℓ[α ] = |{i ∈ Nℓ|ai = α}|.

Just as configurations capture all relevant information about pure strategy pro-

files in symmetric games,k-configurations capture all relevant information about

pure strategy profiles ink-symmetric games. Thus we can determine the existence

of pure equilibrium by checking allk-configurations. Whenk is bounded by a

constant, there are polynomial number ofk-configurations.

Lemma 4.3.5.The problem of determining whether a pure Nash equilibrium exists

in a k-symmetric AGG with bounded|A | and bounded k is in P.

Proof. A polynomial algorithm is to check allk-configurations. Since|A | is

bounded, for eachl ∈{1, . . . ,k} the number of distinctcl is
(|Nl |+|A l |−1

|A l |−1

)

=O(|Nl |
|A l |−1).

Therefore the number of distinctk-configurations isO(nk(|A |−1)), which is polyno-

mial whenk is bounded. For eachk-configuration, checking whether it forms a

Nash equilibrium takes polynomial time. Therefore the algorithm runs in polyno-

mial time.

Now consider the full class of AGGs with bounded|A |. Interestingly, our

problem remains easy to solve.

Theorem 4.3.6. The problem of determining whether a pure Nash equilibrium

exists in an arbitrary AGG with bounded|A | is in P.
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Proof. Any AGG Γ is k-symmetric by definition, wherek is the number of distinct

action sets. SinceAi ⊆ A for all i, the number of distinct nonempty action sets is

at most 2|A |−2. This is bounded, since|A | is bounded by a constant. ThusΓ is

k-symmetric with boundedk, and Lemma 4.3.5 applies.

4.4 Computing PSNE in Symmetric AGGs

We now consider classes of AGGs in which|A | is not bounded. We first focus on

symmetric AGG-/0s. Since in this case all players have the same action setA , we

can identify a symmetric AGG-/0 by the tuple〈n,G= (A ,E),u〉. Whereas enumer-

ating the configurations works well for AGGs with bounded|A |, this approach is

less effective in the general case with unbounded|A |: in a symmetric AGG-/0, the

number of configurations overA is
(n+|A |−1

|A |−1

)

, which is superpolynomial in||Γ||
whenI is bounded.

Our approach is to use dynamic programming to construct PSNEof the game

from PSNE of games restricted to parts of the action graph. This approach belongs

to a large family of tree-decomposition-based dynamic programming algorithms

for problems on graphs. In particular, in this section we adapt the standard con-

cepts ofpartial solutionsandcharacteristics[e.g., Bodlaender, 1997] to the PSNE

problem in AGGs.

4.4.1 Restricted Games and Partial Solutions

We first introduce the concept of arestricted gameon R⊂ A , which intuitively is

the game played by a subset of players when we “restrict” themto the subgraphGR,

i.e., require them to choose their actions fromR. Of course, the utility functions of

this restricted game are not defined until we specify a configuration onν(R).

Definition 4.4.1. Given a symmetric AGG-/0 Γ, a set of actions R⊂ A , a config-

uration c[ν(R)] and n′ ≤ n, we define therestricted gameΓ(n′,R,c[ν(R)]) to be

a symmetric AGG with n′ players and with GR as the action graph. Each action

α ∈ R has the utility function uα |c[ν(R)], which is the same as uα as defined inΓ
except that the configuration of nodes outside R is assigned by c[ν(R)]. Formally,

Γ(n′,R,c[ν(R)]) =
〈

n′,GR,
(

uα |c[ν(R)]
)

α∈R

〉

.
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Figure 4.1: The road game with
m= 8 and the action graph of
its AGG representation.
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Figure 4.2: Restricted game on
the rightmost 6 actions.

Example 4.4.2.Suppose each of n agents is interested in opening a business,and

can choose to locate in any block along either side of a road oflength m. Multiple

agents can choose the same block. Agent i’s payoff depends onthe number of

agents who chose the same block as he did, as well as the numbers of agents who

chose each of the adjacent blocks of land. This game can be compactly represented

as a symmetric AGG, whose action graph is illustrated in Figure 4.1. To specify a

restricted game on the rightmost 6 action nodes R= {T6,T7,T8,B6,B7,B8} of the

road game of Figure 4.1, we need to specify the number of players on R as well as

the configuration overν(R) = {T5,B5}. This is illustrated in Figure 4.2, with R

enclosed by the shaded rectangle andν(R) in green.

Lemma 4.3.1 tells us that we only need to consider configurations instead of

strategy profiles. Likewise, for a restricted game on the subgraphX ⊂ A , we only

need to consider restricted configurationsc[X]. The following lemma is straightfor-

ward.

Lemma 4.4.3. If c∗ is a pure equilibrium ofΓ, then c∗[X] is a pure equilibrium of

the restricted gameΓ(#c∗[X],X,c∗[ν(X)]).

We want to use equilibria of restricted games as building blocks to construct

equilibria of the entire game. Of course, a restricted game on X ⊂ A is not well-

defined until we specifyc[ν(X)]. Thus we define apartial solution as a config-

uration onX ∪ ν(X) which describes a restricted game onX as well as a pure

equilibrium of it.

Definition 4.4.4. A partial solution on X⊆ A is a configuration c[X∪ν(X)] such

that c[X] is a pure equilibrium of the restricted gameΓ(#c[X],X,c[ν(X)]).
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Figure 4.3: A partial solution on the rightmost 6 actions describes the config-
uration over these 8 actions.

For the restricted game in Figure 4.2, the corresponding partial solution on

R= {T6,T7,T8,B6,B7,B8} is a configuration overR∪ν(R), illustrated in Figure

4.3 as green nodes.

We say a partial solutionc[X∪ν(X)] can beextendedif there exists a configu-

rationc∗ such thatc∗ is a PSNE ofΓ andc∗[X∪ν(X)] = c[X∪ν(X)].

4.4.2 Combining Partial Solutions

In order to combine partial solutions to form a partial solution on a larger subgraph,

we need to make sure that the result is a valid restricted strategy profile. We say

two partial solutionsc′[X] andc′′[Y] areconsistentif there exists a configurationc

of the AGG-/0 such thatc[X] = c′[X] andc[Y] = c′′[Y]. The following lemma shows

that it is simple to check whetherc[X] andc′[Y] are consistent.

Lemma 4.4.5. Given X,Y ⊆ A , c[X] is consistent with c′[Y] iff

1. for all α ∈ X∩Y, c[α ] = c′[α ], and

2. Let n′ = #c[X] + #c′[Y \X], then n′ ≤ n. Furthermore, if X∪Y = A then

n′ = n.

We omit the straightforward proof. For two configurationsc[X],c′[Y] that are

consistent with each other, we definec[X]∪ c′[Y] to be the (unique) configuration

on X∪Y that is consistent with bothc[X] andc′[Y].

However, if we simply combine two consistent partial solutions that describe

equilibria of restricted games on two disjoint setsX,Y ∈ A , the result would not
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necessarily induce an equilibrium of the restricted game onX∪Y. This is because

an agent who was playing an action inX might profitably deviate by playing an

action inY, and vice versa.

We could deal with this problem by keeping track of all pure equilibria of each

restricted game, and determine case-by-case whether two equilibria can be com-

bined (by checking whether agents could profitably deviate from one restricted

game to the other). But as we combine the restricted games to form larger re-

stricted games and eventually the unrestricted game on the entire action graphG,

the number of equilibria we would have to store could grow exponentially.

4.4.3 Dynamic Programming via Characteristics

Perhaps we don’t need to keep track of all partial solutions.Imagine we had a

function ch that summarized them, i.e. it mapped each partial solution to acharac-

teristic from a finite setC which is smaller than the set of partial solutions. For this

characteristic function to be useful, it need to beequilibrium-preserving, defined

as follows.

Definition 4.4.6. For X ⊂ A , a functionch() that maps partial solutions to their

characteristics isequilibrium-preservingif for all pairs of partial solutions c[X]

and c′[X], if ch(c[X])= ch(c′[X]) then(c[X] can be extended)⇔ (c′[X] can be extended).

Thus an equilibrium-preserving characteristic function ch() induces a partition

of the set of partial solutions into equivalence classes. All partial solutions with the

same characteristic behave the same way, so we only need to consider the set of all

distinct characteristics. ForX ⊂ A , we defineCX ⊂ C to be the set of characteris-

tics of partial solutions onX. Formally,CX = {ch(c[X∪ν(X)]) | c[X∪ν(X)]

is a partial solution onX}.

Given such a function ch, a dynamic-programming algorithm for determining

the existence of PSNE ofΓ has the following high-level structure:

1. ConstructX = {X1, . . . ,Xm} such that
⋃

1≤ j≤mXj = A .

2. For eachXi ∈ X , computeCXi , the set of characteristics of partial solutions

onXi.

3. While |X | ≥ 2:

113



(a) TakeX,Y ∈ X . Remove them fromX .

(b) ComputeCX∪Y from CX andCY.

(c) AddX∪Y to X .

4. NowX has only one member,A . Return TRUE iffCA is not empty.

Since a partial solution onA is by definition a pure equilibrium ofΓ, there

exists a pure equilibrium ofΓ if and only if CA is not empty. For this algorithm to

run in polynomial time, the function ch() must satisfy the following properties:

Property 1: At all times during the algorithm, for allX ∈ X , the size ofCX is

polynomial. This is necessary since all restricted strategy profiles could po-

tentially be partial solutions, and soCX could potentially be the set of all

possible characteristics forX.

Property 2: For each of the initialXj , CXj can be computed in polynomial time.

Property 3: CX∪Y can be computed fromCX andCY in polynomial time.

One algorithm having the above structure is Ieong et al. [2005]’s algorithm

for computing PSNE in singleton congestion games (corresponding to symmetric

AGG-/0s with only self-edges). Given such an AGG-/0, the algorithm starts by parti-

tioning A into sets each containing one action, and combines them in anarbitrary

order. Consider two restricted gamesΓ′ andΓ′′ on two disjoint sets of action nodes

X andY respectively. Observe that in this case, to check consistency between two

equilibria of Γ′ andΓ′′ respectively, it is sufficient to check the numbers of play-

ers inΓ′ andΓ′′. Given a restricted gameΓ′ on X ⊂ A and an equilibriumc∗ of

Γ′, define theworst current utilityWCU(c∗,Γ′) to be the utility of the worst-off

player inΓ′, or ∞ if Γ′ has 0 players. Define thebest entrance utilityBEU(c∗,Γ′)

to be the best payoff a player currently playing an action outside ofX can get by

playing an action inX, assuming the current players inΓ′ play c∗. If Γ′ already

has alln players, BEU(c∗,Γ′) = −∞. Since all players in a symmetric game are

identical, if any player can profitably deviate out ofΓ′, then the worst-off player

(with utility WCU(c∗,Γ′)) can profitably deviate out ofΓ′; similarly if an agent

can profitably deviate to any action inΓ′, then she can achieve utility BEU(c∗,Γ′).

Therefore, to check whether agents could profitably deviatefrom Γ′ currently in
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equilibriumc′ to Γ′′ in equilibriumc′′, we just need to check whether WCU(c′,Γ′)

is greater than BEU(c′′,Γ′). Thus WCU(c′,Γ′) and BEU(c′,Γ′) can be used as suf-

ficient statistics for checking existence of profitable deviations out of and into the

restricted gameΓ′, and #c[X] for checking consistency. The resulting character-

istics are equilibrium-preserving, and require less spacethan keeping track of the

partial solutions onX because WCU and BEU are utility values and thus there are

at most||Γ||2 possible pairs.

We adapt Ieong et al. [2005]’s characteristic function to general symmetric

AGGs. First of all, we now needc[ν(X)] in order to specify restricted games and

partial solutions onX. As a result, to check consistency between a partial solution

on X and partial solutions on other parts of the graph, we need to keep track of the

number of players inX, the configuration overν(X), and the configuration over

ν(X).

Furthermore, in general action graphs, we may have setsX,Y ⊂ A such that

ν(X)∩Y 6= /0. In such cases deviating from an action inν(X)∩Y to a restricted

gameΓ′ on X changes the configuration onν(X), which in turn affects the utility

functions ofΓ′. In other words, the best utility a player originally playing an action

α ∈ X can get by deviating intoΓ′ onX with current configurationc∗ is a quantity

that depends on (1) whetherα is in ν(X) and (2) if so,α itself. As a result, simply

using BEU(c∗,Γ′) and WCU(c∗,Γ′) is no longer sufficient for checking profitable

deviations.

We thus need more sophisticated sufficient statistics for checking deviations in

this case. One approach is to extend our definition of BEU(c∗,Γ′) by making it

vector-valued, specifying the best utilities when the deviating player is an outside

player and when the player is playing each of the actions inν(X). The length of

the resulting vector is thus|ν(X)|+1. Furthermore we could extend WCU(c∗,Γ′)

by making it a vector consisting of the worst utility fromX \ν(X) and from each

of the actions inν(X). Although it is intuitive, it turns out that this approach yields

a polynomial-time algorithm only in the case of symmetric AGG-/0s with bounded

treewidth and bounded in-degree.

Instead, in this chapter we describe a different approach that yields a polynomial-

time algorithm for bounded-treewidth symmetric AGG-/0s, thus eliminating the sep-

arate requirement on in-degree. First, we redefine BEU(c∗,Γ′) in terms of devia-
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tions from players outside ofX∪ν(X).

Definition 4.4.7. Given a restricted gameΓ′ on X ⊂ A and an equilibrium c∗

of Γ′, thebest entrance utilityBEU(c∗,Γ′) is the best payoff anoutside player(a

player currently playing an action outside of X∪ ν(X)) can get by playing an

action in X, assuming the current players inΓ′ play c∗. If there are 0 outside

players, BEU(c∗,Γ′) =−∞.

In order to check deviations into and out ofX, we partitionX into P andX \P,

and check the corresponding restricted games separately. We will specify P in

Section 4.4.4; for now we only require thatX ⊇ P ⊇ τ(X). Recall thatτ(X) are

the set of nodes inX with outgoing edges to and/or incoming edges from nodes

outsideX. Intuitively, P contains all nodes inX that we cannot apply BEU and

WCU to. This impliesν(X \P)∩X = /0 andν(X)∩ (X \P) = /0. Thus we can use

WCU and BEU for restricted games onX \P as sufficient statistics for checking

deviations betweenX \P and nodes outsideX. The remaining task is to check

deviations betweenP and nodes outsideX. We do this by explicitly keeping track

of configurations onQ⊇ P∪ν(P). We will exactly specifyQ in Section 4.4.4. In

other words, we keep track of the partial solutions onP. Note in particular that this

provides enough information to specify the corresponding restricted games onP.

Finally, since configurations overX \P will not be referred to by partial solutions

on anyY⊂A that is disjoint fromX, in order to maintain consistency it is sufficient

to keep track of the number of players playing inX and the configuration over

P∪ν(X), which is a subset ofQ.

Taking these together, we have the following characteristic function.

Lemma 4.4.8. Given X⊂ A , P⊆ X such that P⊇ τ(X), and Q⊇ P∪ν(P), con-

sider the characteristic function chP,Q that maps a partial solution c[X∪ν(X)] to

chP,Q(c[X∪ν(X)]) = (c[Q],#c[X],WCU(c[X′],Γ′),BEU(c[X′],Γ′)),

where Γ′ = Γ(#c[X′],X′,c[ν(X′)]) and X′ = X \ P. Then chP,Q is equilibrium-

preserving.

Proof. Suppose we have two partial solutionsc[X ∪ ν(X)] andc′[X ∪ ν(X)] such

that chP,Q(c[X ∪ ν(X)]) = chP,Q(c′[X ∪ ν(X)]). Furthermorec[X ∪ ν(X)] can be
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extended, i.e., there exists a PSNEc∗ of the game such thatc∗[X∪ ν(X)] = c[X ∪

ν(X)]. We need to show thatc′[X∪ν(X)] can be extended. Sincec∗[X∪ν(X)] and

c[X ∪ ν(X)] are consistent, and sincec[X∪ ν(X)] andc′[X∪ ν(X)] have the same

characteristic (in particular, the same configuration onν(X)∪ ν(X) and the same

number of players inX), thereforec∗[X ∪ ν(X)] andc′[X ∪ ν(X)] are consistent.

Consider the configurationc′∗ ≡ c∗[X∪ν(X)]∪c′[X∪ν(X)]. We claim thatc′∗ is

a PSNE of the game (which directly implies thatc′[X∪ν(X)] can be extended). To

show this, we observe that sincec∗[X∪ν(X)] andc′[X∪ν(X)] are already partial

solutions onX andX respectively (and are consistent with each other), we only

need to make sure there are no profitable deviations between them. We partitionX

into P andX′ = X \P. Since there were no profitable deviations between partial

solutionsc[P∪ν(P)] andc∗[X∪ν(X)], and sincec[P∪ν(P)] = c′[P∪ν(P)], there

are no profitable deviations between partial solutionsc′[P∪ν(P)] andc∗[X∪ν(X)].

Suppose there is a profitable deviation fromX′ under partial solutionc′[X′∪ν(X′)]

to X under partial solutionc∗[X∪ν(X)]. Then there is a profitable deviation from

the worst-off player inX′ underc′[X′∪ν(X′)]. Since her utility is equal to that of

the worst-off player inX′ underc[X′∪ν(X′)], there must be a profitable deviation

from the partial solutionc[X′∪ ν(X′)] to c∗[X∪ ν(X)], a contradiction. A similar

argument shows that there is no profitable deviation fromX underc∗[X∪ν(X)] to

X′ underc′[X′∪ν(X′)].

We denote byC P,Q
X the set of characteristics onX under the characteristic func-

tion chP,Q. For the restricted game in Example 4.4.2, we can useP= {T6,B6} and

Q= P∪ν(P) = {T5,T6,T7,B5,B6,B7}. These are illustrated in Figure 4.4.

The following lemma shows how sets of characteristics from two subsetsX′

and X′′ of A (with characteristic functions chP′,Q′ and chP′′,Q′′ respectively) can

be combined together. Here we require thatX′ andX′′ have a limited amount of

overlap; specifically, we require thatX′∩X′′ ⊆ P′ ∪P′′. Intuitively, the combina-

tion of subsets with such overlap is manageable because (1) we can calculate the

total number of players inX′∪X′′ from the characteristics because we know the

configuration of (and thus the number of players in)X′∩X′′; and (2) since the con-

figuration ofX′∩X′′ is already “in equilibrium” with both sides, it is sufficientto

check deviations fromX′′ \X′ to X′ \X′′ and vice versa. We do this by partitioning
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Figure 4.4: Characteristic function chP,Q for the rightmost 6 actions withP=
{T6,B6} andQ= {T5,T6,T7,B5,B6,B7}.

the former intoX′′ \P′′ andP′′ \X′, and the latter intoX′ \P′ andP′ \X′′, then

checking the resulting set of deviations using informationprovided by the charac-

teristics.

Lemma 4.4.9. Suppose that X,P,Q,X′,P′,Q′,X′′,P′′,Q′′ are subsets ofA such

that τ(X)⊆ P⊆ X, τ(X′) ⊆ P′ ⊆ X′, τ(X′′) ⊆ P′′ ⊆ X′′, Q⊇ P∪ν(P), Q′ ⊇ P′∪

ν(P′), Q′′ ⊇ P′′∪ν(P′′), X′∩X′′ ⊆ P′∪P′′, and X′∪X′′ = X. For all c[Q] ∈C[Q],

integer B≤ n, and Uc,Ue∈U , the tuple(c[Q],B,Uc,Ue)∈C
P,Q
X if and only if there

exist c′[Q′], c′′[Q′′], B′, B′′, and U′
c, U ′′

c , U ′
e, and U′′

e such that

1. (c′[Q′],B′,U ′
c,U

′
e) ∈ C

P′,Q′

X′ ,

2. (c′′[Q′′],B′′,U ′′
c ,U

′′
e ) ∈ C

P′′,Q′′

X′′ ,

3. c′[Q′] is consistent with c′′[Q′′],

4. c[Q] = c′′′[Q] where c′′′ = c′[Q′]∪c′′[Q′′],

5. B= B′+B′′−c′′′[X′∩X′′], and if X= A then B= n,

6. U′
c ≥U ′′

e and U′′
c ≥U ′

e,

7. U′
c ≥ BEU(c′′[P′′ \X′],Γ′′), WCU(c′[P′ \X′′],Γ′) ≥ U ′′

e , U ′′
c ≥ BEU(c′[P′ \

X′′],Γ′), WCU(c′′[P′′\X′],Γ′′)≥U ′
e whereΓ′ =Γ(#c′[P′\X′′], P′\X′′,c′[ν(P′\

X′′)]) andΓ′′ = Γ(#c′′[P′′ \X′], P′′ \X′,c′′[ν(P′′ \X′)]),

8. c[P′∪P′′] is an equilibrium ofΓ(#c[P′∪P′′], P′∪P′′, c′′′[ν(P′∪P′′)],

9. Uc=min{U ′
c,U

′′
c ,WCU(c′′′[Z],ΓZ)} andUe=max{U ′

e,U
′′
e ,BEU(c′′′[Z],ΓZ)},

where Z= (P′∪P′′)\P andΓZ = Γ(#c′′′[Z],Z,c′′′[ν(Z)]).
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Proof Sketch.⇒ (“only if”) part: Supposec[X ∪ ν(X)] is a partial solution on

X with characteristic(c[Q],B,Uc,Ue). Then letc′[X′ ∪ ν(X′)] = c[X′ ∪ ν(X′)].

It is straightforward to see thatc′[X′] is an equilibrium of the restricted game

Γ(#c′[X′],X′,c[ν(X′)]). Thereforec′[X′∪ ν(X′)] is a partial solution onX′. Sim-

ilarly, let c′′[X′′ ∪ ν(X′′)] = c[X′ ∪ ν(X′′)], and the same argument applies. Then

it is straightforward to verify that the characteristics ofc′[X′∪ν(X′)] andc′′[X′′∪

ν(X′′)] satisfy the above conditions.

⇐ (“if”) part: Supposec′[X′∪ν(X′)] andc′′[X′′∪ν(X′′)] are partial solutions

with characteristics(c′[Q′],B′,U ′
c,U

′
e) and (c′′[Q′′],B′′,U ′′

c ,U
′′
e ) respectively, and

there existsc[Q],B,Uc,Ue such that conditions 3 to 9 are satisfied. Then conditions

3 and 5 together with Lemma 4.4.5 imply thatc′[X′ ∪ ν(X′)] andc′′[X′′∪ ν(X′′)]

are consistent. Letc= c′[X′∪ν(X′)]∪c′′[X′′∪ν(X′′)]. By a similar argument as in

the proof of Lemma 4.4.8, conditions 6 to 8 ensure that there are no profitable de-

viations between the partial solutionsc′[X′∪ν(X′)] andc′′[X′′∪ν(X′′)], and there-

fore c[X] is an equilibrium of the restricted gameΓ(B,X,c[ν(X)]). LetY = X \P.

ThenX′ \P′, X′′ \P′′ andZ partitionsY. By the definition of worst current utility,

WCU(c[Y],Γ(#c[Y],Y,c[ν(Y)])) is the minimum of{U ′
c,U

′′
c ,WCU(c′′′[Z],ΓZ)}, which

are the worst current utilities onX′ \P, X′′ \P′′ and Z respectively. Therefore

WCU(c[Y],Γ(#c[Y],Y,c[ν(Y)])) = Uc. Similarly BEU(c[X],Γ(B,X,c[ν(X)])) =

Ue. Thereforec[X∪ν(X)] is a partial solution with characteristic(c[Q],B,Uc,Ue).

Lemma 4.4.9 implies that it takes polynomial time to check iftwo character-

istics (c′[Q′],B′,U ′
c,U

′
e) ∈ C

P′,Q′

X′ and(c′′[Q′′],B′′, U ′′
c , U ′′

e ) ∈ C
P′′,Q′′

X′′ are consistent

and if there are no profitable deviations between them, and ifso to construct a char-

acteristic inC
P,Q
X for their combined partial solutions. Thus if we iterate over all

pairs of characteristics inC P′,Q′

X′ andC
P′′,Q′′

X′′ respectively, we can constructC
P,Q
X in

time polynomial in the sizes ofC P′,Q′

X′ andC
P′′,Q′′

X′′ .

Let us now consider the size ofC
P,Q
X for an arbitraryX ⊆ A . Recall that the

WCU and BEU are utility values and thus each has at most|U | ≤ ||Γ|| distinct

values. Also #c[X] ∈ {0, . . . ,n} by definition. So the number of distinct charac-

teristics can be much smaller than the number of corresponding partial solutions

c[X∪ν(X)] when|Q|≪ |X∪ν(X)|. However, sinceQ⊇ ν(X) and|ν(X)| is |X|I
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Figure 4.5: An action graphG.
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Figure 4.6: The primal graphG′.
R1={A,B}

R5={D,E} R3={C,D} R2={B,C} R4={C,F} R6={F,G}

Figure 4.7: Tree decomposition ofund(G)

X1={A,B,C}

X5={C,D,E} X3={B,C,D,E,F} X2={A,B,C,D,F} X4={B,C,D,F,G} X6={C,F,G}

Figure 4.8: Tree decomposition of primal graphG′, satisfy-
ing the conditions of Lemma 4.4.11.

in the worst case, the number of possible configurations overQ is superpolynomial

in ||Γ|| in the worst case. SinceC P,Q
X could potentially include every distinct tu-

ple (c[Q],B,Uc,Ue), the size ofC P,Q
X is superpolynomial in the worst case. Indeed,

Theorem 4.2.2 showed that we will not find a poly-time algorithm for general sym-

metric AGGs unless P= NP. Nevertheless, we next show that if the action graph

G has bounded treewidth, we can combine the restricted games in a way such that

the number of configurations|C[Q]| (and thus|C P,Q
X |) remains polynomial in||Γ||

asX grows.

4.4.4 Algorithm for Symmetric AGGs with Bounded Treewidth

We first introduce some notation. Given an action graphG = (A ,E), define

H (G) to be the hypergraph(A ,E ) with E = {{α} ∪ ν(α)|α ∈ A }. In other

words, for each actionα ∈ A , there is a hyperedge containingα and its neigh-

bors. Duplicate hyperedges are removed. LetG′ be theprimal graph of the

hypergraphH (G). G′ is a undirected graph on the same set of vertices, and

there is an edge between two nodes if they are in some hyperedge in H (G).

G′ = (A ,{{u,v}|∃h ∈ E such thatu,v ∈ h}). Thus for eachα ∈ A , α and its

neighbors inG form a clique inG′. In the Bayes net literatureG′ is also known
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as themoral graphof G. For example, Figure 4.5 shows the action graphG of

a symmetric AGG. Its hypergraphH (G) has the same set of vertices and the hy-

peredges{A,B}, {A,B,C}, {D,E}, {C,D,E}, {F,G}, {C,F,G}, and{B,C,D,E}.

Figure 4.6 showsG’s primal graphG′.

The concept of tree decomposition and treewidth was introduced by Robertson

and Seymour [1986].

Definition 4.4.10. A tree decompositionof an undirected graph G′ = (V,E) is a

pair (X ,T) with T = (I ,F) a tree (where I and F are the nodes and edges of the

tree respectively), andX = {Xi |i ∈ I} a family of subsets of V , one for each node

of T , such that

1.
⋃

i∈I Xi =V,

2. for all edges{v,w} ∈ E there exists an i∈ I with v∈ Xi and w∈ Xi, and

3. for all i, j,k∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

Thewidth of a tree decomposition ismaxi∈I |Xi| − 1. The treewidthtw(G′) of a

graph G′ is the minimum width over all tree decompositions of G′.

Condition 3 of the definition can be equivalently stated as the following: for all

v∈V, the set{i ∈ I |v∈ Xi} induces a subtree ofT.

Let the treewidthtw(Γ) of an AGGΓ be the treewidth ofund(G), the undi-

rected version of its action graphG (excluding self-edges). Figure 4.7 shows a tree

decomposition({Ri |i ∈ I},T = (I ,F)) of the undirected version of the action graph

G in Figure 4.5. In this caseund(G) is a tree. The width of the tree decomposi-

tion is 1 since each tree node contains at most 2 vertices ofund(G). This is a tree

decomposition of minimum width, since any tree decomposition must have nodes

containing e.g., bothA andB since{A,B} is an edge inund(G). In fact, it is known

in general that the treewidth of a connected tree is 1.

A tree decomposition ofund(G) provides a family of subsets (R1, . . . ,R6 in

Figure 4.7) of vertices that coverA , and if the width of the decomposition is

bounded by a constant that implies the sizes ofRi are bounded. We will be using

Ri as theP’s in Lemmas 4.4.8 and 4.4.9. However, we also need to controlthe

size ofQ ⊇ P∪ ν(P) in those lemmas in order to control the running time of the
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resulting dynamic programming algorithm. It turns out thata tree decomposition

of the primal graph can be constructed that yields the appropriate Q’s of Lemmas

4.4.8 and 4.4.9. Given a tree graphT = (I ,F) andJ ⊂ I , let TJ be the subgraph of

T restricted toJ.

Lemma 4.4.11.Given a symmetric AGG-/0 Γ with treewidth w, there exists a tree

decomposition({Xi|i ∈ I},T = (I ,F)) of the primal graph G′ of width at most

(w+1)(I +1)−1, and{Ri |i ∈ I} such that

1.
⋃

i∈I Ri = A , and Ri ∪ν(Ri)⊆ Xi for all i ∈ I,

2. Let J⊂ I such that TJ is a connected graph and connects to the rest of the tree

via only one edge{ j, j ′} ∈ F with j ∈ J. Let YJ =
⋃

i∈J Ri. Thenτ(YJ)⊆ Rj .

Proof. By assumption there exists a tree decomposition ofund(G) of width w. De-

note this decomposition({Ri |i ∈ I},T = (I ,F)). Then
⋃

i∈I Ri = A . Let Xi =

Ri ∪ν(Ri) for all i ∈ I . Daskalakis and Papadimitriou [2006] proved that the result-

ing ({Xi |i ∈ I},T) is a tree decomposition of the primal graphG′ having width at

most(w+1)(I +1)−1. ThenRi ∪ν(Ri)⊆ Xi.

Given J, j andYJ as defined in the statement of the lemma, we claim that

τ(YJ) ⊆ Rj . To see this, consider eachα ∈ τ(YJ). Then by definition there must

be anα ′ ∈ YJ such that{α ,α ′} is an edge inund(G). We note thatTI\J is also

connected. SinceYJ =
⋃

i∈J Ri, we haveYJ ⊆
⋃

i∈I\J Ri = YI\J and thusα ′ ∈ YI\J.

Since{α ,α ′} is an edge inund(G), by condition 2 of Definition 4.4.10 there exists

i′ ∈ I such thatα ,α ′ ∈ Ri′ . Furthermore suchi′ must be inI \J sinceα ′ 6∈YJ. Since

α is contained in someRi with i ∈ J, by condition 3 of Definition 4.4.10α must

be contained in allRi′′ such thati′′ is on the path fromi to i′ in T. Since j is on this

path,α ∈ Rj .

Since the undirected version of the action graph in Figure 4.5 has treewidth 1,

Lemma 4.4.11 guarantees a tree decomposition of the primal graph with width at

most 7 satisfying the above conditions. Figure 4.8 shows such a tree decomposition

(with width 4) of the primal graphG′ from Figure 4.6. Each nodei ∈ I of the tree

is labeled withXi.

Lemma 4.4.11 together with Lemma 4.4.8 imply that:
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Corollary 4.4.12. Given any J, j and YJ satisfying condition 2 of Lemma 4.4.11,

chRj ,Xj is an equilibrium-preserving characteristic function on YJ.

Also observe that for alli ∈ I , chRi ,Xi is trivially an equilibrium-preserving char-

acteristic function onRi.

Pick an arbitrary noder ∈ I to be the root ofT. We say nodej is a descendant

of nodei (equivalentlyi is an ancestor ofj) if i is on the path fromr to j. Define

Zi = {v ∈ Rj | j = i or j is a descendant ofi}. ThenZr ≡ A . Intuitively, when we

combine the restricted games associated with nodei and its descendants inT, we

would get a restricted game onZi . For each nodei ∈ I with childrenq1, . . . ,qm ∈ I ,

for each j ≤ m, defineZi, j = Ri ∪Zq1 ∪ . . .∪Zqj . This implies thatZi,m ≡ Zi. Then

Corollary 4.4.12 implies that for anyZi, j , chRi ,Xi is an equilibrium-preserving char-

acteristic function. We writeCZi, j ≡ C
Ri ,Xi
Zi, j

. For our tree decomposition in Figure

4.8, if we let node 1 be the rootr, thenZ5 = R5, Z6 =R6, Z3 = R3∪R5 = {C,D,E},

Z4 = R4 ∪R6 = {C,F,G}, Z2 = R2 ∪R3 ∪R4 ∪R5 ∪R6 = {B,C,D,E,F,G}, and

Z1 = A . Since node 2 has two childrenq1 = 3 andq2 = 4, thenZ2,1 = R2∪Z3 =

{B,C,D,E} andZ2,2 = Z2,1∪Z4 = Z2 = {B,C,D,E,F,G}.

We adapt our dynamic programming algorithm from the previous section so

that{Ri |i ∈ I} is the initial family of subsets that coversA , and the order in which

the subsets are combined is guided by the tree decomposition, from the leaves to

the root.

1. For eachRi, computeCRi . This can be done by enumerating all possible

configurationsc[Xi] and keeping those that induce a pure equilibrium of the

restricted game onRi .

2. Initialize the set Done⊆ I to contain the leaves of the treeT.

3. While∃i ∈ I \Done such that{i′ ∈ I |i′ is a child ofi} ⊆ Done:

(a) LetCZi,0 := CRi

(b) Letq1, . . . ,qm be the children ofi.

(c) For j = 1 tom, computeCZi, j from CZi, j−1 andCZqj
by applying Lemma

4.4.9.

(d) CZi := CZi,m
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(e) Add i to Done.

4. Return TRUE iffCZr is nonempty.

For the tree decomposition in Figure 4.8 with node 1 being theroot, our algorithm

would start from the leaves 5 and 6, then computeCZ3 = C Z3,1 by combining

CR3 andCR5, computeCZ4 = C Z4,1 by combiningCR4 andCR6, computeCZ2,1 =

C{B,C,D,E} by combiningCR2 andCZ3, then computeCZ2 = CZ2,2 = C{B,C,D,E,F,G}

by combiningCZ2,1 andCZ4, and finally computeCZ1 by combiningCR1 andCZ2.

Theorem 4.4.13.Deciding the existence of pure equilibrium in symmetric AGG- /0s

with bounded treewidth is in P.

Proof. Suppose the treewidth of the AGG is bounded by a constant,w. Then a

tree decomposition ofund(G) having width at mostw can be constructed in time

exponential only inw, i.e., in polynomial time (see e.g. [Bodlaender, 1996, Kloks,

1994]). Then we can apply Lemma 4.4.11 to construct in polynomial time the tree

decomposition({Xi |i ∈ I},T = (I ,F)) of the primal graphG′ and{Ri |i ∈ I}.

It is straightforward to check that our algorithm above correctly computes all

CZi, j . Specifically, at step 3c, sinceZi, j−1 andZqj correspond to disjoint subgraphs

of T connected by edge{i,q j} ∈F, we haveZi, j−1∪Zqj ⊆Ri. Therefore we can ap-

ply Lemma 4.4.9. SinceZr ≡ A , the algorithm correctly determines the existence

of pure equilibrium inΓ.

The running time of the algorithm is polynomial in the size oftheCZi ’s. The

size of eachCZi is bounded byn||Γ||2|C [Xi]|. Since the tree decomposition has

width at most(w+ 1)(I + 1)− 1, |C [Xi]| ≤
(n+(w+1)(I+1)

(w+1)(I+1)

)

. The latter is the

number of ordered combinatorial compositions ofn into (w+1)(I +1)+1 non-

negative integers. An equivalent way of counting this number is as follows:

1. breakn into w+1 nonnegative integersx1, . . . ,xw+1 such that∑w+1
i=1 xi = n.

2. then break each of the firstw integers intoI + 1 nonnegative parts in the

same way, and the last one (xw+1) into I +2 nonnegative parts.

There are
(n+w

w

)

different ways of carrying out step 1. Since each integer con-

sidered in step 2 is at mostn, there are at most
(n+I+1

I+1

)

ways of breaking each

124



integer. Therefore
(n+(w+1)(I+1)

(w+1)(I+1)

)

≤
(n+w

w

)(n+I+1
I+1

)w+1
. Sincew is a constant, this

is polynomial in||Γ||. Hence our algorithm runs in polynomial time.

When the input is an AGG-/0 encoding of a singleton congestion game, i.e.,

a symmetric AGG-/0 with only self-edges, the resultingund(G) has treewidth 0

and by Theorem 4.4.13 the existence of PSNE can be determinedin polynomial

time. Of course, our result applies to a much larger class of games. Road games

(Example 4.4.2) have treewidth 2 for allm. Thus by Theorem 4.4.13 the existence

of PSNE can be determined in polynomial time for these games.

Our approach can be straightforwardly extended to the computation of related

solution concepts such as pure-strategyε-Nash equilibrium and strict equilibrium.

For example, for pure-strategyε-Nash equilibrium, we define partial solutions such

that they induceε-Nash equilibria of the corresponding restricted games, and use a

modified version of Lemma 4.4.9 where the conditions that compare best entrance

utilities and worst current utilities are relaxed byε ; e.g.,U ′
c ≥ U ′′

e is replaced by

U ′
c+ ε ≥U ′′

e .

4.4.5 Finding PSNE

So far we have focused on the problem of deciding the existence of PSNE. Our dy-

namic programming approach can also be used to find these equilibria if they exist.

We first consider the problem of constructing a single PSNE. After the bottom-up

pass of the tree decomposition as discussed above, ifCZr is not empty, we do a

top-down pass as follows:

1. Initialize Done⊆ I to be{r},

2. Pick an arbitrary(c[Xr ],Br ,U r
c ,U

r
e) ∈ CZr

3. SetCZr = {(c[Xr ],Br ,U r
c ,U

r
e)},

4. While Done6= I :

(a) Takei ∈ Done such that{i′|i′ is a child ofi}∩Done= /0

(b) Letq1, . . . ,qm be the children ofi.

(c) CZi ≡ CZi,m will have a single element(c[Xi ],Bi ,U i
c,U

i
e).
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(d) LetCZi,0 := CRi = {ch(c[Xi])}

(e) For eachj ∈ m,m−1, . . . ,1:

i. pick (c[Xqj ],Bqj ,U
qj
c ,U

qj
e )∈CZqj

and(c[Xi],Bi, j−1,U
i, j−1
c ,U i, j−1

e )∈

CZi, j−1 such that they combine to form the single element ofCi, j

while satisfying the conditions of Lemma 4.4.9.

ii. setCZqj
:= {(c[Xqj ],Bqj ,U

qj
c ,U

qj
e )} andCZi, j−1 := {(c[Xi ],Bi, j−1,U

i, j−1
c ,U i, j−1

e )}.

iii. add q j to Done.

5. Now eachCRi contains a single element ch(c[Xi ]). Output configuration
⋃

i∈I c[Xi ].

Since the bottom-up pass has established the correctCZi, j , step 4(e)i can always

be carried out. Therefore the algorithm is correct, and by the same argument as in

the proof of Theorem 4.4.13 the algorithm runs in polynomialtime. This proves:

Corollary 4.4.14. The problem of finding a PSNE is in P for symmetric AGG-/0s

with bounded treewidth.

A similar top-down pass would make sure that eachCZi, j contains exactly the

characteristics of extendable partial solutions. Although the number of pure equi-

libria of an AGG could be exponential in the representation size ||Γ||, the resulting

set ofCZi, j along with the tree decomposition constitutes asuccinct descriptionof

the set of PSNE of the game, analogous to Daskalakis and Papadimitriou [2006]’s

construction of succinct descriptions of the set of PSNE of graphical games. Given

a symmetric AGG-/0 with bounded treewidth, such a succinct description can be

computed in polynomial time. The succinct description can be used e.g., to enu-

merate the set of all PSNE in time polynomial in the size of input and output, and

to check if there exists a PSNE with a specific configuration atcertain action nodes.

4.4.6 Computing Optimal PSNE

Recall from Chapter 2 that the social welfare is the sum of theplayers’ utilities.

Given a configurationc in a symmetric AGG-/0Γ, the social welfare can be written

as

WΓ(c) = ∑
α∈A

c[α ]uα (c[ν(α)]).
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Our algorithm can be extended to compute the socially optimal PSNE if one ex-

ists. The characteristics now also store the social wealth of the restricted games.

Specifically, we use the characteristic function

chopt(c[Zi, j ∪ν(Zi, j)]) = (chRi ,Xi (c[Zi j ∪ν(Zi, j)]),WΓ′(c[Zi, j ]))

whereΓ′ = Γ(#c[Zi j ],Zi j ,c[ν(Zi j )]) is the restricted game onZi j induced by the

partial solution. LetC opt
Zi, j

be the corresponding set of characteristics.

The way characteristics from two setsX′,X′′ ⊆A are combined is also slightly

different from Lemma 4.4.9. Once we have checked consistency and profitable

deviations as in Lemma 4.4.9, we now need to compute the social welfare of the

resulting characteristic from the given characteristics of X′ andX′′. Simply adding

the social welfare values would not be correct due to the possible overlap ofX′ and

X′′; fortunately we know the configuration overX′ ∩X′′ and their neighbors (by

assumption of Lemma 4.4.9) so we are able to calculate the social welfare of the

overlap and subtract it from the sum.

Corollary 4.4.15. Suppose X= X′∪X′′, and X′,X′′,P,P′,P′′,Q,Q′,Q′′ satisfy the

prerequisites of Lemma 4.4.9. For all c[Q],B,Uc,Ue,W∪, we have(c[Q],B,Uc,Ue,W∪)∈

C
opt
X if and only if there exist(c′[Q′],B′,U ′

c,U
′
e,W

′)∈C
opt
X′ and(c′′[Q′′],B′′,U ′′

c ,U
′′
e ,W

′′)∈

C
opt
X′′ satisfying the conditions of Lemma 4.4.9, and

W∪ =W′+W′′−WΓ∩(c[X
′∩X′′])

whereΓ∩ = Γ(#c[X′∩X′′],X′∩X′′,c[ν(X′∩X′′)]).

Using this characteristic function together with the bottom-up pass above, we

can compute the optimal social welfare achieved by a PSNE, ifone exists. A top-

down pass then constructs such a PSNE. One issue with this approach is that due to

the additional social welfare term in a characteristic, thenumber of characteristics

in eachC
opt
Zi, j

can be greater than|CZi, j |. Fortunately, it is straightforward to show

that:

Lemma 4.4.16.Suppose partial solutions c[X∪ν(X)] and c′[X∪ν(X)] induce the

same characteristic under chopt except that the former’s social welfare is less than
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the latter’s. Then the former can be extended to a PSNE if and only if the latter can

be extended to a PSNE with greater social welfare.

This implies that whenever we have multiple characteristics in C
opt
Zi, j

that differ

only in their social welfare values, we can safely prune awayall but the one with

the greatest social welfare. The resultingC
opt
Zi, j

has the same cardinality asCZi, j ,

therefore the algorithm runs in polynomial time.

Corollary 4.4.17. Computing a maximum social welfare PSNE in symmetric AGG-/0s

with bounded treewidth is in P.

4.5 Beyond symmetric AGGs

4.5.1 Algorithm for k-Symmetric AGG- /0s

Our results for symmetric AGG-/0s can be straightforwardlyextended tok-symmetric

AGG-/0s with boundedk. Consider ak-symmetric AGG-/0Γ with player classes

N1, . . . ,Nk. As discussed in Section 4.3, it is sufficient to considerk-configurations.

Define restricted gameΓ((n′ℓ)1≤ℓ≤k,X,(cℓ[νℓ(X)])1≤ℓ≤k) to be thek-symmetric

AGG-/0 played onGX, in which each player classℓ ∈ {1. . .k} hasn′ℓ ≤ |Nℓ| −

cℓ[ν(X)] players, and the utility function for eachα ∈ X is uα |(cℓ(ν(X)))1≤ℓ≤k
, i.e.,

the same asuα of Γ except that the configuration of nodes outsideX are given

by thek-configuration(cℓ(ν(X)))1≤ℓ≤k. We define a partial solution onX to be

a k-configuration(cℓ[X ∪ ν(X)])1≤ℓ≤k such that(cℓ[X])1≤ℓ≤k is a PSNE of the re-

stricted gameΓ((#cℓ[X])1≤ℓ≤k,X,(cℓ[νℓ(X)])1≤ℓ≤k).

Similarly, we extend the characteristic functions of Section 4.4 by replacing

each component of the characteristic with itsk-tuple version.

Definition 4.5.1. Given a restricted gameΓ′ on X⊂ A and a PSNE(c∗ℓ)1≤ℓ≤k of

Γ′, player classℓ’s worst current utilityWCUℓ((c∗ℓ)1≤ℓ≤k,Γ′) is the utility of the

worst-off player from classℓ in Γ′, or ∞ if Γ′ has 0 players in classℓ. Player class

ℓ’s best entrance utilityBEUℓ((c∗ℓ)1≤ℓ≤k,Γ′) is the best payoff anoutside player(a

player currently playing an action outside of X∪ ν(X)) from classℓ can get by

playing an action in X∩A ℓ, assuming the current players inΓ′ play (c∗ℓ)1≤ℓ≤k. If

there are 0 outside players from classℓ or X∩A ℓ = /0, BEU((c∗ℓ)1≤ℓ≤k,Γ′) =−∞.
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Lemma 4.5.2. Given a k-symmetric AGG-/0 Γ, X ⊂ A , P⊆ X such that P⊇ τ(X),

and Q⊇ P∪ ν(P), consider the characteristic function chk
P,Q that maps a partial

solution(cℓ[X∪ν(X)])1≤ℓ≤k to

(cℓ[Q],#cℓ[X],WCUℓ(c[X
′],Γ′),BEUℓ(c[X

′],Γ′))1≤ℓ≤k,

whereΓ′ = Γ((#cℓ[X′])1≤ℓ≤k,X′,(cℓ[ν(X′)])1≤ℓ≤k) and X′ = X \P. Then chkP,Q is

equilibrium-preserving.

Lemma 4.4.9 can be similarly extended to thek-symmetric case. Therefore we

can use this characteristic function together with our bottom-up pass algorithm to

determine the existence of PSNE ink-symmetric AGG-/0s, and use the top-down

algorithm to find a PSNE if one exists. Fork-symmetric AGG-/0s with boundedk

and bounded treewidths, each of thek components of chkRi ,Xi
’s output can take at

mostpoly(||Γ||) values, and as a result the number of characteristics is polynomial

in ||Γ||. We thus have the following generalization of Theorem 4.4.13, Corollary

4.4.14 and Corollary 4.4.17.

Corollary 4.5.3. For k-symmetric AGG-/0s with bounded k and bounded treewidths,

the problems of determining the existence of PSNE, of constructing a PSNE, and

of finding maximum social welfare PSNE are all in P.

We observe that whenk = 1, i.e., when the game is symmetric, chk
P,Q degen-

erates into chP,Q we previously defined for the symmetric case, and this algorithm

simplifies into our algorithm for symmetric AGG-/0s.

4.5.2 General AGG-/0s and the Augmented Action Graph

We now consider the case of general AGG-/0s. We note that suchgames can still be

viewed ask-symmetric (withk at mostn), but nowk may grow with the input size.

Our approach in Section 4.5.1 fork-symmetric AGG-/0s works well only whenk

is bounded by a constant, since the number of characteristics under chkP,Q grows

exponentially ink. Can this approach be extended to the case of general AGG-/0s?

We observe that in order to check deviations out of and intoX \P, we do not need

to keep track of information about player classes whose action sets are either (1)

fully contained inX \P, or (2) disjoint fromX \P. In the former case, no player

129



of that class can deviate outsideX \P; this is reflected in chkP,Q as best entrance

utilities of −∞ for that class in the restricted game onX \P, but we also do not

need to keep track of the worst current utilities for the class. Similarly, in the latter

case, no player of that class can deviate intoX \P. To check deviations out of and

into P, we only need to keep track of information on player classes whose action

sets intersectQ. In other words, it is sufficient to define a characteristic function in

terms of the player classes that are relevant to the current subset of nodes. Formally,

Lemma 4.5.4. Consider a k-symmetric AGG-/0 Γ with player classes1, . . . ,k cor-

responding to sets of players N1, . . . ,Nk and action setsA 1, . . . ,A k. Given X⊂A ,

P⊆ X such that P⊇ τ(X), and Q⊇ P∪ ν(P), let L(X,P) = {ℓ|1≤ ℓ ≤ k, A ℓ 6⊆

(X \P), A ℓ∩ (X \P) 6= /0}, and let K(Q) = {ℓ|1≤ ℓ≤ k, A ℓ∩Q 6= /0}. Consider

the characteristic function ch+P,Q that maps a partial solution(cℓ[X ∪ ν(X)])1≤ℓ≤k

to

(

(cℓ[Q])ℓ∈K(Q),(#cℓ[X \P])ℓ∈L(X,P),(WCUℓ(c[X
′],Γ′))ℓ∈L(X,P),(BEUℓ(c[X

′],Γ′))ℓ∈L(X,P)

)

,

whereΓ′ = Γ((#cℓ[X′])1≤ℓ≤k,X′,(cℓ[ν(X′)])1≤ℓ≤k) and X′ = X \P. Then ch+P,Q is

equilibrium-preserving.

Lemma 4.4.9 can be similarly extended. The number of characteristics under

ch+P,Q is exponential in|Q|, |K(Q)| and|L(X,P)|. Intuitively, as we combine these

characteristics to form characteristics on larger subgraphs,|L(X,P)| will also grow,

unless we “finish off” certain player classes, i.e., player classℓ such thatA ℓ be-

come a subset ofX \P. Can we divide the action graph and combine the restricted

games in a way that keeps|Q|, |K(Q)| and|L(X,P)| small? A natural idea is to turn

to tree decompositions ofG, as we did in Section 4.4.4. However, [Daskalakis et al.,

2009] proved that the problem of determining the existence of PSNE is NP-hard

even for AGGs with tree-width 1 and constant in-degree. In other words, we cannot

hope for a polynomial-time algorithm for general AGGs with constant treewidths,

unless P= NP. On the other hand, there exist classes of asymmetric AGGsthat are

poly-time solvable, e.g. those corresponding to tree graphical games. This implies

that looking at the action graph alone is insufficient for identifying such tractable

classes of AGGs. We have seen that information about the action sets of the AGG
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is needed in order to define ch+
P,Q. Thus a natural idea is to define an object that

incorporates information about the action sets as well as the action graph of the

AGG.

Definition 4.5.5. Given an AGG-/0 Γ with player classes1, . . . ,k, define theaug-

mented action graph2 to be a directed graph

AG= (V+,E+) = (A ∪{1, . . . ,k},E∪{(ℓ,α)|({α}∪ν(α))∩A
ℓ 6= /0}).

LetI + be the maximum in-degree of AG.

In other words, we add to the action graphG new vertices{1, . . . ,k} corre-

sponding to the player classes, and an edge from each player classℓ to actionα if

α or any of its neighbors are in the action set of classℓ. Intuitively, the edges from

player class nodes to action nodes in the augmented action graph ensure that in the

resulting tree decomposition, the set of tree nodes to whicha player class is rele-

vant forms a connected subgraph of the tree. This is formalized in the following

result for augmented action graphs, which is analogous to Lemma 4.4.11 for action

graphs.

Lemma 4.5.6. Given a k-symmetric AGG-/0 Γ whose augmented action graph

AG has treewidth w, there exists a tree decomposition({Xi ∪ Ki|Xi ⊆ A ,Ki ⊆

{1, . . . ,k}, i ∈ I},T = (I ,F)) of AG’s primal graph AG′ of width at most(w+

1)(I ++1)−1, and{Ri ⊆ A |i ∈ I} such that

1.
⋃

i∈I Ri = A , and Ri ∪ν(Ri)⊆ Xi for all i ∈ I,

2. Let J⊂ I such that TJ is a connected graph and connects to the rest of the tree

via only one edge{ j, j ′} ∈ F with j ∈ J. Let YJ =
⋃

i∈J Ri. Thenτ(YJ)⊆ Rj ,

K(Xj)⊆ K j , and L(YJ,Rj)⊆ L j .

Proof. The construction is very similar to that of Lemma 4.4.11: given a tree de-

composition({Ri ∪Li|Ri ⊆ A ,Li ⊆ {1, . . . ,k}, i ∈ I},T = (I ,F)) of AG, we build

2We note that our definition of augmented action graph is different from the augmented graph
of Daskalakis et al. [2009]. The computational problem thatDaskalakis et al. [2009] were trying
to solve (finding approximate mixed-strategy Nash equilibria) is different from the PSNE problem
considered in this chapter.
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a tree decomposition ofAG′ by adding to each tree nodei ∈ I the neighboring

vertices ofRi (vertices inLi have no neighbors). Lemma 4.5 of [Daskalakis and Pa-

padimitriou, 2006] ensures that the result is a tree decomposition ofAG′ with width

at most(w+ 1)(I + + 1)− 1. The resulting tree decomposition({Xi ∪Ki|Xi ⊆

A ,Ki ⊆ {1, . . . ,k}, i ∈ I},T = (I ,F)) will have Xi = Ri ∪ ν(Ri) as in the proof of

Lemma 4.4.11, andKi = Li ∪{ℓ|1 ≤ ℓ ≤ k,A ℓ ∩ (Ri ∪ ν(Ri)) 6= /0}. This implies

K(Xi)⊆ Ki for all i ∈ I .

By the same argument as in the proof of Lemma 4.4.11, we haveτ(YJ) ⊆

Rj . It remains to show thatL(YJ,Rj) ⊆ L j . Consider an arbitraryℓ ∈ L(YJ,Rj).

This implies thatA ℓ∩ (YJ \Rj) 6= /0 andA ℓ∩ (YJ \Rj) 6= /0. But this implies that

there existsα ∈ (YJ \Rj) such that(ℓ,α) ∈ E+, and there existsα ′ ∈YJ \Rj such

that (ℓ,α ′) ∈ E+. Since the tree nodes that containα must be inJ \ { j}, and by

condition 2 of Definition 4.4.10(ℓ,α) must be contained in some tree node, we

must have thatℓ ∈ Li for somei ∈ J\{ j}. Similarly we must haveℓ ∈ Li′ for some

i′ ∈ J\{ j}. But by condition 3 of Definition 4.4.10 we must haveℓ ∈ L j , and

thereforeL(YJ,Rj)⊆ L j .

Lemma 4.5.6 implies that we can apply the bottom-up pass algorithm using

the characteristic function ch+Ri ,Xi
for Zi, j , and correctly determines the existence of

PSNE. If a PSNE exists then a top-down pass constructs one. Let us consider the

running time of this approach. If we assume thatAG has bounded indegree and

bounded treewidth, this immediately implies that|Xi| andKi are bounded for all

i ∈ I , and the number of characteristics are polynomial inn and|A |. This in turn

implies that our algorithm runs in polynomial time in this case.

Proposition 4.5.7. For AGG-/0s whose action graphs have bounded indegree and

bounded treewidth, the problems of determining the existence of PSNE and of find-

ing a PSNE are in P.

One question is whether it is possible to show that the run time is polynomial in

the input size when the augmented action graph has bounded treewidth, i.e., with-

out any requirement on the in-degree. However, this turns out to be more difficult

than in the symmetric case. Specifically, in order to prove such a result without any

requirement on the in-degree, we would need to compare the runtime with (a lower
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bound of) the input size. Whereas for symmetric AGGs we have exact estimates

of the input size, for general AGGs we only proved upper bounds in Chapter 3.

The complexity of PSNE for AGG-/0s with bounded-treewidth augmented action

graphs remains an open problem.

One interesting case is when the input is an AGG-/0 encoding of a bounded-

treewidth graphical game. Recall that the PSNE problem for such games is known

to be tractable [Daskalakis and Papadimitriou, 2006, Gottlob et al., 2005]. We

show that our algorithm runs in polynomial time given AGG-/0encodings of such

games, thus providing another proof of this result.

Proposition 4.5.8.Determining the existence of PSNE in bounded-treewidth graph-

ical games is in P.

Proof. Recall from Chapter 3 that the size of the AGG-/0 encoding is proportional

to that of the graphical game, which isΘ(∑ℓ∈N |Aℓ|∏ j∈νg(ℓ) |A j |), whereνg(ℓ) is

the set of neighboring players ofℓ in the graphical game. The AGG hask = n

player classes, each containing a single player. We denote by ℓ the player class

corresponding to playerℓ ∈ N. Suppose the underlying graph(N,Eg) of the graph-

ical game has treewidthw and maximum in-degreeIg. Then the corresponding

action graphG= (A ,E) is given in Chapter 3 and the corresponding augmented

action graphAG= (A ∪N,E∪{(ℓ,α)|ℓ ∈ N,α ∈ Aℓ}). Given a tree decomposi-

tion ({Li |i ∈ I},T = (I ,F)) of the graph(N,Eg) with width w, it is straightforward

to show that({Ri ∪Li|i ∈ I},T), whereRi =
⋃

ℓ∈Li
Aℓ for all i ∈ I , is a tree decom-

position of the augmented action graphAG. The width of this decomposition is

O(maxℓ∈N |Aℓ|w).

Construct the tree decomposition({Xi ∪Ki|i ∈ I},T) for the primal graphAG′

according to Lemma 4.5.6. It is straightforward to verify that Ki = Li ∪ νg(Li)

andXi =
⋃

ℓ∈Ki
Aℓ. Therefore|Ki|= O(wIg), |Xi |= O(maxℓ∈Ki |Aℓ|wIg), and the

width of the decomposition isO(maxℓ∈N |Aℓ|wIg).

Now consider the number of characteristics under ch+
Ri ,Xi

. Since for eachℓ ∈ N

andJ ⊆ I we either haveAℓ ⊆ YJ or Aℓ ∩YJ = /0, this implies thatL(YJ,Rj) = /0

for all j ∈ I andJ ⊆ I . Thus the only nontrivial component of the characteristic is

(cℓ[Xi])ℓ∈Ki . Since eachℓ ∈ Ki corresponds to a single player,|Cℓ[Xi]|= |Aℓ|. Thus

the number of possible(cℓ[Xi])ℓ∈Ki is ∏ℓ∈Ki
|Aℓ|, which is polynomial in the input
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size since|Ki|=O(wIg). Thus the number of characteristics is polynomial in||Γ||,
which implies that our algorithm runs in polynomial time.

We see from the above proof that in this case the characteristic degenerates

into (cℓ[Xi])ℓ∈Ki , which carries the same amount of information as the partialpure

strategy profile of players inKi. This is exactly the same sufficient statistic used

by Daskalakis and Papadimitriou [2006]’s algorithm for graphical games, and as a

result our algorithm simplifies to the equivalent of Daskalakis and Papadimitriou

[2006]’s algorithm when given an AGG-/0 encoding of a graphical game.

We also note that our algorithms for symmetric andk-symmetric AGG-/0s can

be seen as special cases of our augmented-action-graph-based algorithm. In partic-

ular, consider ak-symmetric AGG-/0 with action graphG, and supposeund(G) has

a tree decomposition({Ri |i ∈ I},T = (I ,F)). Then our algorithm fork-symmetric

AGG-/0s corresponds to applying the augmented-action-graph-based algorithm to

the tree decomposition({Ri ∪{1, . . . ,k}|i ∈ I},T) for AG′, i.e., having allk player

classes in each of the tree nodes of the decomposition.

4.6 Conclusions and Open Problems

In this chapter we analyzed the problem of computing PSNE in AGGs. We pro-

posed a dynamic programming algorithm and showed that for symmetric AGG-/0s

with bounded treewidth, our algorithm determines the existence of PSNE in poly-

nomial time. We extended our approach to certain classes of asymmetric AGG-/0s,

and showed that our algorithm generalizes existing dynamic-programming approaches

for computing PSNE in graphical games and singleton congestion games.

One question is whether our approach has captured all the tractable classes

of AGG-/0s for the PSNE problem. The answer is no. For example, consider an

asymmetric AGG-/0 whose action graph has no inter-vertex edges and only self

edges. This is the same as the singleton congestion games studied by Ieong et al.

[2005] except that here the game is not symmetric. It is straightforward to see

that this game corresponds to a congestion game, and thus PSNE always exist.

Furthermore, by a similar argument as Ieong et al. [2005], given such a game a

PSNE can be found by iterated best response dynamics in polynomial time. On

the other hand, the augmented graph of such an AGG-/0 might have large treewidth.
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This example can be generalized: if the action graph contains a setX of such

singleton nodes, and the action sets that intersectX does not contain any node not in

X, then the subgraph of the singleton nodes does not affect theexistence of PSNE,

i.e., a PSNE exists in the game if and only if a PSNE exists in the restricted game on

the rest of the graph. We can even further generalize this: consider a subgraphGX

such that (as above) the action sets that intersectX does not contain any node not in

X, and thatX has only incoming edges from the rest ofG and no out going edges

(i.e.,ν(X) = /0), thenGX does not affect the existence of PSNE, and we can safely

delete the subgraph and solve the rest of the graph. This process can be repeated.

(This is analogous to, and indeed a generalization of, the case of graphical games

with sinks which was discussed in [Jiang and Safari, 2010].)Note that for these

examples, a greedy approach is used instead of (or in addition to) the dynamic

programming approach used in this chapter. For the problem of existence of PSNE

in graphical games, Jiang and Safari [2010] was able to completely characterize

the tractable classes of bounded-indegree graphs. An open problem is completely

characterizing the types of restrictions to the graphical structure of AGG-/0s that

make the PSNE problem tractable, perhaps by leveraging someof the techniques

developed in [Jiang and Safari, 2010].

Another future direction is to extend our approach to AGG-FNs. Recall that the

configuration on a function node is the value of a deterministic function of the con-

figuration of its neighbors. Thus given a symmetric AGG-FN, its PSNE correspond

to configurations over its action nodes and function nodes such that the configura-

tion over each function node is equal to the appropriate value, and the configuration

over action nodes satisfy the incentive and consistency constraints as before. As-

suming the deterministic functions for the function nodes are explicitly represented,

it is then relatively straightforward to extend our dynamic-programming approach

to work on the action graphs of symmetric AGG-FNs. An interesting question is

whether this can be extended to efficiently deal with compactly-represented func-

tion nodes such as summation function nodes. Finally, as we have seen in this

chapter, one faces additional technical challenges when going beyond the symmet-

ric case. It would be interesting to see if our approaches discussed in Section 4.5

can be extended to AGG-FNs.
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Chapter 5

Temporal Action-Graph Games:

A New Representation for

Dynamic Games

5.1 Introduction

In this chapter we1 turn our focus to compact representations of dynamic games.

As mentioned in Section 2.1.2, the most influential compact representation for

imperfect-information dynamic games is multiagent influence diagrams, or MAIDs

[Koller and Milch, 2003]. MAIDs are compact when players’ utility functions ex-

hibit independencies; such compactness can also be leveraged for computational

benefit (see Section 2.2.4).

Consider the following example of a dynamic game.

Example 5.1.1. Twenty cars are approaching a tollbooth with three lanes. The

drivers must decide which lane to use. The cars arrive in fourwaves of five cars

each. In each wave, the drivers must pick lanes simultaneously, and can see the

number of cars before them in each lane. A driver’s utility decreases with the

number of cars that chose the same lane either before him or atthe same time.

1This chapter is based on published joint work with Kevin Leyton-Brown and Avi Pfeffer [Jiang
et al., 2009].

136



A straightforward MAID representation of the game of Example 5.1.1 contains

very little structure; in particular, each player will havea utility node, whose par-

ents are all the decision nodes of the drivers before her. As the number of players

grow, the representation size of the utility functions growexponentially. Compu-

tation using such a representation would be highly inefficient. However, the game

really is highly structured: agents’ payoffs exhibit context-specific independence

(utility depends only on the number of cars in the chosen lane) and agents’ payoffs

exhibit anonymity (utility depends on the numbers of other agents taking given ac-

tions, not on these agents’ identities). The problem with a straightforward MAID

representation of this game is that it does not capture either of these kinds of payoff

structure.

As we have seen in Chapter 2, a wider variety of compact game representa-

tions exist for simultaneous-move games. In particular, several of these game rep-

resentations (including congestion games and local effectgames) can compactly

represent anonymity and context-specific independence (CSI) structures. We saw

in Chapter 3 that AGGs unify these past representations by compactly representing

both anonymity and CSI while still retaining the ability to represent any game. Fur-

thermore, structure in AGGs can be leveraged for computational benefit. However,

AGGs are unable to represent the game presented in Example 5.1.1 because they

cannot describe sequential moves or imperfect information.

In this chapter we present a new representational frameworkcalled Temporal

Action-Graph Games (TAGGs) that allows us to capture this kind of structure. Like

AGGs, TAGGs can represent anonymity and CSI, but unlike AGGsthey can also

represent games with dynamics, imperfect information and uncertainty. We first

define the representation of TAGGs, and then show formally how they define a

game using an induced Bayesian network (BN). We demonstratethat TAGGs can

represent any MAID, but can also represent situations that are hard to capture nat-

urally as MAIDs. If the TAGG representation of a game contains anonymity or

CSI, the induced BN will have special structure that can be exploited by inference

algorithms. We present an algorithm for computing expectedutility of TAGGs that

exploits this structure. Our algorithm first transforms theinduced BN to another

BN that represents the structure more explicitly, then computes expected utility

using a specialized inference algorithm on the transformedBN. We show that it
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performs better than using a MAID in which the structure is not represented explic-

itly, and better than using a standard BN inference algorithm on the transformed

BN.

5.2 Representation

5.2.1 Temporal Action-Graph Games

At a high level,Temporal Action-Graph Games (TAGGs)extend the AGG repre-

sentation by introducing the concepts oftime, uncertaintyand imperfect informa-

tion, while adapting the AGG concepts of action nodes and action-specific utility

functions to the dynamic setting. We first give an informal description of these

concepts.

Temporal structure. A TAGG describes a dynamic game played over a series

of time steps 1, . . . ,T, on a set of action nodesA . At each time step a version of

a static AGG is played by a subset of agents onA , and the action counts on the

action nodes are accumulated.

Chance variables. TAGGs model uncertainty viachance variables.Like random

variables in a BN, a chance variable is associated with a set of parents and a con-

ditional probability table (CPT). The parents may be actionnodes or other chance

variables. Each chance variable is associated with an instantiation time; once in-

stantiated, its value stays the same for the rest of the game.Chance variables can be

thought of as a generalization of the (deterministic) function nodes in AGG-FNs.

Decisions. At each time step one or more agents move simultaneously, represented

by agent-specificdecisions. TAGGs model imperfect information by allowing each

agent to condition his decision on observed values of a givensubset of decisions,

chance variables, and the previous time step’s action counts.

Action nodes. Each decision is a choice of one from a number of availableaction

nodes. As in AGGs, the same action may be available to more than one player.

Action nodes provide a time-dependent tally: theaction countfor each actionA in

each time stepτ is the number of timesA has been chosen during the time period

1, . . . ,τ.
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Utility functions. There is autility function Uτ
A associated with each actionA at

each timeτ , which specifies the utility a player receives at timeτ for having chosen

action A. EachU τ
A has a set of parents which must be action nodes or chance

variables. The utility of playing actionA depends only on what happens over these

parents. An agent who took actionA (once) may receive utility at multiple times

(e.g., short-term cost and long-term benefit); this is captured by associating a set of

payoff times with each decision. An agent’s overall utilityis defined as the sum of

the utilities received at all time steps.

Play of a TAGG can be summarized as follows:

1. At time 0, action counts are initialized to zero; chance variables with instan-

tiation time 0 are instantiated,

2. At each timeτ ∈ {1, . . . ,T}:

(a) all agents with decisions atτ observe the appropriate action counts,

chance variables, and decisions, if any.

(b) all decisions atτ are made simultaneously.

(c) action counts atτ are tallied.

(d) chance variables at timeτ are instantiated.

(e) for each actionA, utility function U τ
A is evaluated, with this amount of

utility accruing to every agent who took actiona at a decision whose

payoff times includeτ ; the result is not revealed to any of the players.2

3. At the end of the game, each agent receives the sum of all utility allocations

throughout the game.

Intuitively, the process can be seen as a sequence of simultaneous-move AGGs

played over time. At each time stepτ , the players that have a decision at timeτ
participate in a simultaneous-move AGG on the set of action nodes, whose action

counts are initialized to be the counts atτ −1. Each actionA’s utility function is

U τ
A andA’s neighbors in the action graph correspond to the parents ofU τ

A.

2If an agent plays actionA for two decisions that have the same payoff timeτ, then the agent
receives twice the value ofUτ

A.
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We observe that decisions and chance variables in TAGGs are similar to de-

cision nodes and chance nodes (respectively) in MAIDs, except that here their

parents can be time-dependent action counts. Thus the need to specify the time

steps that decisions and chance nodes in a TAGG are instantiated; but once in-

stantiated their values stay fixed. We also observe that the time-dependent nature

of action counts in TAGGs is similar to howdynamic Bayesian networks (DBNs)

[Dean and Kanazawa, 1989, Murphy, 2002], a probabilistic graphical model of

temporal domains, model their time-dependent random variables. Just as a DBN

can be unrolled into a BN; later on we will see that a TAGG can also be unrolled

into a MAID.

Before formally defining TAGGs, we need to first define the concept of aconfig-

uration at timeτ over a set of action nodes, decisions and chance variables, which

is intuitively an instantiation at timeτ of a corresponding set of variables.

Definition 5.2.1. Given a set of action nodesA , a set of decisionsD , a set of

chance variablesX , and a set B⊆ A ∪X ∪D , a configurationat timeτ over B,

denoted as CτB, is a|B|-tuple of values, one for each node in B. For each node b∈B,

the corresponding element in Cτ
B, denoted as Cτ(b), must satisfy the following:

• if b ∈ A , Cτ(b) is an integer in{0, . . . , |D |} specifying the action count on

b at τ , i.e. the number of times action b has been chosen during the time

period1, . . . ,τ .

• if b ∈ D , Cτ(b) is an action inA , specifying the action chosen at D.

• if b ∈ X , Cτ(b) is a value from the domain of the random variable, Dom[b].

LetC τ
B be the set of all configurations atτ over B.

We now offer formal definitions of chance variables, decisions, and utility func-

tions.

Definition 5.2.2. A chance variableX is defined by:

1. a domain Dom[X], which is a nonempty finite set;

2. a set of parents Pa[X], which consists of chance variables and/or actions;
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3. an instantiation time t(X), which specifies the time at which the action counts

in Pa[X] are instantiated;

4. a CPTPr(X|Pa[X]), which specifies the conditional probability distribution

of X given each configuration Ct(X)

Pa[X]
.

We require that each chance variable’s instantiation time be no earlier than its

parent chance variable’s instantiation times, i.e. if chance variable X′ ∈ Pa[X],

then t(X′)≤ t(X).

Definition 5.2.3. A decisionD is defined by:

1. the player making the decision, pl(D). A player may make multiple decisions;

the set of decisions belonging to a playerℓ is denoted by Decs[ℓ].

2. itsdecision timet(D) ∈ {1, . . . ,T}. Each player has at most one decision at

each time step.

3. itsaction setDom[D], a nonempty set of actions.

4. the set ofpayoff timespt(D)⊆ {1, . . . ,T}. We assume thatτ ≥ t(D) for all

τ ∈ pt(D).

5. its observation setO[D]: a set of decisions, actions, and chance variables,

whose configuration at time t(D)−1 (i.e. Ct(D)−1
O[D] ) is observed by pl(D) prior

to making the decision. We require that if decision D′ is an observation of D,

then t(D′)< t(D). Furthermore if chance variable X is an observation of D,

then t(X)< t(D).

Definition 5.2.4. Each action A at each timeτ is associated with oneutility func-

tion U τ
A. Each Uτ

A is associated with a set of parents Pa[U τ
A], which is a set of

actions and chance variables. We require that if chance variable X∈ Pa[U τ
A], then

t(X) ≤ τ . Each utility function Uτ
A is a mapping from the set of configurations

C τ
Pa[Uτ

A]
to a real value.

We can now formally define TAGGs.

Definition 5.2.5. A Temporal Action-Graph Game (TAGG) is a tuple(N,T,A ,X ,D ,U ),

where:
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1. N= {1, . . . ,n} is a set ofplayers.

2. T is thedurationof the game.

3. A is a set ofactions.

4. X is a set ofchance variables. Let G be the induced directed graph over

X . We require thatG be a directed acyclic graph (DAG).

5. D is the set ofdecisions. We require that each decision D’s action set

Dom[D]⊆ A .

6. U = {U τ
A : A∈ A ,1≤ τ ≤ T} is the set ofutility functions.

First, let us see how to represent Example 5.1.1 as a TAGG. ThesetN corre-

sponds to the cars. The durationT = 4. We have one action node for each lane.

For each timeτ , we have five decisions, each belonging to a car that arrives at time

τ . The action set for each decision is the entire setA . The payoff time for each

decision is the time the decision is made, i.e., pt(D) = {t(D)}. Each decision has

all actions as observations. For eachA andτ , the utilityU τ
A hasA as its only parent.

The representation size of each utility function is at mostn; the size of the entire

TAGG isO(|A |Tn).

The TAGG representation is useful beyond compactly representing MAIDs.

The representation can also be used to specify information structures that would be

difficult to represent in a MAID. For example, we can represent games in which

agents’ abilities to observe the decisions made by previousagents depend on what

actions these agents took.

Example 5.2.6.There are2T ice cream vendors, each of which must choose a lo-

cation along a beach. For every day from 1 to T , two of the vendors simultaneously

set up their ice cream stands. Each vendor lives in one of the locations. When a

vendor chooses an action, it knows the location of vendors who set up stands in

previous days in the location where it lives or in one of the neighboring locations.

The payoff to a vendor in a given day depends on how many vendors set up stands

in the same location or in a neighboring location.

Example 5.2.6 can be represented as a TAGG, the key elements of which are

as follows. There is an actionA for each location. Each playerj has one decision
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D j , whose observations include actions for the locationj lives in and neighboring

locations. The payoff time for each decision isT, and the utility functionUT
A has

A and its neighboring locations as parents.

Let us consider the size of a TAGG. It follows from Definition 5.2.5 that the

space bottlenecks of the representation are the CPTs Pr(X|Pa[X]) and the utility

functionsU τ
A, which have polynomial sizes when the numbers of their parents are

bounded by a constant.

Lemma 5.2.7.Given TAGG(N,T,A ,X ,D ,U ), if maxX∈X |Pa[X]| andmaxU∈U |Pa[U ]|

are bounded by a constant, then the size of the TAGG is boundedby a polynomial

in maxX∈X Dom[X], |X |, |D |, |U |, and T.

5.2.2 Strategies

In Section 2.2.4 we introduced the standard concepts of pure, mixed and behavior

strategies in dynamic games. We now apply these concepts to the case of TAGGs.

We start withpure strategies, where at each decisionD, an action is chosen deter-

ministically as a function of observed information, i.e., the configurationCt(D)−1
O[D] .

A mixed strategyof a playeri is a probability distribution over pure strategies of

i. Recall that since there can be an exponential number of purestrategies in a dy-

namic game, a mixed strategy is generally an exponential-sized object. We thus

restrict our attention tobehavior strategies, in which the action choices at different

decisions are randomized independently.

Definition 5.2.8. A behavior strategy at decision D is a functionσD : C
t(D)−1
O[D] →

ϕ(Dom[D]), whereϕ(Dom[D]) is the set of probability distributions over Dom[D].

A behavior strategy for player i, denotedσi , is a tuple consisting of a behavior

strategy for each of her decisions. A behavior strategy profile σ = (σ1, . . . ,σn)

consists of a behavior strategyσi for all i.

An agent hasperfect recallwhen she never forgets her action choices and ob-

servations at earlier decisions. The TAGG representation does not enforce per-

fect recall; TAGGs can represent perfect recall games as well as non-perfect-recall

games. A technical issue on representing perfect recall games as TAGGs is the

following: in order to preserve the perfect-recall property of the resulting TAGG,
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each decisionD of player i should observe all ofi’s earlier decisions and obser-

vations. However, recall that if an actionA is in the observation set of one ofi’s

earlier decisions at timet ′ < t(D), it means that the action count at timet ′−1 was

observed. Directly includingA in O[D] would instead imply that the action count

of A at timet(D)−1 is observed byD, in which case the information structure of

the TAGG is different from the original game and is thus not a faithful representa-

tion. Instead, we model the situation by creating a deterministic chance variable

Xt ′−1
A with instantiation timet ′−1; its only parent isA and its value is the action

count ofA at timet ′−1. We then includeXt ′−1
A in O[D]. It is straightforward to see

thatXt ′−1
A carries the information equivalent to observing the actioncount ofA at

time t ′−1, and the resulting TAGG provides a correct representationof the perfect

recall game.

5.2.3 Expected Utility

Now we use the language of Bayesian networks to formally define an agent’s ex-

pected utility in a TAGG given a behavior strategy profileσ . Specifically, we define

an induced BNthat formally describes how the TAGG is played out. Given a be-

havioral strategy profile, decisions, chance variables andutilities can naturally be

understood as random variables. On the other hand, action counts are time depen-

dent. Thus, we have a separate action count variable for eachaction at each time

step.

Definition 5.2.9. Let A∈ A be an action andτ ∈ {1, ...,T} be a time point. Aτ

denotes theaction count variablerepresenting the number of times A was chosen

from time 1 to timeτ . Let A0 be the variable which is 0 with probability 1.

We would like to define expected utility for each player, which is the sum of

expected utilities of the player’s decisions. On the other hand, the utility functions

in TAGGs are action specific. To bridge the gap, we create new decision-payoff

variables in the induced BN that represent the utilities of decisions received at each

of their payoff time points.

Definition 5.2.10. Given a TAGG and a behavior strategy profileσ , the induced

BN is defined over the followingvariables: for each decision D∈ D there is a

144



behavior strategy variable which by abuse of notation we shall also denote by D;

for each chance variable X∈ X there is a variable which we shall also denote by

X; there is a variable Aτ for each action A∈ A and time stepτ ∈ {1, ...,T}; for

each utility function Uτ
A for actions A∈ A and time pointsτ ∈ {1, ...,T}, there is

a utility variable also denoted by UτA; for each decision D and each timeτ ∈ pt(D),

there is a decision-payoff variable uτ
D.

We define theactual parentsof each variable V , denoted APa[V], as follows:

The actual parents of a behavior strategy variable D are the variables correspond-

ing to O[D], with each action Ak ∈ O[D] replaced by At(D)−1
k . The actual par-

ents of an action count variable Aτ are all behavior strategy variables D whose

decision time t(D) ≤ τ and A∈ Dom[D]. The actual parents of a chance vari-

able X are the variables corresponding to Pa[X], with each action Ak ∈ Pa[X]

replaced by At(X)
k . The actual parents of a utility variable UτA are the variables

corresponding to Pa[U τ
A], with each action Ak ∈ Pa[U τ

A] replaced by Aτk. where

{A1, ...,Aℓ}= Dom[D].

The CPDs of chance variables are the CPDs of the corresponding chance vari-

ables in the TAGG. The CPD of each behavior strategy variableD is the behavior

strategyσD. The CPD of each utility variable UτA is a deterministic function defined

by the corresponding utility function UτA. The CPD of each action count variable

Aτ is a deterministic function that counts the number of decisions in APa[A] that are

assigned value A. The CPD of each decision-payoff variable uτ
D is a multiplexer,

i.e. a deterministic function that selects the value of its utility variable parent ac-

cording to the choice of its decision parent. For example, ifthe value of D is Ak,

then the value of uτD is the value of Uτ
Ak

.

Theorem 5.2.11.Given a TAGG, letF be the directed graph over the variables

of the induced BN in which there is an edge from V1 to V2 iff V1 is an actual parent

of V2. ThenF is acyclic.

This follows from the definition of TAGGs and the way we set up the actual

parents in Definition 5.2.10.

By Theorem 5.2.11, the induced BN defines a joint probabilitydistribution over

its variables, which we denote byPσ . Givenσ , denote byEσ [V] the expected value

of variableV in the induced BN. We are now ready to define the expected utility to
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decisions

action count variables

decision-payoff variable

utility variables

Figure 5.1: Induced BN of the TAGG of Example 5.1.1, with 2 time steps,
3 lanes, and 3 players per time step. Squares represent behavior strat-
egy variables, circles represent action count variables, diamonds rep-
resent utility variables and shaded diamonds represent decision-payoff
variables. To avoid cluttering the graph, we only show utility variables
at time step 2 and a decision-payoff variable for one of the decisions.

players under behavior strategy profiles.

Definition 5.2.12. The expected utility to playerℓ under behavior strategy profile

σ is EUσ (ℓ) = ∑D∈Decs[ℓ]∑τ∈pt(D)Eσ [uτ
D].

Figure 5.1 shows an induced BN of a TAGG based on Example 5.1.1with six

cars and three lanes. Note that although we use squares to represent behavior strat-

egy variables, they are random variables and not actual decisions as in influence

diagrams.

5.2.4 The Induced MAID of a TAGG

Given a TAGG we can construct a MAID that describes the same game. We use

a similar construction as the induced Bayesian Network, butwith two differences.

First, instead of behavior strategy variables with CPDs assigned byσ , we have

decision nodes in the MAID. Second, each decision-payoff variableuτ
D becomes a

utility node for player pl(D) in the MAID. The resulting MAID describes the same

game as the TAGG, because it offers agents the same strategies and their expected

utilities are defined by the same BN. We call this theinduced MAIDof the TAGG.
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5.2.5 Expressiveness

It is natural to ask about theexpressivenessof TAGGs: what games can we repre-

sent? It turns out that TAGGs are able to compactly representall MAIDs.

Lemma 5.2.13. Any MAID can be represented as a TAGG with the same space

complexity.

Proof. Recall that a MAID consists of a set of decisions, a set of chance nodes and

a set of utility nodes. Given a MAID, we construct a TAGG in thefollowing way:

• For each decisionD′ of the MAID and each valued′ ∈ Dom[D′], create an

unique actionAd′ in the TAGG.

• Decisions and chance nodes of the MAID can be directly copiedover to the

TAGG.

• Utility nodes in MAIDs are player-specific: each utility node is associated

with some player. Utility nodes in TAGGs are action specific.We can encode

MAID utility nodes as TAGG utility nodes as follows: Given a MAID utility

nodeU ′ associated with playerj, create a dummy decisionDU ′ belonging to

player j, whose action set contains exactly one actionAU ′. We then encode

the utility function forU ′ in the MAID as the utility associated with action

AU ′ in the TAGG.

• One difference between MAIDs and TAGGs is that in MAIDs decisions can

be parents of chance and utility nodes; in TAGGs only chance variables and

actions can be parents of chance and utility nodes. Nevertheless, MAID

chance nodes and utility nodes can be encoded in TAGGs by replacing each

decision parentD′ by the corresponding set of actions in Dom[D′].

• Decisions and chance nodes of MAIDs are not associated with time points.

Nevertheless, since the MAID is a directed acyclic graph, wecan assign

decision times to decisions and instantiation times to chance variables that

are consistent with the topological order of the MAID. The payoff times of

each decision is assigned to be the singleton{T}, i.e. at the end of the game.
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As a result, TAGGs can represent any extensive form game representable as a

MAID. These include all perfect recall games, and the subclass of imperfect recall

games where each information set does not involve multiple time steps.

Now consider the converse problem of reducing TAGGs to MAIDs. In this case,

since the induced MAID of a TAGG is payoff equivalent to the TAGG, it trivially

follows that any TAGG can be represented by a MAID. However, the induced

MAID has a large in-degree, and can thus be exponentially larger than the TAGG.

For example, in the games of Examples 5.1.1 and 5.2.6, the induced MAIDs have

max in-degrees that are equal to the number of decisions, which implies that the

sizes of the MAIDs grow exponentially with the number of decisions, whereas the

sizes of the TAGGs for the same games grow linearly in the number of decisions.

This is not surprising, since TAGGs can exploit more kinds ofstructure in the

game (CSI, anonymity) compared to a straightforward MAID representation. In

Section 5.3.1 we show that the induced MAID can be transformed into a MAID

that explicitly represents the underlying structure. The size of the transformed

MAID is polynomial in the size of the TAGG.

The TAGG representation is also a true generalization of AGGs, since any

AGG-/0 can be straightforwardly represented as a TAGG withT = 1. Function

nodes in AGG-FNs and AGG-FNAs can be modeled as chance nodes with a deter-

ministic CPT, thus AGG-FNs and AGG-FNAs can also be represented as TAGGs

with T = 1.

5.3 Computing Expected Utility

In this section, we consider the task of computing expected utility EUσ [ j] to a

player j given a mixed strategy profileσ . As mentioned in Section 2.2.4, compu-

tation of EU is an essential step in many game-theoretic computations for dynamic

games, such as finding a best response given other players’ strategy profile, check-

ing whether a strategy profile is a Nash equilibrium, and heuristic algorithms such

as fictitious play and iterated best response. In Section 5.4we discuss extending

our methods in this section to a subtask in the Govidan-Wilson algorithm for com-

puting Nash equilibria.

One benefit of formally defining EU in terms of BNs is that now the problem of
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computing EU can be naturally cast as a BN inference problem.(In Chapter 3 we

discussed such a reduction in the context of AGGs.) By Definition 5.2.12, EUσ [ j]

is the sum of a polynomial number of terms of the formEσ [uτ
D]. We thus focus

on computing one suchEσ [uτ
D]. This can be computed by applying a standard BN

inference algorithm on the induced BN. In fact, BN inferenceis the standard ap-

proach for computing expected utility in MAIDs [Koller and Milch, 2003]. Thus

the above approach for TAGGs is computationally equivalentto the standard ap-

proach for a natural MAID representation of the same game. Inthis section, we

show that the induced BNs of TAGGs have special structure that can be exploited

to speed up computation, and present an algorithm that exploits this structure.

5.3.1 Exploiting Causal Independence

The standard BN inference approach for computing EU does nottake advantage

of some kinds of TAGG structure. In particular, recall that in the induced network,

each action count variableAτ ’s parents are all previous decisions that haveAτ in

their action sets, implying large in-degrees for action variables. Considering for ex-

ample the clique-tree algorithm, this means large clique sizes, which is problematic

because running time scales exponentially in the largest clique size of the clique

tree. However, the CPDs of these action count variables are structured counting

functions. Such structure is an instance ofcausal independencein BNs [Hecker-

man and Breese, 1996]. It also corresponds to anonymity structure for static game

representations like symmetric games and AGGs.

We can exploit this structure to speed up computation of expected utility in

TAGGs. Our approach is a specialization of Heckerman and Breese’s [1996] method

for exploiting causal independence in BNs. At a high level, Heckerman and Breese’s

method transforms the original BN by creating new nodes thatrepresent intermedi-

ate results, and re-wiring some of the arcs, resulting in an equivalent BN with small

in-degree. They then apply conventional inference algorithms on the new BN. For

example, given an action count variableAτ
k with parents{D1 . . .Dℓ}, create a node

Mi for eachi ∈ {1. . . ℓ− 1}, representing the count induced byD1 . . .Di . Then,

instead of havingD1 . . .Dℓ as parents ofAτ
k, its parents becomeDℓ andMℓ−1, and

eachMi ’s parents areDi andMi−1. The resulting graph would have in-degree at
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Figure 5.2: The transformed BN of the tollbooth game from Figure 5.1 with
3 lanes and 3 cars per time step.

most 2 forAτ
k and theMi ’s.

In our induced BN, the action count variablesAt
k at earlier time stepst < τ

already represent some of these intermediate counts, so we do not need to duplicate

them. Formally, we modify the original BN in the following way: for each action

count variableAτ
k, first remove the edges from its current parents. Instead,Aτ

k now

has two parents: the action count variableAτ−1
k and a new nodeMτ

Ak
representing

the contribution of decisions at timeτ to the count ofAk. If there is more than one

decision at timeτ that hasAk in its action set, we create intermediate variables as

in Heckerman and Breese’s method. We call the resulting BN the transformed BN

of the TAGG. Figure 5.2 shows the transformed BN of the tollbooth game whose

induced BN was given in Figure 5.1.

We can then use standard algorithms to compute probabilities P(ut ′
D) on the

transformed BN. For classes of BNs with bounded treewidths,these probabilities

(and thusE[ut ′
D]) can be computed in polynomial time.

5.3.2 Exploiting Temporal Structure

In practice, the standard inference approaches use heuristics to find an elimination

ordering. This might not be optimal for our BNs. We present analgorithm based on

the idea of eliminating variables in the temporal order. Forthe rest of the section,

we fix D and a timet ′ ∈ pt(D) and consider the computation ofEσ [ut ′
D].

We first group the variables of the induced network by time steps: variables at

time τ include decisions atτ , action count variablesAτ , chance variablesX with

instantiation timeτ , intermediate nodes between decisions and action counts atτ ,
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and utility variablesU τ
A. As we are only concerned aboutEσ [ut ′

D] for a t ′ ∈ pt(D),

we can safely discard the variables after timet ′, as well as utility variables before

t ′. It is straightforward to verify that the actual parents of variables at timeτ are

either atτ or beforeτ .

We say a network satisfies theMarkov propertyif the actual parents of variables

at timeτ are either atτ or atτ −1. Parts of the induced BN (e.g. the action count

variables) already satisfy the Markov property, but in general the network does

not satisfy the property. Exceptions include chance variable parents and decision

parents from more than one time step ago.

Given an induced BN, we can transform it into an equivalent network satisfying

the Markov property. If a variableV1 at t1 is a parent of variableV2 at t2, with

t2− t1 > 1, then for eacht1 < τ < t2 we create a dummy variableVτ
1 belonging to

time τ so that we copy the value ofV1 toVt2−1
1 . We then delete the edge fromV1 to

V2 and add an edge fromVt2−1
1 to V2.

The Markov property is computationally desirable because variables in time

τ d-separate past variables from future variables. A straightforward approach to

exploiting the Markov property is the following: asτ goes from 1 tot ′, compute

the joint distribution over variables atτ using the joint distribution over variables

at τ −1.

In fact, we can do better by adapting theinterface algorithm[Darwiche, 2001]

for dynamic Bayesian networks to our setting.3 Define theinterfaceI τ to be the

set of variables in timeτ that have children in timeτ +1. I τ d-separatespastfrom

future, wherepast is all variables beforeτ and non-interface variables inτ , and

future is all variables afterτ .

In an induced BN,I τ consists of: action count variables at timeτ ; chance

variablesX at timeτ that have children infuture; decisions atτ that are observed

by future decisions; decisionD which is a parent ofut ′
D, and dummy variables

created by the transform.

We define the set ofeffective variablesat timeτ , denoted byVτ , as the subset

3Whereas in DBNs the set of variables for each time step remains the same, for our setting this is
no longer the case. It turns out that the interface algorithmcan be adapted to work on our transformed
BNs. Also, the transformed BNs of TAGGs have more structure than DBNs, particularly within the
same time step, which we exploit for further computational speedup.
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of I τ that are ancestors ofut ′
D. For timet ′, we letVt ′ = {ut ′

D}. Intuitively, at each

time stepτ we only need to keep track of the distributionP(Vτ), which acts as a

sufficient statistic as we go forward in time. For eachτ , we calculateP(Vτ) by

conditioning on instantiations ofP(Vτ−1). The interface algorithm for TAGGs can

be summarized as the following:

1. compute distributionP(V0)

2. for τ = 1 to t ′

(a) for each instantiation ofVτ−1, vτ−1
j , compute the distribution overVτ :

P
(

Vτ |Vτ−1 = vτ−1
j

)

(b) P(Vτ) = ∑vP
(

Vτ |Vτ−1 = v
)

P
(

Vτ−1 = v
)

3. sinceVt ′ = {ut ′
D}, we now haveP(ut ′

D)

4. return the expected valueE[ut ′
D]

We can further improve on this, in particular on the subtask of computing

P(Vτ |Vτ−1). We observe that there is also a temporal order among variables in

each timeτ : first the decisions and intermediate variables, then action count vari-

ables, and finally chance variables. PartitionVτ into four subsets consisting of

action count variablesAτ , chance variablesXτ , behavior strategy variablesDτ and

dummy copy variablesCτ . ThenP(Vτ |Vτ−1) can be factored into

P(Cτ |Vτ−1)P(Dτ ,Aτ |Vτ−1)P(Xτ |Aτ ,Vτ−1).

This allows us to first focus on decisions and action count variables to compute

P(Dτ ,Aτ |Vτ−1) and then carry out inference on the chance variables.

CalculatingP(Dτ ,Aτ |Vτ−1) involves eliminating all behavior strategy variables

not in Dτ as well as the intermediate variables. Note that conditioned onVτ−1, all

decisions at timeτ are independent. This allows us to efficiently eliminate vari-

ables along the chains of intermediate variables. Let the decisions at timeτ be

{Dτ
1, . . . ,D

τ
ℓ}. Let M τ be the set of intermediate variables corresponding to action

count variables inAτ . Let M τ
k be the subset ofM τ that summarizes the contribu-

tion of Dτ
1, . . . ,D

τ
k. We eliminate variables in the orderDτ

1,D
τ
2,M

τ
2,D

τ
3,M

τ
3, . . . ,M

τ
ℓ ,

except for decisions inDτ . The tables in the variable elimination algorithm need
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to keep track of at most|Dτ |+ |Aτ | variables. Thus the complexity of computing

P(Dτ ,Aτ |Vτ−1) for an instantiation ofVτ−1 is exponential only in|Dτ |+ |Aτ |.

ComputingP(Xτ |Aτ ,Vτ−1) for each instantiation ofAτ ,Vτ−1 involves elimi-

nating the chance variables not inXτ . Any standard inference algorithm can be

applied here. The complexity is exponential in the treewidth of the induced BN

restricted on all chance variables at timeτ , which we denote byGτ .

Putting everything together, the bottleneck of our algorithm is constructing the

tables for the joint distributions onVτ , as well as doing inference onGτ .

Theorem 5.3.1.Given a TAGG and behavior strategy profileσ , if for all τ , both

|Vτ | and the treewidth of Gτ are bounded by a constant, then for any player j the

expected utility EUσ [ j] can be computed in time polynomial in the size of the TAGG

representation and the size ofσ .

Our algorithm is especially effective for induced networksthat are close to

having the Markov property, in which case we only add a small number of dummy

copy variables toVτ . If only a constant number of dummy copy variables are

added, the time complexity of computing expected utility then grows linearly in

the duration of the game. On the other hand, for induced networks far from having

the Markov property,|Vτ | can grow linearly asτ increases, implying that the time

complexity is exponential.

5.3.3 Exploiting Context-Specific Independence

TAGGs have action-specific utility functions, which allowsthem to express context-

specific payoff independence: which utility function is used depends on which

action is chosen at the decision. This is translated to context-specific independence

structure in the induced BN, specifically in the CPD ofuτ
D. Conditioned on the

value ofD, uτ
D only depends on one of its utility variable parents.

There are several ways of exploiting such structure computationally, including

conditioning on the value of the decisionD [Boutilier et al., 1996], or exploiting

the context-specific independence in a variable elimination algorithm [Poole and

Zhang, 2003]. One particularly simple approach that works for multiplexer utility

nodes is to decompose the utility into a sum of utilities [Pfeffer, 2000]. For each

utility node parentU t
k of ut

D, there is a utility functionut
D,k that depends onU t

k
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and D. If D = k, ut
D,k is equal toU t

k. Otherwise,ut
D,k is 0. It is easy to see

that ut
D(U

t
1, . . . ,U

t
m,D) = ∑m

k=1 ut
D,k(U

t
k,D). We can then modify our algorithm to

compute eachE[ut
D,k] instead ofE[ut

D]. This results in a reduction in the set of

effective variablesVτ
k, which are now the variables atτ that are ancestors ofut

D,k.

Furthermore, wheneverVτ
k = Vτ

k′ for somek,k′, the distributions over them are

identical and thus can be reused. For static games represented as TAGGs withT =

1, our algorithm is equivalent to the polynomial-time expected utility algorithm for

AGGs described in Chapter 3.

Applying our algorithm to tollbooth games of Example 5.1.1 and ice cream

games of Example 5.2.6, we observe that for both casesVτ consists of a subset

of action count variables atτ plus the decision whose utility we are computing.

Therefore the expected utilities of these games can be computed in polynomial

time if |A | is bounded by a constant.

5.4 Computing Nash Equilibria

Since the induced MAID of a TAGG is payoff equivalent to the TAGG, algorithms

for computing the Nash equilibria of MAIDs [Blum et al., 2006, Koller and Milch,

2003, Milch and Koller, 2008] can be directly applied to an induced MAID to find

Nash equilibria of a TAGG. However, this approach does not exploit all TAGG

structure. We can do better by constructing a transformed MAID, in a manner sim-

ilar to the transformed BN, exploiting causal independenceand CSI as in Sections

5.3.1 and 5.3.3.

We can do better yet and exploit the temporal structure as described in Section

5.3.2, if we use a solution algorithm that requires computation of probabilities

and expected utilities. Govindan and Wilson [2002] presented an algorithm for

computing equilibria in perfect-recall extensive-form games. Blum, Shelton and

Koller [2006] adapted this algorithm to MAIDs. A key step in the algorithm is, for

each pair of playersi and j, and one ofi’s utility nodes, computing the marginal

distribution overi’s decisions and their parents,j ’s decisions and their parents, and

the utility node. Our algorithm in Section 5.3.2 can be straightforwardly adapted to

compute this distribution. This approach is efficient if each player only has a small

number of decisions, as in the games in Examples 5.1.1 and 5.2.6.
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Figure 5.3: Running times for expected utility computation. Triangle data
points represent Approach 1 (induced BN), diamonds represent Ap-
proach 2 (transformed BN), squares represent Approach 3 (proposed
algorithm).

However, we did not implement these algorithms for TAGGs, because of a lack

of publicly-available implementations for these algorithms. In particular, whereas

Gametracer [Blum et al., 2002] provided an implementation of Govindan and Wil-

son’s [2003] global Newton method for normal form games, it did not provide

an implementation of Govindan and Wilson’s [2002] algorithm for extensive-form

games.

5.5 Experiments

We have implemented our algorithm for computing expected utility in TAGGs, and

run experiments on the efficiency and scalability of our algorithm. We compared

three approaches for computing expected utility given a TAGG:

Approach 1 applying the standard clique tree algorithm (as implemented by the

Bayes Net Toolbox [Murphy, 2007]) on the induced BN;

Approach 2 applying the same clique tree algorithm on the transformed BN;

Approach 3 our proposed algorithm in Section 5.3.

All approaches were implemented in MATLAB. All our experiments were per-

formed using a computer cluster consisting of machines withdual Intel Xeon

3.2GHz CPUs, 2MB cache and 2GB RAM.

We ran experiments on tollbooth game instances of varying sizes. For each

game instance we measured the CPU times for computing expected utility of 100
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random behavior strategy profiles. Figure 5.3 (left) shows the results in log scale

for toll booth games with 3 lanes and 5 cars per time step, withthe duration varying

from 1 to 15. Approach 1 ran out of memory for games with more than 1 time step.

Approach 2 was more scalable; but ran out of memory for games with more than 5

time steps. Approach 3 was the most scalable. On smaller instances it was faster

than the other two approaches by an order of magnitude, and itdid not run out of

memory as we increased the size of the TAGGs to at least 20 timesteps. For the

toll booth game with 14 time steps it took 1279 seconds, whichis approximately

the time Approach 2 took for the game instance with 5 time steps. Figure 5.3

(middle) shows the results in log scale for tollbooth games with 3 time steps and 3

lanes, varying the number of cars per time step from 1 to 20. Approach 1 ran out

of memory for games with more than 3 cars per time step; Approach 2 ran out of

memory for games with more than 6 cars per time step; and againApproach 3 was

the most scalable.

We also ran experiments on the ice cream games of Example 5.2.6. Figure 5.3

(right) shows the results in log scale for ice cream games with 4 locations, two

vendors per time step, and durations varying from 1 to 15. Thehome locations for

each vendor were generated randomly. Approaches 1 and 2 ran out of memory for

games with more than 3 and 4 time steps, respectively. Approach 3 finished for

games with 15 time steps in about the same time as Approach 2 took for games

with 4 time steps.

5.6 Conclusions

TAGGs are a novel graphical representation of imperfect-information extensive-

form games. They are an extension of simultaneous-move AGGsto the dynamic

setting; and can be thought of as a sequence of AGGs played over T time steps,

with action counts accumulating as time progresses. This process can be formally

described by the induced BN. For situations with anonymity or CSI structure, the

TAGG representation can be exponentially more compact thana direct MAID rep-

resentation. We presented an algorithm for computing expected utility for TAGGs

that exploits its anonymity, CSI as well as temporal structure. We showed both

theoretically and empirically that our approach is significantly more efficient than
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the standard approach on a direct MAID representation of thesame game.

Another interesting solution concept is extensive-form correlated equilibrium

[von Stengel and Forges, 2008]. EFCE was defined for perfect-recall extensive-

form games, but the concept can be applied to other representations of perfect-

recall dynamic games. One interesting direction is to adaptHuang and Von Sten-

gel’s [2008] polynomial-time algorithm for computing sample EFCE to compact

representations like MAIDs and TAGGs.

As mentioned in Section 2.2.4, dynamic games with perfect recall have nice

properties including the existence of Nash equilibria in behavior strategies. Fur-

thermore, most of existing algorithmic approaches for dynamic games assume per-

fect recall. However, strategies in perfect-recall games can be computationally

expensive to represent and reason about. For example in a perfect-recall TAGG,

since each decision of a player has to condition on all previous decisions and ob-

servations of the player, the representation size of a behavior strategy grows ex-

ponentially in the number of previous decisions of that player. Representations

like MAIDs and TAGGs can compactly express the utility functions, but this expo-

nential blow-up of the strategy space is an inherent property of perfect recall. This

blow-up already arises for two-player zero-sum games such as poker. Perfect recall

is thus also problematic as a realistic model of rationality, since real-life agents do

not have unlimited amount of memory. In light of this, an interesting direction is

to explore imperfect-recall models, and solution conceptsand algorithms for such

models. In single-agent settings, there has been research on relaxing perfect recall

using limited memory influence diagrams (LIMIDs) [Nilsson and Lauritzen, 2000].

However, for multi-agent imperfect recall games, existence of Nash equilibria in

behavior strategies is not guaranteed. There has been some research on classes of

imperfect recall games in which such equilibria do exist. One approach is based

on “forgetting” certain “payoff-irrelevant” informationfrom certain classes of per-

fect recall games, and showing that the resulting imperfect-recall game has a Nash

equilibrium in behavior strategies that is also a Nash equilibrium of the original

perfect recall game. Such equilibria are called Markov Perfect Equilibria (MPE)

[e.g., Fudenberg and Tirole, 1991]. Milch and Koller [2008]took such an approach

for MAIDs, in which case forgetting information corresponds to deleting certain

edges into decision nodes. However, even if Nash equilibriain behavior strategies
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exist in the resulting imperfect-recall game, there is currently no general-purpose

algorithm for finding such equilibria. For the zero-sum gameof poker, Waugh

et al. [2009] considered the approach of formulating imperfect-recall models where

players forget certain information. The reduction in strategy space allowed them

to solve larger instances (corresponding to finer abstractions to the game of poker)

than previously possible. They solved the resulting imperfect-recall game using

counterfactual regret minimization, a heuristic algorithm without theoretical guar-

antees but appeared to empirically converge to approximateequilibria. Although

unlike the MPE case, the transformation is not lossless (i.e., a Nash equilibrium of

the imperfect-recall game is no longer a Nash equilibrium ofthe original game),

they showed empirically that agents using the resulting strategies performed well.

There have also been research on weaker solution concepts than MPE that allow

players to ignore more information, such as Mean Field Equilibrium [e.g., Adlakha

et al., 2010, Iyer et al., 2011].

Another approach is to consider restricted settings that admit stronger theo-

retical and practical properties. For instance, in Chapter6 we consider Bayesian

games, which (recall from Section 2.1.3) can be formulated as dynamic games;

however they have specific structure that makes them computationally friendlier

than arbitrary dynamic games. In particular, these games donot have the problem

of exponential blow-up of strategy space. We are able to leverage techniques from

simultaneous-move games for representing and computing with Bayesian games.

158



Chapter 6

Bayesian Action-Graph Games

6.1 Introduction

In this chapter we1 consider static games of incomplete information (or Bayesian

games) [Harsanyi, 1967], in which (recall from Section 2.1.3) players are uncer-

tain about the underlying game. Bayesian games have found many applications in

economics, including most notably auction theory and mechanism design.

Our interest is in computing with Bayesian games, and particularly in identify-

ing sample Bayes-Nash equilibrium. We surveyed the relevant literature in Chapter

2, specifically Sections 2.1.3 and 2.2.3. To summarize, there are two key obstacles

to performing such computations efficiently. The first is representational: recall

that the straightforward tabular representation of Bayesian game utility functions

(the Bayesian Normal Form) requires space exponential in the number of players.

The second obstacle is the lack of existing algorithms for identifying sample Bayes-

Nash equilibrium for arbitrary Bayesian games. Recall thata Bayesian game can be

interpreted as an equivalent complete-information game via “induced normal form”

or “agent form” interpretations. Thus one approach is to interpret a Bayesian game

as a complete-information game, enabling the use of existing Nash-equilibrium-

finding algorithms. However, generating the normal form representations under

both of these complete-information interpretations causes an exponential blowup

in representation size, even when the Bayesian game has onlytwo players.

1This chapter is based on joint work with Kevin Leyton-Brown [2010].
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In this chapter we propose Bayesian Action-Graph Games (BAGGs), a com-

pact representation for Bayesian games. BAGGs can represent arbitrary Bayesian

games, and furthermore can compactly express Bayesian games with commonly

encountered types of structure. The type profile distribution is represented as a

Bayesian network, which can exploit conditional independence structure among

the types. BAGGs represent utility functions in a way similar to the AGG repre-

sentation, and like AGGs, are able to exploit anonymity and action-specific utility

independencies. Furthermore, BAGGs can compactly expressBayesian games ex-

hibiting type-specific independence: each player’s utility function can have differ-

ent kinds of structure depending on her instantiated type. We provide an algorithm

for computing expected utility in BAGGs, a key step in many algorithms for game-

theoretic solution concepts. As in Chapter 5, our approach interprets expected

utility computation as a probabilistic inference problem on an induced Bayesian

Network. In particular, our algorithm runs in polynomial time for the important

case of independent type distributions.

To compute Bayes-Nash equilibria for BAGGs, we consider theagent form

interpretation of the BAGG. Howson and Rosenthal [1974] showed that the agent

form of an arbitrary two-player Bayesian game is a polymatrix game, which can

be represented compactly (thus avoiding the aforementioned blowup) and solved

using a variant of the Lemke-Howson algorithm. However, forn-player BAGGs

the corresponding agent forms do not correspond to polymatrix games or any other

known representation, and the Lemke-Howson algorithm cannot be applied. Never-

theless, we are able to generalize Howson and Rosenthal’s approach to propose an

algorithm for finding sample Bayes-Nash equilibria for arbitrary BAGGs. Specifi-

cally, we show that BAGGs can act as a general compact representation of the agent

form; in particular, computational tasks on the agent form can be done efficiently

by leveraging our expected utility algorithm for BAGGs. We then apply black-box

approaches for Nash equilibria in complete-information games discussed in Sec-

tions 2.2.2 and 3.4, specifically the simplicial subdivision algorithm [van der Laan

et al., 1987] and Govindan and Wilson’s [2003] global Newtonmethod. We show

empirically that our approach outperforms the existing approaches of solving for

Nash on the induced normal form or on the normal form representation of the agent

form.
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Bayesian games can be interpreted as dynamic games with a initial move by

Nature; thus, also related is the literature on representations for dynamic games,

including MAIDs and TAGGs. Compared to these representations for dynamic

games, BAGGs focus explicitly on structure common to Bayesian games; in par-

ticular, only BAGGs can efficiently express type-specific utility structure. Also,

by representing utility functions and type distributions as separate components,

BAGGs can be more versatile. For example, one future direction made possible

by this separation is to model Bayesian games without commontype distributions.

Another future direction is to answer computational questions that do not depend

on the type distribution, such as computing ex-post equilibria. Furthermore, we

will see that BAGGs enjoy nicer computational properties than arbitrary dynamic

games. For example, BAGGs can be solved by adapting Govindanand Wilson’s

global Newton method [2003] (see Section 2.2.1) for static games; this is generally

more practical than their related Nash equilibrium algorithm [2002] that directly

works on dynamic games: while both approaches avoid the exponential blowup of

transforming to the induced normal form, the global Newton method for dynamic

games has to solve an additional quadratic program at each step of the homotopy.

A limitation of BAGGs is that it requires the types to be discrete. There has

been some research on heuristic methods for finding Bayes-Nash equilibria for

Bayesian games with continuous types, including Reeves andWellman [2004]’s

work on iterated best response for certain classes of auction games and Rabinovich

et al. [2009]’s work on fictitious play. Developing general compact representations

and efficient algorithms for Bayes-Nash equilibria for suchgames remain interest-

ing open problems.

6.2 Preliminaries

The standard definition of a Bayesian game(N,{Ai}i∈N,Θ,P,{ui}i∈N) is given in

Definition 2.1.3. The standard concepts of pure strategysi , mixed strategyσi, ex-

pected utility for Bayesian games, and Bayes-Nash equilibrium are introduced in

Section 2.2.3. Recall from Section 2.1.3 that the space bottlenecks of representing

a Bayesian game are the type distribution and the utility function. Representing

them as tables, the Bayesian normal form requiresn×∏n
i=1(|Θi |×|Ai|)+∏n

i=1 |Θi |
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numbers to specify.

We say a Bayesian game hasindependent type distributionsif players’ types are

drawn independently, i.e. the type-profile distributionP(θ) is a product distribu-

tion: P(θ) = ∏i P(θi). In this case the distributionP can be represented compactly

using∑i |Θi | numbers.

Given a permutation of playersπ : N→N and an action profilea= (a1, . . . ,an),

let aπ = (aπ(1), . . . ,aπ(n)). Similarly let θπ = (θπ(1), . . . ,θπ(n)). We say the type

distributionP is symmetric if|Θi |= |Θ j | for all i, j ∈ N, and if for all permutations

π : N→N, P(θ) =P(θπ). We say a Bayesian game hassymmetric utility functions

if |Ai|= |A j | and|Θi |= |Θ j | for all i, j ∈ N, and if for all permutationsπ : N → N,

we haveui(a,θ) = uπ(i)(a
π ,θπ) for all i ∈ N. A Bayesian game is symmetric if its

type distribution and utility functions are symmetric. Theutility functions of such

a game range over at most|Θi ||Ai|
(n−2+|Θi ||Ai |

|Θi ||Ai |−1

)

unique utility values.

A Bayesian game exhibitsconditional utility independenceif each playeri’s

utility depends on the action profilea and her own typeθi , but does not depend on

the other players’ types. Then the utility function of each player i ranges over at

most|A||Θi | unique utility values.

6.2.1 Complete-information interpretations

Harsanyi [Harsanyi, 1967] showed that any Bayesian game canbe interpreted as

one of two complete-information games, the Nash equilibriaof each of which cor-

respond to Bayes-Nash equilibria of the Bayesian game.

A Bayesian game can be converted to itsinduced normal form, which is a

complete-information game with the same set ofn players, in which each player’s

set of actions is her set of pure strategies in the Bayesian game. Each player’s

utility under an action profile is defined to be equal to the player’s expected utility

under the corresponding pure strategy profile in the Bayesian game.

Alternatively, a Bayesian game can be transformed to itsagent form, where

each type of each player in the Bayesian game is turned into one player in a

complete-information game. Formally, given a Bayesian game (N,{Ai}i∈N,Θ,P,

{ui}i∈N), we define its agent form as the complete-information game(Ñ,

{Ã j,θ j}( j,θ j )∈Ñ,{ũ j,θ j }( j,θ j )∈Ñ), whereÑ consists of∑ j∈N |Θ j | players, one for ev-

162



ery type of every player of the Bayesian game. We index the players by the tuple

( j,θ j) where j ∈ N andθ j ∈ Θ j . For each player( j,θ j) ∈ Ñ of the agent form

game, her action set̃A( j,θ j ) is A j , the action set ofj in the Bayesian game. The

set of action profiles is theñA= ∏ j,θ j
A( j,θ j ). The utility function of player( j,θ j)

is ũ j,θ j : Ã→R. For all ã∈ Ã, ũ j,θ j (ã) is equal to the expected utility of playerj

of the Bayesian game given typeθ j , under the pure strategy profilesã, where for

all i and allθi , sã
i (θi) = ã(i,θi ). Observe that there is a one-to-one correspondence

between action profiles in the agent form and pure strategiesof the Bayesian game.

A similar correspondence exists for mixed strategy profiles: each mixed strategy

profile σ of the Bayesian game corresponds to a mixed strategyσ̃ of the agent

form, with σ̃(i,θi)(ai) = σi(ai |θi) for all i,θi ,ai . It is straightforward to verify that

ũi,θi (σ̃) = ui(σ |θi) for all i,θi . This implies a correspondence between Bayes Nash

equilibria of a Bayesian game and Nash equilibria of its agent form.

Proposition 6.2.1. σ is a Bayes-Nash equilibrium of a Bayesian game if and only

if σ̃ is a Nash equilibrium of its agent form.

6.3 Bayesian Action-Graph Games

In this section we introduce Bayesian Action-Graph Games (BAGGs), a compact

representation of Bayesian games. First consider representing the type distribu-

tions. Specifically, the type distributionP is specified by a Bayesian network

(BN) containing at leastn random variables corresponding to then players’ types

θ1, . . . ,θn. For example, when the types are independently distributed, thenP can

be specified by the simple BN withn variablesθ1, . . . ,θn and no edges.

Now consider representing the utility functions. Our approach is to adapt con-

cepts from the AGG representation (see Chapter 3) to the Bayesian game setting.

At a high level, a BAGG is a Bayesian game on anaction graph, a directed graph

on a set ofaction nodesA . To play the game, each playeri, given her typeθi ,

simultaneously chooses an action node from hertype-action set Ai,θi ⊆ A . Each

action node thus corresponds to an action choice that is available to one or more

of the players. Once the players have made their choices, anaction countis tallied

for each action nodeα ∈ A , which is the number of agents that have chosenα .

A player’s utility depends only on the action node she chose and the action counts
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on the neighbors of the chosen node. We observe that the main difference between

the AGG and BAGG representations is that whereas in an AGG each player’s set

of available actions is specified by her action set, in a BAGG we have type-action

sets, meaning each player’s set of available actions can depend on her instantiated

type.

We now turn to a formal description of BAGGs’ utility function representation.

Central to our model is theaction graph.2 An action graph G= (A ,E) is a di-

rected graph whereA is the set of action nodes, andE is a set of directed edges,

with self edges allowed. We sayα ′ is aneighborof α if there is an edge fromα ′

to α , i.e., if (α ′,α) ∈ E. Let theneighborhoodof α , denotedν(α), be the set of

neighbors ofα .

For each playeri and each instantiation of her typeθi ∈ Θi , her type-action

set Ai,θi ⊆ A is the set of possible action choices ofi given θi . These subsets are

unrestricted: different type-action sets may (partially or completely) overlap. De-

fine playeri’s total action setto beA∪
i =

⋃

θi∈Θi
Ai,θi . We denote byA = ∏i A

∪
i

the set ofaction profiles, and bya ∈ A an action profile. Observe that the action

profile a provides sufficient information about the type profile to be able to deter-

mine the outcome of the game; there is no need to additionallyencode the realized

type distribution. We note that for different typesθi ,θ ′
i ∈ Θi , Ai,θi andAi,θ ′

i
may

have different sizes; i.e.,i may have different numbers of available action choices

depending on her realized type.

A configuration cis a vector of|A | non-negative integers, specifying for each

action node the numbers of players choosing that action. Letc(α) be the element

of c corresponding to the actionα . Let C : A 7→C be the function that maps from

an action profilea to the corresponding configurationc. Formally, ifc= C (a) then

c(α)= |{i ∈N : ai =α}| for all α ∈A . DefineC= {c : ∃a∈ A such thatc= C (a)}.

In other words,C is the set of all possible configurations in the BAGG. Observe

that the concept of configurations in BAGGs is related to the concept of configu-

rations in AGGs in the following way:C in a BAGG is isomorphic to the set of

configurations in an AGG-/0 with the same action graphG= (A ,E) but with action

sets corresponding to total action sets of the BAGG, i.e.,Ai ≡ A∪
i .

2The definition of action graph coincides with the corresponding concept in AGGs. We repeat
the definition here in order to give a complete description ofBAGGs.
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We can also define a configuration over a subset of nodes. In particular, we will

be interested in configurations over a node’s neighborhood.Given a configuration

c ∈ C and a nodeα ∈ A , let theconfiguration over the neighborhoodof α , de-

notedc(α), be the restriction ofc to ν(α), i.e.,c(α) = (c(α ′))α ′∈ν(α). Similarly, let

C(α) denote the set of configurations overν(α) in which at least one player plays

α . Let C (α) : A 7→ C(α) be the function that maps from an action profile to the

corresponding configuration overν(α).

Definition 6.3.1. A Bayesian action-graph game (BAGG) is a tuple(N, Θ, P,

{Ai,θi}i∈N,θi∈Θi , G,{uα}α∈A ) where N is the set of agents;Θ = ∏i Θi is the set of

type profiles; P is the type distribution, represented as a Bayesian network; Ai,θi ⊆

A is the type-action set of i givenθi ; G = (A ,E) is the action graph; and for each

α ∈ A , the utility function is uα : C(α) →R.

As in the case of AGGs, shared actions in a BAGG capture the game’sanonymity

structure. Furthermore, the (lack of) edges between nodes in the action graph of a

BAGG expressesaction- and type-specific independenciesof utilities of the game:

depending on playeri’s chosen action node (which also encodes information about

her type), her utility depends on configurations over different sets of nodes.

Lemma 6.3.2.An arbitrary Bayesian game given in Bayesian normal form canbe

encoded as a BAGG storing the same number of utility values.

Proof. Given an arbitrary Bayesian game(N,{Ai}i∈N,Θ,P,{ui}i∈N) represented in

Bayesian normal form, we construct the BAGG(N, Θ, P, {A′
i,θi

}i∈N,θi∈Θi , G,

{uα}α∈A ) as follows. The Bayesian normal form’s tabular representation of type

profile distributionP can be straightforwardly represented as a BN, e.g. by cre-

ating a random variable representingθ as the only parent of the random vari-

ablesθ1, . . . ,θn. To represent utility functions, we create an action graphG with

∑i |Θi ||Ai | action nodes; in other words, all type-action setsA′
i,θi

are disjoint. Each

actionai ∈ Ai of the Bayesian normal form corresponds to|Θi | action nodes in the

BAGG, one for each type instantiationθi . For each playeri and each typeθi ∈ Θi ,

each action nodeα ∈ A′
i,θi

has incoming edges from all action nodes from type-

action setsA′
j,θ j

for all j 6= i, θ j ∈ Θ j , i.e. all action nodes of the other players. For

each action nodeα ∈ A′
i,θi

corresponding toai ∈ Ai, the utility functionuα is de-

fined as follows: given configurationc(α) we can infer the action profilea′−i ∈ A′
−i
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of the BAGG, which then tells us the correspondinga−i andθ−i of the Bayesian

normal form, which gives us the utilityui(a,θ). The number of utility values stored

in this BAGG is the same as the Bayesian normal form.

Bayesian games with symmetric utility functions exhibit anonymity structure,

which can be expressed in BAGGs by sharing action nodes. Specifically, we la-

bel eachΘi as{1, . . . ,T}, so that eacht ∈ {1, . . . ,T} corresponds to a class of

equivalent types. Then for eacht ∈ {1, . . . ,T}, we haveAi,t = A j,t for all i, j ∈ N,

i.e. type-action sets for equivalent types are identical. Figure 6.1 shows the action

graph for a symmetric Bayesian game with two types and two actions per type.
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Figure 6.1: Action graph for a symmetric Bayesian game withn players, 2
types, 2 actions per type.

6.3.1 BAGGs with Function Nodes

In this section we extend the basic BAGG representation by introducingfunction

nodesto the action graph, as we did for AGG-FNs in Chapter 3. Function nodes

allow us to exploit a much wider variety of utility structures in BAGGs.

In this extended representation,3 the action graphG’s vertices consist of both

the set of action nodesA and the set of function nodesP. We require that no

function nodep∈ P can be in any player’s action set. Each function nodep∈ P

is associated with a functionf p : C(p) →R. We extendc by definingc(p) to be the

result of applyingf p to the configuration overp’s neighbors,f p(c(p)). Intuitively,

c(p) can be used to describe intermediate parameters that players’ utilities depend

3The definitions of function nodes and contribution-independent function nodes coincides with
the corresponding concepts in AGGs. We repeat them here for completeness.
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on. To ensure that the BAGG is meaningful, the graph restricted to nodes inP

is required to be a directed acyclic graph. As before, for each action nodeα we

define a utility functionuα : C(α) →R.

Of particular computational interest is the subclass ofcontribution-independent

function nodes. A function nodep in a BAGG is contribution-independentif

ν(p) ⊆ A , there exists a commutative and associative operator∗, and for each

α ∈ ν(p) an integerwα , such that given an action profilea= (a1, . . . ,an), c(p) =

∗i∈N:ai∈ν(p)wai . A BAGG is contribution-independent if all its function nodes are

contribution-independent. Intuitively, if function nodep is contribution-independent,

each player’s strategy affectsc(p) independently.

A very useful kind of contribution-independent function nodes aresimple ag-

gregator function nodes, which set∗ to the summation operator+ and the weights

to 1. Such a function nodep simply counts the number of players that chose any

action inν(p).
Let us consider the size of a BAGG representation. The representation size of

the Bayesian network forP is exponential only in the in-degree of the BN. The

utility functions store∑α |C(α)| values. Recall thatC and thusC(α) correspond

to configurations in an related AGG. We can thus apply the sameanalysis for the

representation size of AGGs in Chapter 3. As in Chapter 3, estimations of this

size generally depend on what types of function nodes are included. We state only

the following (relatively straightforward) result since in this chapter we are mostly

concerned with BAGGs with simple aggregator function nodes.

Theorem 6.3.3. Consider BAGGs whose only function nodes, if any, are simple

aggregator function nodes. If the in-degrees of the action nodes as well as the in-

degrees of the Bayesian networks for P are bounded by a constant, then the sizes

of the BAGGs are bounded by a polynomial in n,|A |, |P|, ∑i |Θi | and the sizes of

domains of variables in the BN.

The proof is by a direct application of Corollary 3.2.11. This theorem shows

a nice property of simple aggregator function nodes: representation size does not

grow exponentially in the in-degrees of these function nodes. The next example (an

extension of Example 3.2.7) illustrates the usefulness of simple aggregator function

nodes, including for expressing conditional utility independence.
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Example 6.3.4(Coffee Shop game). Consider a symmetric Bayesian game involv-

ing n players; each player plans to open a new coffee shop in a downtown area, but

has to decide on the location. The downtown area is represented by a r× k grid.

Each player can choose to open a shop located within any of theB≡ rk blocks or

decide not to enter the market. Each player has one of T types,representing her

private information about her cost of opening a coffee shop.Players’ types are

independently distributed. Conditioned on player i choosing some location, her

utility depends on: (a) her own type; (b) the number of players that chose the same

block; (c) the number of players that chose any of the surrounding blocks; and (d)

the number of players that chose any other location.

The Bayesian normal form representation of this game has size n[T(B+ 1)]n.

The game can be expressed as a BAGG as follows. Since the game is symmetric,

we label the types as{1, . . . ,T}. A contains one actionO corresponding to not

entering andTB other action nodes, with each location corresponding to a set of

T action nodes, each representing the choice of that locationby a player with a

different type. For eacht ∈ {1, . . . ,T}, the type-action setsAi,t =A j,t for all i, j ∈N

and each consists of the actionOandBactions corresponding to locations for typet.

For each location(x,y) we create three function nodes:pxy representing the number

of players choosing this location,p′xy representing the number of players choosing

any surrounding blocks, andp′′xy representing the number of players choosing any

other block. Each of these function nodes is a simple aggregator function node,

whose neighbors are action nodes corresponding to the appropriate locations (for

all types). Each action node for location(x,y) has three neighbors,pxy, p′xy, and

p′′xy. Figure 6.2 shows the action graph for the game withT = 2 on an 1× k grid.

Since the BAGG action graph has maximum in-degree 3, by Theorem 6.3.3 the

representation size is polynomial inn, B andT.

6.4 Computing a Bayes-Nash Equilibrium

In this section we consider the problem of finding a sample Bayes-Nash equilib-

rium given a BAGG. Our overall approach is to interpret the Bayesian game as

a complete-information game, and then to apply existing algorithms for finding

Nash equilibria of complete-information games. We consider two state-of-the-art
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Figure 6.2: BAGG representation for a Coffee Shop game with 2 types per
player on an 1×k grid.

Nash equilibrium algorithms, van der Laan et al’s simplicial subdivision [1987]

and Govindan and Wilson’s global Newton method [2003].

Recall from Section 6.2.1 that a Bayesian game can be transformed into its

induced normal form or its agent form. In the induced normal form, each player

i has|Ai|
|Θi | actions (corresponding to her pure strategies of the Bayesian game).

Solving such a game would be infeasible for large|Θi |; just to represent an Nash

equilibrium requires space exponential in|Θi |.

A more promising approach is to consider the agent form. Notethat we can

straightforwardly adapt the agent-form transformation described in Section 6.2.1

to the setting of BAGGs: now the action set of player(i,θi) of the agent form corre-

sponds to the type-action setAi,θi of the BAGG. The resulting complete-information

game has∑i∈N |Θi | players and|Ai,θi | actions for each player(i,θi); a Nash equi-

librium can be represented using just∑i ∑θi
|Ai,θi | numbers. However, the normal

form representation of the agent form has size∑ j∈N |Θ j |∏i,θi
|Ai,θi |, which grows

exponentially inn and|Θi |. Applying the Nash equilibrium algorithms to this nor-

mal form would be infeasible for large games. Fortunately, we do not have to

explicitly represent the agent form as a normal form game. Instead, we treat a

BAGG as a compact representation of its agent form, and carryout any required

computation on the agent form by operating directly on the BAGG. Recall from
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Section 2.2.1 that a key computational task required by bothNash equilibrium al-

gorithms in their inner loops is the computation of expectedutility of the agent

form. Recall from Section 6.2.1 that for all(i,θi) the expected utility ˜ui,θi (σ̃) of

the agent form is equal to the expected utilityui(σ |θi) of the Bayesian game. Thus

in the remainder of this section we focus on the problem of computing expected

utility in BAGGs.

6.4.1 Computing Expected Utility in BAGGs

Recall from Section 2.2.3 thatσ θi→ai is the mixed strategy profile that is identical

to σ except thati plays ai given θi . The main quantity we are interested in is

ui(σ θi→ai |θi), playeri’s expected utility givenθi under the strategy profileσ θi→ai .

Note that the expected utilityui(σ |θi) can then be computed as the sumui(σ |θi) =

∑ai
ui(σ θi→ai |θi)σi(ai |θi).

One approach is to directly apply Equation (2.2.2), which has (|Θ−i | × |A|)

terms in the summation. For games represented in Bayesian normal form, this al-

gorithm runs in time polynomial in the representation size.Since BAGGs can be

exponentially more compact than their equivalent Bayesiannormal form represen-

tations, this algorithm runs in exponential time for BAGGs.

In this section we present a more efficient algorithm that exploits BAGG struc-

ture. We first formulate the expected utility problem as a Bayesian network infer-

ence problem. Given a BAGG and a mixed strategy profileσ θi→ai , we construct

the induced Bayesian network (IBN)as follows.

We start with the BN representing the type distributionP, which includes (at

least) the random variablesθ1, . . . ,θn. The conditional probability distributions

(CPDs) for the network are unchanged. We add the following random variables:

one strategy variableD j for each playerj; one action count variable for each action

nodeα ∈A , representing its action count, denotedc(α); one function variable for

each function nodep∈ P, representing its configuration value, denotedc(p); and

one utility variableUα for each action nodeα . We then add the following edges:

an edge fromθ j to D j for each playerj; for each playerj and eachα ∈A∪
j , an edge

from D j to c(α); for each function variablec(p), all incoming edges corresponding

to those in the action graphG; and for eachα ∈A , for each action or function node
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m∈ ν(α) in G, an edge fromc(m) to Uα in the IBN.

The CPDs of the newly added random variables are defined as follows. Each

strategy variableD j has domainA∪
j , and given its parentθ j , its CPD chooses an

action fromA∪
j according to the mixed strategyσ θi→ai

j . In other words, ifj 6= i then

Pr(D j = a j |θ j) is equal toσ j(a j |θ j) for all a j ∈ A j,θ j and 0 for alla j ∈ A∪
j \A j,θ j ;

and if j = i we have Pr(D j = ai |θ j) = 1. For each action nodeα , the parents of

its action-count variablec(α) are strategy variables that haveα in their domains.

The CPD is a deterministic function that returns the number of its parents that take

valueα ; i.e., it calculates the action count ofα . For each function variablec(p),

its CPD is the deterministic functionf p. The CPD for each utility variableUα is a

deterministic function specified byuα .

Remark 6.4.1. Observe that our construction of IBN here is similar to the con-

struction of induced BN from a TAGG in Chapter 5. One difference is that in a

BAGG, type affects utility indirectly through type-actionsets, resulting in a differ-

ent construction of CPDs at the strategy variables Dj from the TAGG case. Also,

each strategy variable in a BAGG has in-degree 1, whereas in aperfect-recall

TAGG the in-degree of a decision of player i grows linearly inthe number of i’s

previous decisions.

It is straightforward to verify that the IBN is a directed acyclic graph (DAG)

and thus represents a valid joint distribution. Furthermore, the expected utility

ui(σ ti→ai |θi) is exactly the expected value of the variableUai conditioned on the

instantiated typeθi .

Lemma 6.4.2. For all i ∈ N, all θi ∈ Θi and all ai ∈ Ai,θi , we have ui(σ θi→ai |θi) =

E[Uai |θi ].

Standard BN inference methods could be used to computeE[Uai |θi ]. How-

ever, such standard algorithms do not take advantage of structure that is inherent in

BAGGs. In particular, recall that in the induced network, each action count variable

c(α)’s parents are all strategy variables that haveα in their domains, implying large

in-degrees for action count variables. As in the TAGG case, the CPDs of action

count variables exhibitcausal independence, and we can apply a version of Heck-

erman and Breese’s method [Heckerman and Breese, 1996] to transform the IBN
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into an equivalent BN small in-degree. Given an action countvariablec(α) with

parents (say){D1 . . .Dn}, for eachi ∈ {1. . .n−1} we create a nodeMα ,i, represent-

ing the count induced byD1 . . .Di . Then, instead of havingD1 . . .Dn as parents of

c(α), its parents becomeDn andMα ,n−1, and eachMα ,i ’s parents areDi andMα ,i−1.

The resulting graph has in-degree at most 2 forc(α) and theMα ,i ’s. The CPDs of

function variables corresponding to contribution-independent function nodes also

exhibit causal independence, and thus we can use a similar transformation to re-

duce their in-degree to 2. We call the resulting Bayesian network thetransformed

Bayesian network (TBN)of the BAGG.

As in Chapter 5, it is straightforward to verify that the representation size of the

TBN is polynomial in the size of the BAGG. We can then use standard inference

algorithms to computeE[Uα |θi ] on the TBN. For classes of BNs with bounded

treewidths, this can be computed in polynomial time. Since the graph structure

(and thus the treewidth) of the TBN does not depend on the strategy profile (but,

rather, only on the BAGG itself), we have the following result.

Theorem 6.4.3.For BAGGs whose TBNs have bounded treewidths, expected utility

can be computed in time polynomial in n,|A |, |P| and |∑i Θi |.

Bayesian games with independent type distributions are an important class of

games and have many applications, such as independent-private-value auctions.

When contribution-independent BAGGs have independent type distributions, ex-

pected utility can be efficiently computed.

Theorem 6.4.4.For contribution-independent BAGGs with independent typedis-

tributions, expected utility can be computed in time polynomial in the size of the

BAGG.

Note that this result is stronger than that of Theorem 6.4.3,which only guaran-

tees efficient computation when TBNs have constant treewidth.

Proof. We reduce the problem of computing expected utilityui(σ θi→ai |θi) for BAGGs

with independent type distributions to the problem of computing expected utility

for AGGs.

Given a BAGG(N,G,{uα}α∈A ), we consider the AGGΓ specified by(N,

{A∪
i }i∈N,G,{uα}α∈A ), i.e., an AGG with the same set of players, the same action
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graph and the same utility functions, but with action sets corresponding to total

action sets of the BAGG. The representation size of the AGGΓ is proportional to

the size of the BAGG. Furthermore, since the BAGG is contribution-independent,

all function nodes in the AGGΓ are contribution-independent.

Given i, θi andσ θi→ai , for each playerj 6= i we can calculate Pr(D j) by sum-

ming out θ j : Pr(D j = a j) = ∑θ j
σ j(a j |θ j). Observe that this distribution of the

strategy variableD j can be interpreted as a (complete-information) mixed strategy

σ ′
j of the AGGΓ’s player j. Similarly for playeri, the distribution Pr(Di |θi) can

be interpreted as a mixed strategyσ ′
i for Γ’s player i. Furthermore these distribu-

tions are independent, so they induce the same distributionover configurations of

the BAGG as the distribution over configurations of the AGGΓ induced by the

mixed-strategy profileσ ′ = (σ ′
1, . . . ,σ ′

n).

Therefore the expected utilityui(σ θi→ai |θi) for the BAGG is equal to the ex-

pected utility of i in the AGG Γ under the mixed strategy profileσ ′. Expected

utility for contribution-independent AGGs can be computedin polynomial time by

running the algorithm described in Section 3.4.2.

An alternative approach for proving Theorem 6.4.4 is to workon the TBN of

the BAGG, which can be shown to have treewidth as most|ν(ai)|. Although|ν(ai)|

is not necessarily a constant, meaning that Theorem 8 cannotbe directly applied,

it can be shown that a variable elimination algorithm needs to store at most|C(ai)|

numbers in each of its tables, which is polynomial in the sizeof the BAGG. These

two proof approaches can be thought of as two interpretations of the same expected

utility algorithm.

6.5 Experiments

We have implemented our approach for computing a Bayes-Nashequilibrium given

a BAGG by applying Nash equilibrium algorithms on the agent form of the BAGG.

We adapted two algorithms, GAMBIT’s [McKelvey et al., 2006]implementation

of simplicial subdivision and GameTracer’s [Blum et al., 2002] implementation of

Govindan and Wilson’s global Newton method, by replacing calls to expected util-

ity computations of the complete-information game with corresponding expected

utility computations of the BAGG. Recall from Section 3.5 that we have adapted
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Figure 6.3: GW, varying players.

10000

100000

1000

10000

100000

nd
s

10

100

1000

10000

100000

ec
on

ds

1

10

100

1000

10000

100000

in 
se

co
nd

s

0.1

1

10

100

1000

10000

100000

tim
e i

n s
ec

on
ds

0.1

1

10

100

1000

10000

100000

6 8 10 12 14 16 18 20

CP
U 

tim
e i

n s
ec

on
ds

number of locations

0.1

1

10

100

1000

10000

100000

6 8 10 12 14 16 18 20

CP
U 

tim
e i

n s
ec

on
ds

number of locations

Figure 6.4: GW, varying locations.
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Figure 6.6: Simplicial subdivision.

GAMBIT’s implementation of simplicial subdivision to a black-box implementa-

tion, and that Gametracer’s implementation is already black-box, thus further adap-

tation of the algorithms to the BAGG case was relatively straightforward to imple-

ment once we have the expected utility subroutine. We ran experiments that tested

the performance of our approach (denoted by BAGG-AF) against two approaches

that compute a Bayes-Nash equilibrium for arbitrary Bayesian games. The first (de-

noted INF) computes a Nash equilibrium on the induced normalform; the second

(denoted NF-AF) computes a Nash equilibrium on the normal form representation

of the agent form. Both were implemented using the original,normal-form-based

implementations of simplicial subdivision and global Newton method. We thus

studied six concrete algorithms, two for each game representation.

We tested these algorithms on instances of the Coffee Shop Bayesian game

described in Example 6.3.4. We created games of different sizes by varying the

number of players, the number of types per player and the number of locations.

For each size we generated 10 game instances with random integer payoffs, and

measured the running (CPU) times. Each run was cut off after 10 hours if it had

not yet finished. All our experiments were performed using a computer cluster

consisting of 55 machines with dual Intel Xeon 3.2GHz CPUs, 2MB cache and

2GB RAM, running Suse Linux 11.1.

We first tested the three approaches based on the Govindan-Wilson (GW) algo-
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rithm. Figure 6.3 shows running time results for Coffee Shopgames withn players,

2 types per player on a 2× 3 grid, with n varying from 3 to 7. Figure 6.4 shows

running time results for Coffee Shop games with 3 players, 2 types per player on a

2× x grid, with x varying from 3 to 10. Figure 6.5 shows results for Coffee Shop

games with 3 players,T types per player on a 1×3 grid, withT varying from 2 to 8.

The data points represent the median running time of 10 game instances, with the

error bars indicating the maximum and minimum running times. All results show

that our BAGG-based approach (BAGG-AF) significantly outperformed the two

normal-form-based approaches (INF and NF-AF). Furthermore, as we increased

the dimensions of the games the normal-form based approaches quickly ran out of

memory (hence the missing data points), whereas BAGG-NF didnot.

We also did experiments on BAGG-AF and NF-AF running the simplicial sub-

division algorithm. Figure 6.6 shows running time results for Coffee Shop games

with n players, 2 types per player on a 1×3 grid, withn varying from 3 to 7. Again,

BAGG-AF significantly outperformed NF-AF, and NF-AF ran outof memory for

game instances with more than 4 players.
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Chapter 7

Polynomial-time Computation of

Exact Correlated Equilibrium in

Compact Games

7.1 Introduction

So far we have focused on the AGG representation and its extensions. For the

remaining two technical chapters (this chapter and Chapter8) we switch our at-

tention to algorithms that work for a wide class of compact representations includ-

ing AGGs. Specifically, we consider problems regarding correlated equilibrium

(CE) [Aumann, 1974, 1987]. In this chapter we consider the problem of com-

puting a sample correlated equilibrium. In Section 2.2.7 wegave an overview of

literature on this problem; in order to motivate our resultsin this chapter we first

take a more in-depth look at some of the relevant papers. The “Ellipsoid Against

Hope” algorithm [Papadimitriou, 2005, Papadimitriou and Roughgarden, 2008] is

a polynomial-time method for identifying (a polynomial-size representation of) a

CE, given a game representation satisfying two properties:polynomial type and the

polynomial expectation property, which requires access to a polynomial-time algo-

rithm that computes the expected utility of any player underany mixed-strategy

profile. Recall that most existing compact game representations discussed in Sec-
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tion 2.1.1 (including graphical games, symmetric games, congestion games, poly-

matrix games and action-graph games) satisfy these properties. At a high level,

the Ellipsoid Against Hope algorithm works by solving an infeasible dual LP (D)

using the ellipsoid method (exploiting the existence of a separation oracle), and

arguing that the LP (D′) formed by the generated cutting planes must also be in-

feasible. Solving the dual of this latter LP (which has polynomial size) yields a

CE, which is represented as a mixture of the product distributions generated by

the separation oracle. The Ellipsoid Against Hope algorithm is an instance of the

black-box approach: it calls the expected utility subroutine as part of its separation

oracle computation, but does not access the internal details of the representation.

7.1.1 Recent Uncertainty About the Complexity of Exact CE

In a recent paper, Stein, Parrilo and Ozdaglar [2010] raisedtwo interrelated con-

cerns about the Ellipsoid Against Hope algorithm. First, they identified a symmet-

ric 3-player, 2-action game with rational1 utilities on which the algorithm can fail

to compute an exact CE. Indeed, they showed that the same problem arises on this

game for a whole class of related algorithms. Specifically, if an algorithm (a) out-

puts a rational solution, (b) outputs a convex combination of product distributions,

and (c) outputs a convex combination of symmetric product distributions when the

game is symmetric, then that algorithm fails to find an exact CE on their game,

because the only CE of their game that satisfies properties (b) and (c) has irrational

probabilities. This implies that any algorithm for exact rational CE must violate (b)

or (c).

Second, Stein, Parrilo and Ozdaglar also showed that the original analysis by

Papadimitriou and Roughgarden [2008] incorrectly handlescertain numerical pre-

cision issues, which we now briefly describe. Recall that a run of the ellipsoid

method requires as inputs an initial bounding ball with radius R and a volume

boundv such that the algorithm stops when the ellipsoid’s volume issmaller than

v. To correctly certify the (in)feasibility of an LP using theellipsoid method,R

andv need to be set to appropriate values, which depend on the maximum encod-

ing size of a constraint in the LP. However (as pointed out by Papadimitriou and

1Throughout this chapter, by “rational” we mean rational numbers (ratios of integers) rather than
rationality of players.
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Roughgarden [2008]), each cut returned by the separation oracle is a convex com-

bination of the constraints of the original dual LP (D) and thus may require more

bits to represent than any of the constraints in (D); as a result, the infeasibility of

the LP (D′) formed by these cuts is not guaranteed. Papadimitriou and Roughgar-

den [2008] proposed a method to overcome this difficulty, butStein et al. showed

that this method is insufficient for finding an exact CE. For the related problem of

finding an approximate correlated equilibrium (ε-CE), Stein et al. gave a slightly

modified version of the Ellipsoid Against Hope algorithm that runs in time poly-

nomial in log1
ε and the game representation size.2 For problems that can have

necessarily irrational solutions, it is typical to consider such approximations as ef-

ficient; however, the computation of a sample CE is not such a problem, as there

always exists a rational CE in a game with rational utilities, since CE are defined by

linear constraints. It remains an open problem to determinewhether the Ellipsoid

Against Hope algorithm can be modified to compute an exact, rational correlated

equilibrium.3

7.1.2 Our Results

In this chapter, we use an alternate approach—completely sidestepping the issues

just discussed—to derive a polynomial-time algorithm for computing an exact (and

rational) correlated equilibrium given a game representation that has polynomial

type and satisfies the polynomial expectation property. Specifically, our approach

is based on the observation that if we use a separation oracle(for the same dual

LP formulation proposed by Papadimitriou and Roughgarden [2008]) that gen-

erates cuts corresponding to pure-strategy profiles (instead of Papadimitriou and

Roughgarden’s separation oracle that generates nontrivial product distributions),

then these cuts are actual constraints in the dual LP, as opposed to convex combi-

nations of constraints. As a result we no longer encounter the numerical accuracy

issues that prevented the previous approaches from finding exact correlated equi-

libria. Both the resulting algorithm and its analysis are also considerably simpler

2An ε-CE is defined to be a distribution that violates the CE incentive constraints by at mostε.
3In a recent addendum to their original paper, Papadimitriouand Roughgarden [2010] acknowl-

edged the flaw in the original algorithm. We note also that Stein et al. subsequently withdrew their
paper from arXiv. It is our belief that their results are nevertheless correct; we discuss them here
because they help to motivate our alternate approach.
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than the original: standard techniques from the theory of the ellipsoid method are

sufficient to show that our algorithm computes an exact CE using a polynomial

number of oracle queries.

The key issue is the identification of pure-strategy-profilecuts. It is relatively

straightforward to show that such cuts always exist: since the product distribution

generated by the Ellipsoid Against Hope algorithm ensures the nonnegativity of

a certain expected value, then by a simple application of theprobabilistic method

there must exist a pure-strategy profile that also ensures the nonnegativity of that

expected value. The key is to go beyond this nonconstructiveproof of existence

to alsocomputepure-strategy-profile cuts in polynomial time. We show how to

do this by applying the method of conditional probabilities[Erdős and Selfridge,

1973, Raghavan, 1988, Spencer, 1994], an approach for derandomizing probabilis-

tic proofs of existence. At a high level, our new separation oracle begins with

the product distribution generated by Papadimitriou and Roughgarden’s separation

oracle, then sequentially fixes a pure strategy for each player in a way that guar-

antees that the corresponding conditional expectation given the choices so far re-

mains nonnegative. Since our separation oracle goes thoughplayers sequentially,

the cuts generated can be asymmetric even for symmetric games. Indeed, we can

confirm (see Section 7.4.2) that it makes such asymmetric cuts on Stein, Parrilo

and Ozdaglar’s symmetric game—thus violating their condition (c)—because our

algorithm always identifies a rational CE. As with the Ellipsoid Against Hope al-

gorithm and Stein et al.’s modified algorithm, our algorithmis also a black-box

algorithm that calls the expected utility subroutine.

Another effect of our use of pure-strategy-profile cuts is that the correlated

equilibria generated by our algorithm are guaranteed to have polynomial-sized sup-

ports; i.e., they are mixtures over a polynomial number of pure strategy profiles.

Correlated equilibria with polynomial-sized supports areknown to exist in every

game (e.g., [Germano and Lugosi, 2007]); intuitively this is because CE are defined

by a polynomial number of linear constraints, so a basic feasible solution of the lin-

ear feasibility program would have a polynomial number of non-zero entries. Such

small-support correlated equilibria are more natural solutions than the mixtures of

product distributions produced by the Ellipsoid Against Hope algorithm: because

of their simpler form they require fewer bits to represent and fewer random bits to
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sample from; furthermore, verifying whether a given polynomial-support distribu-

tion is a CE only requires evaluating the utilities of a polynomial number of pure

strategy profiles, whereas verifying whether a mixture of product distributions is a

CE would require evaluating expected utilities under product distributions, which

is generally more expensive. No tractable algorithm has previously been proposed

for identifying such a CE, thus our algorithm is the first algorithm that computes

in polynomial time a CE with polynomial support given a compactly-represented

game. In fact, we show that any CE computed by our algorithm corresponds to a

basic feasible solution of the linear feasibility program that defines CE, and is thus

an extreme point of the set of CE of the game.

Since Papadimitriou and Roughgarden [2008] proposed the Ellipsoid Against

Hope algorithm for computing a CE, researchers have proposed algorithms for re-

lated problems that used a similar approach (which we call the Ellipsoid Against

Hope approach): first solving an infeasible LP using the ellipsoid method with

some separation oracle, then arguing that the LP formed by the cutting planes is

also infeasible, and finally solving the dual of the latter polynomial-sized LP. For

example, Hart and Mansour [2010] considered the setting where each player ini-

tially knows only her own utility function, and proposed a communication proce-

dure that finds a CE with polynomial communication complexity using a straight-

forward adaptation of the Ellipsoid Against Hope algorithm. Huang and Von Sten-

gel [2008] proposed a polynomial-time algorithm for computing a extensive-form

correlated equilibrium (EFCE) [von Stengel and Forges, 2008], a solution concept

for extensive-form games, by applying the Ellipsoid Against Hope approach to the

LP formulation of EFCE. For both algorithms, the separationoracle outputs a mix-

ture of the original constraints, and hence the flaws of the Ellipsoid Against Hope

algorithm pointed out by Stein et al. [2010] also apply. We show that our techniques

can be adapted to these two algorithms, yielding in both cases exact solutions with

polynomial-sized supports. In particular, we replace the original separation oracles

with “purified” versions that output cutting planes corresponding to the original

constraints, which ensures that the resulting algorithms avoid the numerical issues.

The rest of the chapter is organized as follows. We start withbasic defini-

tions and notation in Section 7.2. In Section 7.3 we summarize Papadimitriou and

Roughgarden’s Ellipsoid Against Hope algorithm. In Section 7.4 we describe our
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algorithm and prove its correctness. In Sections 7.5 and 7.6we describe our fixes

to Hart and Mansour’s [2010] and Huang and Von Stengel’s [2008] algorithms

respectively, and Section 7.7 concludes.

This chapter is based on published joint work with Kevin Leyton-Brown [2011].

New material that does not appear in [Jiang and Leyton-Brown, 2011] includes

Sections 7.5 and 7.6.

7.2 Preliminaries

In this chapter and Chapter 8 we largely follow the notation of Papadimitriou

[2005] and Papadimitriou and Roughgarden [2008], which hasbecome standard

notation for the literature on CE computation. The notationis slightly differ-

ent from the one we used in the previous (AGG-specific) chapters. Consider a

simultaneous-move game withn players. Denote a playerp, and playerp’s set of

pure strategies (i.e., actions)Sp. Let m= maxp |Sp|. Denote a pure strategy profile

s= (s1, . . . ,sn) ∈ S, with sp being playerp’s pure strategy. Denote byS−p the set

of partial pure strategy profiles of the players other thanp. Playerp’s utility under

pure strategy profiles is up
s . We assume that utilities are nonnegative integers (but

results in this chapter can be straightforwardly adapted torational utilities). Denote

the largest utility of the game asu.

A correlated distributionis a probability distribution over pure strategy pro-

files, represented by a vectorx ∈ RM, whereM = ∏p |Sp|. Thenxs is the proba-

bility of pure strategy profiles under the distributionx. A correlated distribution

x is aproduct distributionwhen it can be achieved by each playerp randomizing

independently over her actions according to some distribution xp, i.e.,xs = ∏pxp
sp.

Such a product distribution is also known as a mixed-strategy profile, with each

playerp playing the mixed strategyxp.

Throughout the paper we assume that a game is given in a representation satis-

fying two properties, following Papadimitriou and Roughgarden [2008]:

• polynomial type: recall from Section 2.1.1 that this means the number of

players and the number of actions for each player are boundedby polynomi-

als in the size of the representation.

• the polynomial expectation property: we have access to an algorithm that
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computes the expected utility of any playerp under any product distribution

x, i.e.,∑s∈Sup
sxs, in time polynomial in the size of the representation.

Definition 7.2.1. A correlated distribution x is acorrelated equilibrium(CE) if it

satisfies the followingincentive constraints: for each player p and each pair of her

actions i, j ∈ Sp,

∑
s∈S−p

[up
is−up

js]xis ≥ 0, (7.2.1)

where the subscript “is” (respectively “ js”) denotes the pure strategy profile in

which player p plays i (respectively j) and the other playersplay according to the

partial profile s∈ S−p.

We write these incentive constraints in matrix form asUx≥ 0. ThusU is an

N×M matrix, whereN = ∑p |Sp|
2. The rows ofU , corresponding to the left-hand

sides of the constraints (7.2.1), are indexed by(p, i, j) where p is a player and

i, j ∈ Sp are a pair ofp’s actions. Denote byUs the column ofU corresponding to

pure strategy profiles. These incentive constraints, together with the constraints

x≥ 0, ∑
s∈S

xs = 1, (7.2.2)

which ensure thatx is a probability distribution, form a linear feasibility program

that defines the set of CE. The largest value inU is at mostu.

We define thesupportof a correlated equilibriumx as the set of pure strategy

profiles assigned positive probability byx. Germano and Lugosi [2007] showed

that for anyn-player game, there always exists a correlated equilibriumwith sup-

port size at most 1+∑p |Sp|(|Sp|−1)=N+1−∑p |Sp|. Intuitively, such correlated

equilibria are basic feasible solutions of the linear feasibility program for CE, i.e.,

vertices of the polyhedron defining the feasible region. Furthermore, these basic

feasible solutions involve only rational numbers for gameswith rational payoffs

(see e.g. Lemma 6.2.4 of [Grötschel et al., 1988]).

7.3 The Ellipsoid Against Hope Algorithm

In this section, we summarize Papadimitriou and Roughgarden’s [2008] Ellipsoid

Against Hope algorithm for finding a sample CE, which can be seen as an effi-
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ciently constructive version of earlier proofs [Hart and Schmeidler, 1989, Myer-

son, 1997, Nau and McCardle, 1990] of the existence of CE. We will concentrate

on the main algorithm and only briefly point out the numericalissues discussed at

length by both Papadimitriou and Roughgarden [2008] and Stein et al. [2010], as

our analysis will ultimately sidestep these issues.

Papadimitriou and Roughgarden’s approach considers the linear program

max∑
s∈S

xs (P)

Ux≥ 0, x≥ 0,

which is modified from the linear feasibility program for CE by replacing the con-

straint ∑s∈Sxs = 1 from (7.2.2) with the maximization objective. (P) either has

x = 0 as its optimal solution or is unbounded; in the latter case,taking a feasible

solution and scaling it to be a distribution yields a correlated equilibrium. Thus one

way to prove the existence of CE is to show the infeasibility of the dual problem

UTy≤−1, y≥ 0. (D)

The Ellipsoid Against Hope algorithm uses the following lemma, versions of

which were also used by Nau and McCardle [1990] and Myerson [1997].

Lemma 7.3.1([Papadimitriou and Roughgarden, 2008]). For every dual vector y≥

0, there exists a product distribution x such that xUTy= 0. Furthermore there exists

an algorithm that given any y≥ 0, computes the corresponding x (represented by

x1, . . . ,xn) in time polynomial in n and m.

We will not discuss the details of this algorithm; we will only need the facts

that the resultingx is a product distribution and can be computed in polynomial

time. Note also that the resultingx is symmetric ify is symmetric. Lemma 7.3.1

implies that the dual problem (D) is infeasible (and therefore a CE must exist):

xUTy is a convex combination of the left hand sides of the rows of the dual, and

for any feasibley the result must be less than or equal to−1.

The Ellipsoid Against Hope algorithm runs the ellipsoid algorithm on the dual

(D), with the algorithm from Lemma 7.3.1 as separation oracle,which we call the
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the Product Separation Oracle. At each step of the ellipsoidalgorithm, the separa-

tion oracle is given a dual vectory(i). The oracle then generates the corresponding

product distributionx(i) and indicates to the ellipsoid algorithm that(x(i)UT)y≤−1

is violated byy(i). The ellipsoid algorithm will stop after a polynomial number of

steps and determine that the program is infeasible. LetX be the matrix whose rows

are the generated product distributionsx(1), . . . ,x(L).

Consider the linear program

[XUT]y≤−1, y≥ 0, (D′)

and observe that the rows of[XUT]y≤ −1 are the cuts generated by the ellipsoid

method. If we apply the same ellipsoid method to (D′) and use a separation oracle

that returns the cutx(i)UTy ≤ −1 given queryy(i), the ellipsoid algorithm would

go through the same sequence of queriesy(i) and cutting planesx(i)UTy≤−1 and

return infeasible. Presuming that numerical problems do not arise,4 we will find

that (D′) is infeasible. This implies that its dual[UXT]α ≥ 0, α ≥ 0 is unbounded

and has polynomial size, and thus can be solved for a nonzero feasibleα . We can

thus scaleα to obtain a probability distribution. We then observe thatXTα satisfies

the incentive constraints (7.2.1) and the probability distribution constraints (7.2.2)

and is therefore a correlated equilibrium. The distribution XTα is the mixture of

product distributionsx(1), . . . ,x(L) with weightsα , and thus can be represented in

polynomial space and can be efficiently sampled from.

One issue remains. Although the matrixXUT is polynomial sized, computing

it using matrix multiplication would involve an exponential number of operations.

On the other hand, entries ofXUT are differences between expected utilities that

arise under product distributions. Since we have assumed that the game represen-

4Since each row of (D′)’s constraint matrixXUT may require more bits to represent than any
row of the constraint matrixUT for (D), running the ellipsoid algorithm on (D′) with the original
bounding ball and volume lower bound for (D) would not be sound, and as a result (D′) is not
guaranteed to be infeasible. Indeed, Stein et al. [2010] showed that when running the algorithm
on their symmetric game example, (D′) would remain feasible, and thus the output of the algorithm
would not be an exact CE. Furthermore, since the only CE of that game that is a mixture of symmetric
product distributions is irrational, there is no way to resolve this issue without breaking at least one
of the symmetry and product distribution properties of the Ellipsoid Against Hope algorithm. For
more on these issues and possible ways to address them, please see Papadimitriou and Roughgarden
[2008, 2010], Stein et al. [2010].
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tation admits a polynomial-time algorithm for computing such expected utilities,

XUT can be computed in polynomial time.

Lemma 7.3.2 ([Papadimitriou and Roughgarden, 2008]). There exists an algo-

rithm that given a game representation with polynomial typeand satisfying the

polynomial expectation property, and given an arbitrary product distribution x,

computes xUT in polynomial time. As a result, XUT can be computed in poly-

nomial time.

7.4 Our Algorithm

In this section we present our modification of the Ellipsoid Against Hope algorithm,

and prove that it computes exact CE. There are two key differences between our

approach and the original algorithm for computing approximate CE.

1. Our modified separation oracle produces pure-strategy-profile cuts;

2. The algorithm is simplified, no longer requiring a specialmechanism to deal

with numerical issues (because pure-strategy-profile cutscan be represented

directly as rows of (D)’s constraint matrix).

7.4.1 The Purified Separation Oracle

We start with a “purified” version of Lemma 7.3.1.

Lemma 7.4.1. Given any dual vector y≥ 0, there exists a pure strategy profile s

such that(Us)
Ty≥ 0.

Proof. Recall that Lemma 7.3.1 states that given dual vectory≥ 0, a product dis-

tribution x can be computed in polynomial time such thatxUTy= 0. Sincex[UTy]

is a convex combination of the entries of the vectorUTy, there must exist some

nonnegative entry ofUTy. In other words, there exists a pure strategy profiles

such that(Us)
Ty≥ xUTy= 0.

The proof of Lemma 7.4.1 is a straightforward application ofthe probabilistic

method: sincexUTy is the expected value of(Us)
Ty under distributionx, which we

denoteEs∼x[(Us)
Ty], the nonnegativity of this expectation implies the existence of
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somes such that(Us)
Ty ≥ 0. Like many other probabilistic proofs, this proof is

not efficiently constructive; note that there are an exponential number of possible

pure strategy profiles.

It turns out that for game representations with polynomial type and satisfying

the polynomial expectation property, an appropriates can indeed be identified in

polynomial time. Our approach can be seen as derandomizing the probabilistic

proof using the method of conditional probabilities [Erdős and Selfridge, 1973,

Raghavan, 1988, Spencer, 1994]. At a high level, for each player p our algorithm

picks a pure strategysp, such that the conditional expectation of(Us)
Ty given the

choices so far remains nonnegative. This requires us to compute the conditional

expectations, but this can be done efficiently using the expected utility subroutine

guaranteed by the polynomial expectation property.

Lemma 7.4.2. There exists a polynomial-time algorithm that given

• an instance of a game in a representation satisfying polynomial type and the

polynomial expectation property,

• a polynomial-time subroutine for computing expected utility under any prod-

uct distribution (as guaranteed by the polynomial expectation property), and

• a dual vector y≥ 0,

finds a pure strategy profile s∈ S such that(Us)
Ty≥ 0.

Proof. Given a product distributionx, let x(p→sp) be the product distribution in

which playerp plays sp and all other players play according tox. Sincex is a

product distribution,x(p→sp)U
Ty is the conditional expectation of(Us)

Ty given that

p playssp, and furthermore we have for anyp,

xUTy= ∑
sp

[

x(p→sp)U
Ty
]

xp
sp
. (7.4.1)

Sincexp is a distribution, the right hand side of (7.4.1) is a convex combination

and thus there must exist an actionsp ∈ Sp such thatx(p→sp)U
Ty ≥ xUTy ≥ 0.

Sincex(p→sp) is a product distribution, this process can be repeated for each player
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Algorithm 5 Computes a pure strategy profilessuch that(Us)
Ty≥ 0.

1. Giveny≥ 0, identify a product distributionx satisfyingxUTy= 0, using the
algorithm described in Lemma 7.3.1.

2. Sequentially for each playerp∈ {1, . . . ,n},

(a) iterate through actionssp ∈ Sp, and computex(p→sp)U
T using the algo-

rithm described in Lemma 7.3.2, until we find an actions∗p ∈ Sp such

that
[

x(p→s∗p)U
T
]

y≥ 0.

(b) setx to bex(p→s∗p).

3. The resultingx corresponds to a pure strategy profiles. Outputs.

to yield a pure strategy profiles such that(Us)
Ty≥ xUTy≥ 0. This is formalized

in Algorithm 5.

We now consider the running time of Algorithm 5. We observe that x remains

a product distribution throughout the algorithm and can thus be represented by

its marginalsx1, . . . ,xn, requiring only polynomial space. Due to the polynomial

expectation property, the algorithm described in Lemma 7.3.2 is polynomial, which

implies that in Step 2a, for eachsp ∈Sp, x(p→sp)U
T can be computed in polynomial

time. Since Step 2a requires at most|Sp| such computations, and since polynomial

type implies thatn and|Sp| are polynomial in the input size, the algorithm runs in

polynomial time.

A straightforward corollary is the following:

Corollary 7.4.3. Algorithm 5 can be used as a separation oracle for the dual LP

(D) in the Ellipsoid Against Hope algorithm: for each query point y, the oracle

computes the corresponding pure-strategy profile s according to Algorithm 5 and

returns the half space(Us)
Ty ≤ −1. We call this the Purified Separation Oracle.

This separation oracle has the following properties:

• Each returned half space is one of the constraints of(D).

• Since Algorithm 5 iterates through the players sequentially, the generated
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pure-strategy profiles can be asymmetric even for symmetricgames and sym-

metric y.

• Since a pure-strategy profile is a special case of a product distribution, the

resulting pure-strategy profile s also satisfies Lemma 7.3.1, with x being the

unit vector corresponding to s.

7.4.2 The Simplified Ellipsoid Against Hope Algorithm

We now modify the Ellipsoid Against Hope Algorithm by replacing the Product

Separation Oracle with our Purified Separation Oracle. The rows of X in (D′)

become unit vectors corresponding to the pure-strategy profiles generated by the

oracle. Thus, we can write (D′) as

(U ′)Ty≤−1, y≥ 0, (D′′)

where the matrixU ′ ≡UXT consists of the columnsUs(i) that correspond to pure-

strategy profiless(i) generated by the separation oracle. Note that each constraint

of (D′′) is also one of the constraints of (D), and as a result neither the maximum

value of the coefficients nor the right-hand sides of (D′′) are greater than in (D).

Therefore, a starting ball and volume lower bound that are valid for a run of the

ellipsoid method on (D) is also valid for (D′′). We thus avoid the precision issues

faced by the Ellipsoid Against Hope algorithm, and it is sufficient to use standard

values for the initial radius and volume lower bound, and standard perturbation

methods for dealing with non-full-dimensional solutions.The resulting CE is a

mixture over a polynomial number of pure strategy profiles. We can make a further

conceptual simplification of the algorithm: instead of using X as in the Ellipsoid

Against Hope algorithm, we can directly treat the generatedpure-strategy profiles

as columns ofU , and useU ′ in place ofUXT.

We now formally state and prove our result. Note that although we only briefly

discussed the way numerical issues are addressed in the original Ellipsoid Against

Hope algorithm in Section 7.3, we do go into detail about how our algorithm en-

sures its own numerical accuracy. Nevertheless that task iscomparatively easy,

as it is sufficient for us to apply standard techniques from the theory of the ellip-
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Algorithm 6 Computes an exact rational CE given a game representation satisfying
polynomial type and the polynomial expectation property.

1. Apply the ellipsoid method to (D), using the Purified Separation Oracle, a
starting ball with radius ofR= u5N3

centered at 0, and stopping when the
volume of the ellipsoid is belowv = αNu−7N5

, whereαN is the volume of
theN-dimensional unit ball.

2. Form the matrixU ′ whose columns are theUs(1) , . . . ,Us(L) generated by the
separation oracle during the run of the ellipsoid method.

3. Compute a basic feasible solutionx′ of the linear feasibility program

U ′x′ ≥ 0, x′ ≥ 0, 1Tx′ = 1, (P∗)

by applying the ellipsoid method on the explicitly represented (P∗) and re-
covering a basis using, e.g., Algorithm 4.2 of Dantzig and Thapa [2003].

4. Outputx′ and s(1), . . . ,s(L), interpreted as a distribution over pure-strategy
profiless(1), . . . ,s(L) with probabilitiesx′.

soid method. Our analysis makes use of the following lemma from Grötschel et al.

[1988].

Lemma 7.4.4(Lemma 6.2.6, [Grötschel et al., 1988]). Let P= {y∈RN|Ay≤ b}

be a full-dimensional polyhedron defined by the system of inequalities, with the

encoding length of each inequality at mostϕ . Then P contains a ball with radius

2−7N3ϕ . Moreover, this ball is contained in the ball with radius25N2ϕ centered at

0.

We note that the only restriction onP is full dimensionality; we do not need to

assume thatP is bounded, or thatA has full row rank.

Theorem 7.4.5.Given a game representation with polynomial type and satisfying

the polynomial expectation property, Algorithm 6 computesan exact and rational

CE with support size at most1+∑p |Sp|(|Sp|−1) in polynomial time.

Proof. We begin by proving the correctness of the algorithm. First,we will show

that the ellipsoid method in Step 1 is a valid run for (D), which certifies that the
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feasible set of (D) is either empty or not full dimensional.5 Suppose the contrary,

i.e., the feasible set of (D) is feasible and full dimensional. Since the encoding

length of each constraint of (D) is at mostN log2 u, then by Lemma 7.4.4, the

feasible set must contain a ball with radiusu−7N4
, and thus volumeαNu−7N5

, and

furthermore this ball must be contained in the ball with radius u5N3
centered at 0,

which is the initial ball of our ellipsoid method in Step 1. Since at the end of Step 1

the ellipsoid method certifies that the intersection of the initial ball and the feasible

set has volume less thanv= αNu−7N5
, we reach a contradiction and therefore either

the LP (D) must be infeasible or the feasible set must not be full dimensional. Since

the largest magnitude of the coefficients in (D′′) is alsou, Step 1 is also a valid run

for (D′′) and therefore either (D′′) must be infeasible or the feasible set of (D′′)

must not be full dimensional.

Of course a non-full-dimensional feasible set is not sufficient for our purpose;

we now perturb (D′′) to get an infeasible LP. Fixρ > 1. Perturbing the constraints

(U ′)Ty≤−1 of (D′′) by multiplying the RHS byρ , we get the LP:

min0 (7.4.2)

(U ′)Ty≤−ρ1

y≥ 0.

We claim that (7.4.2) is infeasible. Suppose otherwise: then there exists ay∈RN

such thaty≥ 0 and(U ′)Ty≤−ρ1. Let y′ ∈RN be a vector such that 0≤ y′j −y j ≤
ρ−1
Nu for all j. Theny′ ≥ 0, and each components of U ′Ty′ satisfies

(U ′
s)

Ty≤ (U ′
s)

Ty+
ρ −1
Nu ∑

j
|U ′ j

s |

≤ −ρ +ρ −1

≤−1.

Thus, any suchy′ is feasible for (D′′). However, the set of all such vectorsy′ is a

5Since the ellipsoid method relies on shrinking the volume ofthe candidate set, it is not able
to distinguish between non-full-dimensional feasible sets and infeasibility. We overcome this by
perturbing the LP after the ellipsoid method has been applied; an alternate method perturbs the LP
in advance to ensure the feasible set is either empty or full dimensional.
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full-dimensional cube. This contradicts the fact that (D′′) is either infeasible or not

full dimensional, and therefore (7.4.2) is infeasible. This means that (7.4.2)’s dual

maxρ1Tx′ (7.4.3)

U ′x′ ≥ 0

x′ ≥ 0

is unbounded (since it is feasible, e.g.x′ = 0). Then a nonzero feasible vectorx′ is

(after normalization) a distribution over the pure strategy profiles corresponding to

columns ofU ′. Treating it as a sparse representation of a correlated distribution x,

it satisfies the feasibility program for CE and is therefore an exact CE.

This CE is exact but its support size could be greater than 1+∑p |Sp|(|Sp|−1)

(although as we argue below it is still polynomial). To get a CE with the required

support size, we notice that since (7.4.3) is unbounded, a feasible solution of the

bounded linear feasibility program (P∗) is a CE. Note that (P∗) has the same set

of constraints as the feasibility program for CE defined by (7.2.1) and (7.2.2), and

that for each playerp and actioni ∈Sp, the incentive constraint(p, i, i) corresponds

to deviating from actioni to itself and is therefore redundant. Thus the number

of bounding constraints of (P∗) is at most 1+ ∑p |Sp|(|Sp| − 1) and therefore a

basic feasible solutionx′ of (P∗) will have the required support size. Since the

coefficients and right-hand sides of (P∗) are rational, then (by e.g. Lemma 6.2.4

of Grötschel et al. [1988]) its basic feasible solutionx′ is also rational and can be

represented using at most 4N3u bits.

We now consider the running time of the algorithm. Since Step1 is a standard

run of the ellipsoid method, it terminates in a polynomial number of iterations. For

example if we use the ellipsoid algorithm presented in Theorem 3.2.1 of Grötschel

et al. [1988], then by Lemma 3.2.10 of Grötschel et al. [1988] the ratio between

volumes of successive ellipsoids vol(Ek+1)/vol(Ek) ≤ e−1/(5N). With the volume

of the initial ellipsoid at mostαNRN and stopping when volume is belowv, the
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number of iterationsL is at most

5N
[

ln(αNRN)− lnv
]

= 5N
[

5N4 lnu+7N5 lnu
]

= O(N6 lnu),

which is polynomial in the input size sinceN ≡ ∑p |Sp|
2 is polynomial. Since each

call to the separation oracle takes polynomial time by Lemma7.4.2, Step 1 takes

polynomial time.L being polynomial also ensures that (P∗) has polynomial size,

and thus a basic feasible solution can be found in polynomialtime.

We note that the estimates onR andv (and thusL) can be improved, but our

main goal here is to prove that the running time of our algorithm is polynomial.

The reader may wonder how our algorithm would deal with Steinet al. [2010]’s

counterexample, a symmetric game in which the only CE that isa convex combina-

tion of symmetric product distributions has irrational probabilities. Since we have

proved that our algorithm computes a rational CE as a convex combination of prod-

uct distributions, it must violate the symmetry property. Indeed as we discussed in

Section 7.4.1, our Purified Separation Oracle can return asymmetric cuts for sym-

metric games and symmetric queries, and thus for this game itmust return at least

one asymmetric cut.

7.5 Uncoupled Dynamics with Polynomial
Communication Complexity

Hart and Mansour [2010] considered the setting where each player initially knows

only her own utility function, and analyzed the communication complexity for such

uncoupleddynamics to reach various equilibrium concepts. They use a straightfor-

ward adaptation of Papadimitriou and Roughgarden’s Ellipsoid Against Hope al-

gorithm to show that a CE can be reached using polynomial communication. The

recent discovery by Stein et al. [2010] of flaws of the Ellipsoid Against Hope al-

gorithm imply that Hart and Mansour’s procedure as proposedwould not reach

an exact CE. We show that our modified version of the EllipsoidAgainst Hope
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algorithm can be straightforwardly adapted into a polynomial communication pro-

cedure for exact CE.

Formally, in Hart and Mansour’s setting, each playerp initially knows only

her utility function up. No assumption is made on how the game is represented

and the cost of computation is of no concern; instead, we focus on the amount

of communication required to reach a CE. Hart and Mansour’s approach used the

following property of the Product Separation Oracle (Lemma7.3.1): giveny≥ 0,

the corresponding product distributionx depends only ony and not on the utilities

of the game. Although generating the cutting plane requirescomputingxUT which

does depend on the utilities, each entry(p, i, j) of the vectorxUT depends only on

the utilities of playerp.

We now describe Hart and Masour’s procedure. A center runs the Ellipsoid

Against Hope algorithm; when the Product Separation Oraclegenerates a product

distributionx, the center sends it to all players, and asks each playerp to compute

her segment of the vectorxUT , i.e., entries(p, i, j) for all i, j ∈ Sp, to send back

to the center. This exactly simulates the Ellipsoid AgainstHope algorithm, and its

communication costs are those of sending the product distributions to players and

each player sending back her part ofxUT .

This procedure can be modified to use the Purified Separation Oracle instead.

At Step 2a of the Purified Separation Oracle (Algorithm 5), for eachsp ∈ Sp

the center sendsx(p→sp) to all players and asks each to compute her segment of

x(p→sp)U
T . After assembling the vectorx(p→sp)U

T from the segments, the center

checks whether
[

x(p→sp)U
T
]

y≥ 0. We call the resulting modified version of Algo-

rithm 5 the Uncoupled Purified Separation Oracle. It is straightforward to see that

this exactly simulates the Purified Separation Oracle. The communication costs are

those of the center sending the product distributions and the players sending back

segments ofx(p→sp)U
T . At most∑p |Sp| rounds of such exchange are required for

each call to the Purified Separation Oracle, therefore the total amount of communi-

cation is polynomially bounded.

Corollary 7.5.1. Modify Hart and Mansour’s procedure by replacing its separa-

tion oracle with the Uncoupled Purified Separation Oracle. The resulting commu-

nication procedure reaches an exact CE while both the numberof bits of communi-
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cation required and the size of the support are polynomial inn and∑p |Sp|.

7.6 Computing Extensive-form Correlated Equilibria

Recently, von Stengel and Forges [2008] proposedextensive-form correlated equi-

librium (EFCE), a solution concept for extensive-form games that isclosely related

to correlated equilibrium. Here we focus on the computational problem of find-

ing an EFCE and refer interested readers to von Stengel and Forges [2008] for

details on EFCE as a solution concept. Huang and Von Stengel [2008] described a

polynomial-time algorithm for computing sample extensive-form correlated equi-

libria. Their algorithm follows a very similar structure asPapadimitriou and Rough-

garden’s Ellipsoid Against Hope algorithm, and the problems pointed out by Stein

et al. [2010] carry over. As a result, the algorithm can fail to find an exact EFCE.

We extend our fix for Papadimitriou and Roughgarden’s Ellipsoid Against

Hope algorithm to Huang and Von Stengel’s algorithm, allowing it to compute an

exact EFCE with polynomial-sized support. We first give a high-level description

of Huang and Von Stengel’s algorithm, following Huang [2011]. 6 The input of the

problem is ann-player extensive-form game with perfect recall. Each nonterminal

node of the game tree is a decision node for either one of the players or Chance.

H denotes the set of information sets, andCh denotes the set of moves available

from h∈ H, andT denotes the set of terminal nodes. Due to the tree structure of

the extensive form, for each node there exists a unique path from the root of the

tree to that node. Lets be a pure-strategy profile;s(h) denotes the move at infor-

mation seth∈ H. Let zbe a distribution over the set of pure-strategy profiles. The

size ofz is exponential. Huang and Von Stengel [2008] showed thatz is an EFCE

if it satisfies a polynomial number of linear constraints, which can be written as

Az+Bv≥ 0 wherev is an auxiliary vector of polynomial size. They considered the

6We assume that readers are familiar with the standard concepts of extensive form games, infor-
mation sets, perfect recall, and behavior strategies.
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exponential-sized primal LP

max∑
s

zs (7.6.1)

Az+Bv≥ 0

z≥ 0,

and its dual

ATy≤−1 (7.6.2)

BTy= 0

y≥ 0

which has a polynomial number of variables and exponential number of constraints.

The following is a key lemma:

Lemma 7.6.1. [Huang and Von Stengel, 2008] For all y≥ 0 such that BTy = 0,

there exists a product distribution z such that zTATy= 0.

Unlike the simultaneous-move game case,zbeing a product distribution (mixed-

strategy profile) does not imply that it can be concisely represented, as the number

of pure strategies for each player can be exponential. Fortunately thezconstructed

by Lemma 7.6.1 corresponds to abehavior strategy profile, which specifies a distri-

bution (denotedzh) over moves for each information seth. Formally, givenzh for

all h∈ H, the resulting distribution over pure-strategy profiles isgiven by

∀s, zs = ∑
t∈T:t agrees withs

p(t)xt ,

where we sayt agreeswith pure-strategy profiles if all the moves by the players

on the path from the root tot are given bys, p(t) is the product of probabilities of

moves by Chance along the path from the root tot, andxt = ∏h precedest zh
s(h) is the

product of probabilities of moves by the players along the path from the root tot.

Here by “h precedest” we mean thath is an information set on the path from the

root tot. Note that perfect recall ensures that an information seth appears at most

once along the path from the root tot. Such a behavior strategy profile requires
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only a polynomial number of values to specify. Giveny, the correspondingz can

be computed in polynomial time.

By the same argument as for the Ellipsoid Against Hope algorithm, Lemma

7.6.1 implies the infeasibility of (7.6.2), and can be used as a separation oracle for a

ellipsoid method on (7.6.2). In order to generate the cutting plane[zAT ]y≤−1, the

oracle needs to computezAT whose inner dimensions are exponential. It turned out

thatzAT can be formulated as expected utility computations which can be carried

out in polynomial time. Huang and Von Stengel’s algorithm thus proceeds similarly

as in the Ellipsoid Against Hope algorithm to produce a feasible solution to (7.6.1),

which can be scaled to be an EFCE.

By the same argument as our fix of the Ellipsoid Against Hope algorithm, in

order to overcome the problems pointed out by Stein et al. [2010] it is sufficient to

construct a Purified Separation Oracle that given ay≥ 0 such thatBTy= 0, com-

putes a pure-strategy profiles such that(As)
Ty≥ 0. We construct such an oracle

using a similar application of the method of conditional probabilities. For a behav-

ior strategy profilez, an information seth, and a moved ∈Ch, definez(h→d) to be

the behavior strategy profile that is identical tozexcept at information setd, where

the corresponding player deterministically choosesd instead. Our Purified Separa-

tion Oracle starts with the behavior strategy profile constructed by Lemma 7.6.1,

and uses the same algorithm as Algorithm 5, except that instead of going through

players in step 2a, we go through information sets sequentially, and for each infor-

mation seth we iterate throughz(h→d) until we find ad∗ such that[z(h→d∗)A
T ]y≥ 0.

To show that our algorithm is correct, we use the following lemma:

Lemma 7.6.2. Given a behavior strategy profile z, for each information seth,

z= ∑
d∈Ch

z(h→d)z
h
d,

where zhd is the probability of choosing d at h prescribed by z.

Proof. Recall that

zs = ∑
t∈T:t agrees withs

p(t)xt ,

wherext = ∏h precedest zh
s(h). Since the moves along the path tot are uniquely deter-

196



mined byt, xt is fully specified by the behavior strategies and does not depend ons.

We can write this in matrix form asz= Fx, with x∈R|T|. Let x(h→d) ∈R|T| be the

vector induced by behavior strategy profilez(h→d). We then havez(h→d) = Fx(h→d).

Furthermore, we observe that for allh,

x= ∑
d∈Ch

x(h→d)z
h
d.

(It is straightforward to verify the above by considering the terminal nodest for

which h precedest and then the other terminal nodes.) We thus have

z= Fx= F ∑
d∈Ch

x(h→d)z
h
d = ∑

d∈Ch

z(h→d)z
h
d,

which is the required equality.

The correctness and the polynomial running time of our algorithm for Purified

Separation Oracle then follow by the same argument as in the proof of Lemma

7.4.2. After modifying Huang and Von Stengel’s algorithm byreplacing their sepa-

ration oracle with our Purified Separation Oracle, the resulting algorithm computes

in polynomial time an exact EFCE that is a mixture of a polynomial number of

pure-strategy profiles.

Corollary 7.6.3. Given a game in extensive form, an exact EFCE with polynomial-

sized support can be computed in polynomial time.

7.7 Conclusion

We have proposed a polynomial-time algorithm, a variant of Papadimitriou and

Roughgarden’s Ellipsoid Against Hope approach, for computing an exact CE given

a game representation with polynomial type and satisfying the polynomial expecta-

tion property. A key component of our approach is a derandomization of Papadim-

itriou and Roughgarden’s separation oracle using the method of conditional proba-

bilities, yielding a polynomial-time separation oracle that outputs cuts correspond-

ing to pure-strategy profiles. Our approach is then spared from dealing with the

numerical precision issues that were a major focus of previous approaches, and the
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algorithm is considerably simplified as a result. Furthermore, the correlated equi-

libria returned by our algorithm have polynomial-sized supports. We expect these

properties of our algorithm to be independently interesting, beyond its usefulness in

resolving the recent uncertainty about the computational complexity of identifying

exact CE. For example, we show that our techniques can be adapted to two exist-

ing algorithms that are based on the Ellipsoid Against Hope approach, Hart and

Mansour’s [2010] CE procedure with polynomial communication complexity and

Huang and Von Stengel’s [2008] polynomial-time algorithm for extensive-form

correlated equilibria, yielding in both cases exact solutions with polynomial-sized

supports.

Our algorithm has additional practical benefits: the resulting cutting planes are

deeper cuts than those produced by the original oracle, resulting in a smaller num-

ber of iterations required to reach convergence, albeit at the cost of more work per

iteration. It is also possible to return cuts correspondingto pure strategy profiles

with (e.g.) good social welfare, yielding a heuristic method for generating corre-

lated equilibria with good social welfare. However, recallfrom Section 2.2.7 that

finding a CE with optimal social welfare is generally NP-hardfor many game rep-

resentations [Papadimitriou and Roughgarden, 2008]. In Chapter 8 we analyze the

optimal CE problem using a somewhat different approach.
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Chapter 8

A General Framework for

Computing Optimal Correlated

Equilibria in Compact Games

8.1 Introduction

In this chapter we1 continue to focus on correlated equilibrium (CE). We have seen

from the previous chapter and its related literature [Jiangand Leyton-Brown, 2011,

Papadimitriou and Roughgarden, 2008] that finding a sample CE is tractable, even

for compactly represented games. However, since in generalthere can be an infi-

nite number of CE even in a generic game, finding an arbitrary one is of limited

value. Instead, here we focus on the problem of computing a correlated equilib-

rium that optimizes some objective. In particular we consider two kinds of objec-

tives: (1) A linear function of players’ expected utilities. For example, computing

the best (or worst) social welfare corresponds to maximizing (or minimizing) the

sum of players’ utilities, respectively. (2) Max-min welfare: maximizing the util-

ity of the worst-off player. (More generally, maximizing the minimum of a set of

linear functions of players’ expected utilities.) We are also interested in comput-

1This chapter is based on joint work with Kevin Leyton-Brown.A shorter version is published in
the Proceedings of the Seventh Workshop on Internet and Network Economics (WINE), 2011.
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ing optimal coarse correlated equilibrium (CCE) [Hannan, 1957]. Recall from Sec-

tion 2.2.7 that the empirical distribution of any no-external-regret learning dynamic

converges to the set of CCE, while the empirical distribution of no-internal-regret

learning dynamics converges to the set of CE. Thus, optimal CE / CCE provide use-

ful bounds on the social welfare of the empirical distributions of these dynamics.

Optimal CE / CCE can also be used as bounds on optimal NE since CE and CCE

are both relaxations of NE. Hence they are also useful for computing (bounds on)

the price of anarchy and price of stability of a game. The problems of computing

optimal CE / CCE can be formulated as linear programs with sizes polynomial in

the size of normal form. However, as with the rest of the thesis, we are interested

in the case when the input is a compactly-represented game.

We are particularly interested in the relationship betweenthe optimal CE / CCE

problems and the problem of computing the optimal social welfare outcome (i.e.

strategy profile) of the game, which is exactly the optimal social welfare CE prob-

lem without the incentive constraints. This is an instance of a line of questions that

has received much interest from the algorithmic game theorycommunity: “How

does adding incentive constraints to an optimization problem affect its complex-

ity?” This question in the mechanism design setting is perhaps one of the central

questions of algorithmic mechanism design [Nisan and Ronen, 2001]. Of course, a

more constrained problem can in general be computationallyeasier than the relaxed

version of the problem. Nevertheless, results from complexity of Nash equilibria

and algorithmic mechanism design suggest that addingincentive constraintsto a

problem is unlikely to decrease its computational difficulty. That is, when the op-

timal social welfare problem is hard, we tend also to expect that the optimal CE

problem will be hard as well. On the other hand, we are interested in the other

direction: when it is the case for a class of games that the optimal social welfare

problem can be efficiently computed, can the same structure be exploited to effi-

ciently compute the optimal CE?

As mentioned in Section 2.2.7, Papadimitriou and Roughgarden [2008] consid-

ered the optimal linear objective CE problem and proved thatthe problem is NP-

hard for many representations, while tractable for a coupleof representations. We

now take a more in-depth look at this paper. In particular, the representations shown

to be NP-hard include graphical games, polymatrix games, and congestion games.
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These hardness results, although nontrivial, are not surprising: the optimal social

welfare problem is already NP-hard for these representations. On the tractability

side, Papadimitriou and Roughgarden [2008] focused on so-called “reduced form”

representations, meaning representations for which thereexist player-specific par-

titions of the strategy profile space into payoff-equivalent outcomes. They showed

that if a particularseparation problemis polynomial-time solvable, the optimal CE

problem is polynomial-time solvable as well. Finally, theyshowed that this separa-

tion problem is polynomial-time solvable for bounded-treewidth graphical games,

symmetric games and anonymous games.

Perhaps most surprising and interesting is theformof Papadimitriou and Rough-

garden’s sufficient condition for tractability: their separation problem for an in-

stance of a reduced-form-based representation is essentially equivalent to solving

the optimal social welfare problem for an instance of that representation with the

same reduced form but possibly different payoffs. In other words, if we have a

polynomial-time algorithm for the optimal social welfare problem for a reduced-

form-based representation, we can turn that into a polynomial-time algorithm for

the optimal social welfare CE problem. However, Papadimitriou and Roughgar-

den’s sufficient condition for tractability only applies toreduced-form-based rep-

resentations. Their definition of reduced forms is unable tohandle representations

that exploit linearity of utility, and in which the structure of playerp’s utility func-

tion may depend on the action she chose. As a result, many representations do

not fall into this characterization, such as polymatrix games, congestion games,

and action-graph games. Although the optimal CE problems for these representa-

tions are NP-hard in general, we are interested in identifying tractable subclasses

of games, and a sufficient condition that applies to all representations would be

helpful.

In this chapter, we propose a different algorithmic approach for the optimal

CE problem that applies toall compact representations. By applying the ellipsoid

method to the dual of the LP for optimal CE, we show that the polynomial-time

solvability of what we call thedeviation-adjusted social welfare problemis a suf-

ficient condition for the tractability of the optimal CE problem. We also give a

sufficient condition for tractability of the optimal CCE problem: the polynomial-

time solvability of thecoarse deviation-adjusted social welfare problem, which we
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show reduces to the deviation-adjusted social welfare problem. Our algorithms are

instances of the black-box approach, with the required subroutines being the com-

putations of the deviation-adjusted social welfare problem and the coarse deviation-

adjusted social welfare problem, respectively. We show that for reduced-form-

based representations, the deviation-adjusted social welfare problem can be re-

duced to the separation problem of Papadimitriou and Roughgarden [2008]. Thus

the class of reduced forms for which our problem is polynomial-time solvable con-

tains the class for which the separation problem is polynomial-time solvable. More

generally, we show that if a representation can be characterized by “linear reduced

forms”, i.e. player-specific linear functions over partitions, then for that represen-

tation, the deviation-adjusted social welfare problem canbe reduced to the optimal

social welfare problem. As an example, we show that for graphical polymatrix

games on trees, optimal CE can be computed in polynomial time. Such games are

not captured by the reduced-form framework.2 The key feature of these represen-

tations upon which our argument relies is that the partitions for playerp (which

characterize the structure of the utility function forp) do not depend on the action

chosen byp.

On the other hand, representations like action-graph gamesand congestion

games haveaction-specificstructure, and as a result the deviation-adjusted social

welfare problems and coarse deviation-adjusted social welfare problems on these

representations are structured differently from the corresponding optimal social

welfare problems. Nevertheless, we are able to show a polynomial-time algorithm

for the optimal CCE problem onsingleton congestion games[Ieong et al., 2005],

a subclass of congestion games. We use a symmetrization argument to reduce the

optimal CCE problem to the coarse deviation-adjusted social welfare problem with

player-symmetric deviations, which can be solved using a dynamic-programming

algorithm. This is an example where the optimal CCE problem is tractable while

the complexity of the optimal CE problem is not yet known.

2In a recent paper Kamisetty et al. [2011] has independently proposed an algorithm for optimal
CE in graphical polymatrix games on trees. They used a different approach that is specific to graph-
ical games and graphical polymatrix games, and it is not obvious whether their approach can be
extended to other classes of games.
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8.2 Problem Formulation

We follow the notation of Chapter 7. Furthermore, letN = {1, . . . ,n} be the set

of players. Letw be the vector of social welfare for each pure profile, that is

w= ∑p∈N up, with ws denoting the social welfare for pure profiles.

Throughout the chapter we assume that the game is given in a representation

with polynomial type. Unlike in Chapter 7, here we do not assume the existence of

a polynomial-time algorithm for expected utility.

8.2.1 Correlated Equilibrium

Correlated equilibrium (CE) is defined in Definition 7.2.1. The problem of com-

puting a maximum social welfare CE can be formulated as the LP

maxwTx (P)

Ux≥ 0

x≥ 0

∑
s∈S

xs = 1

Another objective of interest is the max-min welfare CE problem: computing

a CE that maximizes the utility of the worst-off player.

maxr (8.2.1)

∑
s

xsu
p
s ≥ r ∀p (8.2.2)

Ux≥ 0

x≥ 0

∑
s∈S

xs = 1

Another solution concept of interest iscoarse correlated equilibrium(CCE).

Whereas CE requires that each player has no profitable deviation even if she takes

into account the signal she receives from the intermediary,CCE only requires that

each player has no profitableunconditional deviation.
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Definition 8.2.1. A correlated distribution x is acoarse correlated equilibrium

(CCE) if it satisfies the following incentive constraints: for each player p and each

of his actions j∈ Sp,

∑
(i,s−p)∈S

[up
is−p

−up
js−p

]xis−p ≥ 0. (8.2.3)

We write these incentive constraints in matrix form asCx≥ 0. ThusC is an

(∑p |Sp|)×M matrix. By definition, a CE is also a CCE.

The problem of computing a maximum social welfare CCE can be formulated

as the LP

maxwTx (CP)

Cx≥ 0

x≥ 0

∑
s∈S

xs = 1.

8.3 The Deviation-Adjusted Social Welfare Problem

Consider the dual of (P),

mint (D)

UTy+w≤ t1

y≥ 0.

We label the(p, i, j)-th element ofy ∈ RN (corresponding to row(p, i, j) of U )

asyp
i, j . This is an LP with a polynomial number of variables and an exponential

number of constraints. Given a separation oracle, we can solve it in polynomial

time using the ellipsoid method. A separation oracle needs to determine whether a

given(y, t) is feasible, and if not output a hyperplane that separates(y, t) from the

feasible set. We focus on a restricted form of separation oracles, which outputs a

violated constraint for infeasible points.3 Such a separation oracle needs to solve

3This is a restriction because in general there exist separating hyperplanes other than the violated
constraints. For example as we saw in Chapter 7, Papadimitriou and Roughgarden [2008]’s algo-
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the following problem:

Problem 8.3.1. Given (y, t) with y≥ 0, determine if there exists an s such that

(Us)
Ty+ws> t; if so output such an s.

The left-hand-side expression(Us)
Ty+ws is the social welfare ats plus the

term (Us)
Ty. Observe that the(p, i, j)-th entry ofUs is up

s − up
js−p

if sp = i and

is zero otherwise. Thus(Us)
Ty = ∑p∑ j∈Sp

yp
sp, j

(

up
s −up

js−p

)

. We now reexpress

(Us)
Ty+ws in terms ofdeviation-adjusted utilitiesanddeviation-adjusted social

welfare.

Definition 8.3.2. Given a game, and a vector y∈RN such that y≥ 0, thedeviation-

adjusted utilityfor player p under pure profile s is

ûp
s(y) = up

s + ∑
j∈Sp

yp
sp, j

(

up
s −up

js−p

)

.

The deviation-adjusted social welfare isŵs(y) = ∑p ûp
s(y).

By construction, the deviation-adjusted social welfare ˆws(y) = ∑pup
s +

∑p ∑ j∈Sp
yp

sp, j

(

up
s −up

js−p

)

= (Us)
Ty+ws. Therefore, Problem 8.3.1 is equivalent

to the followingdeviation-adjusted social welfare problem.

Definition 8.3.3. For a game representation, thedeviation-adjusted social welfare

problem is the following: given an instance of the representation and rational

vector (y, t) ∈ QN+1 such that y≥ 0, determine if there exists an s such that the

deviation-adjusted social welfarêws(y)> t; if so output such an s.

Proposition 8.3.4. If the deviation-adjusted social welfare problem can be solved

in polynomial time for a game representation, then so can theproblem of comput-

ing the maximum social welfare CE.

Proof. Recall that an algorithm for Problem 8.3.1 can be used as a separation ora-

cle for (D). Then we can apply the ellipsoid method using the given algorithm for

the deviation-adjusted social welfare problem as a separation oracle. This solves

rithm for computing a sample CE uses a separation oracle thatoutputs a convex combination of the
constraints as a separating hyperplane.
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(D) in polynomial time. By LP duality, the optimal objective of(D) is the so-

cial welfare of the optimal CE. The cutting planes generatedduring the ellipsoid

method can then be used to compute such a CE with polynomial-sized support.

We observe that our approach has certain similarities to theEllipsoid Against

Hope algorithm and its variants discussed in Chapter 7: bothapproaches are black-

box approaches based on LP duality formulations of the respective problems, and

both make use of the ellipsoid method to overcome the exponential size of the LPs.

On the other hand, due to the different LP formulations of thesample CE prob-

lem and the optimal CE problem respectively, the two approaches require different

separation oracles, which leads to the different requirements on the subroutines

provided by the representation.

Let us consider interpretations of the dual variablesyand the deviation-adjusted

social welfare of a game. The dual (D) can be rewritten as miny≥0 maxsw̃s(y). By

weak duality, for a giveny ≥ 0 the maximum deviation-adjusted social welfare

maxsw̃s(y) is an upper bound on the maximum social welfare CE. So the taskof

the dual (D) is to findy such that the resulting maximum deviation-adjusted social

welfare gives the tightest bound.4 At optimum, y corresponds to the concept of

“shadow prices” from optimization theory; that is,yp
i j equals the rate of change in

the social welfare objective when the constraint(p, i, j) is relaxed infinitesimally.

Compared to the maximum social welfare CE problem, the maximum deviation-

adjusted social welfare problem replaces the incentive constraints with a set of

additional penalties or rewards. Specifically, we can interprety as a set of nonnega-

tive prices, one for each incentive constraint(p, i, j) of (P). At strategy profiles, for

each incentive constraint(p, i, j) we impose a penalty equal toyp
i j times the amount

the constraint(p, i, j) is violated bys. Note that the penalty can be negative, and is

zero if sp 6= i. Thenw̃s(y) is equal to the social welfare of the modified game.

Practical computation. We have seen from Chapters 2, 3 and 7 that the prob-

lem of computing the expected utility given a mixed strategyprofile has been

established as an important subproblem for both the sample NASH problem and

4An equivalent perspective is to viewy as Lagrange multipliers, and the optimal deviation-
adjusted SW problem as the Lagrangian relaxation of (P) given the multipliersy.
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the sample CE problem, both in theory and in practice. Our results in this chapter

suggest that the deviation-adjusted social welfare problem is of similar importance

to the optimal CE problem. This connection is more than theoretical: our algo-

rithmic approach can be turned into a practical method for computing optimal CE.

In particular, although it makes use of the ellipsoid method, we can easily substi-

tute a more practical method, such as simplex with column generation. In contrast,

Papadimitriou and Roughgarden [2008]’s algorithmic approach for reduced forms

makes two nested applications of the ellipsoid method, and is less likely to be prac-

tical. Furthermore, even for representations without a polynomial-time algorithm

for the deviation-adjusted social welfare problem, a promising direction would be

to formulate the deviation-adjusted social welfare problem as a integer program or

constraint program and solve using e.g. CPLEX.

8.3.1 The Weighted Deviation-Adjusted Social Welfare Problem

For the max-min welfare CE problem, we can form the dual of (8.2.1),

min t (8.3.1)

UTy+∑
p

vpup ≤ t1 (8.3.2)

y≥ 0, v≥ 0

∑
p

vp = 1.

This is again an LP with polynomial number of variables and exponential number

of constraints; specifically, block (8.3.2) is exponential. We observe that (8.3.2) is

similar to the corresponding block in (D), except for the weighted sum∑p vpup in-

stead of the social welfarew. Thus, in order to express the left-hand side of (8.3.2)

we need notions slightly different from those given in Definition 8.3.2, which we

call weighted deviation-adjusted utilityandweighted deviation-adjusted social wel-

fare.

Definition 8.3.5. Given a game, a vector y∈ RN such that y≥ 0, and a vector

v∈ Rn such that v≥ 0 and ∑p vp = 1, theweighted deviation-adjusted utilityfor
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player p under pure profile s is

ûp
s(y,v) = vpup

s + ∑
j∈Sp

yp
sp, j(u

p
s −up

js−p
).

The weighted deviation-adjusted social welfare isŵs(y,v) = ∑p ûp
s(y,v).

Following analysis similar to that given above, the following problem serves as

a separation oracle of LP (8.3.1).

Definition 8.3.6. For a game representation, theweighted deviation-adjusted so-

cial welfare problemis the following: given an instance of the representation, and

rational vector(y,v, t) ∈ QN+n+1 such that y≥ 0, v≥ 0 and∑p vp = 1, determine

if there exists an s such that the deviation-adjusted socialwelfareŵs(y) > t; if so

output such an s.

Proposition 8.3.7. If the weighted deviation-adjusted social welfare problemcan

be solved in polynomial time for a game representation, thenthe problem of com-

puting the max-min welfare CE is in polynomial time for this representation.

It is straightforward to see that the deviation-adjusted social welfare problem

reduces to the weighted deviation-adjusted social welfareproblem. In all represen-

tations that we consider in this chapter, the weighted and unweighted versions have

the same structure and thus the same complexity.

8.3.2 The Coarse Deviation-Adjusted Social Welfare Problem

For the optimal social welfare CCE problem, we can form the dual of (CP)

mint (8.3.3)

CTy+w≤ t1

y≥ 0

Definition 8.3.8. We label the(p, j)-th element of y as ypj . Given a game, and a

vector y∈R∑p |Sp| such that y≥ 0, thecoarse deviation-adjusted utilityfor player
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p under pure profile s is

ũp
s(y) = up

s + ∑
j∈Sp

yp
j (u

p
s −up

js−p
).

The coarse deviation-adjusted social welfare isw̃s(y) = ∑p ũp
s(y).

Proposition 8.3.9. If the coarse deviation-adjusted social welfare problem can be

solved in polynomial time for a game representation, then the problem of comput-

ing the maximum social welfare CCE is in polynomial time for this representation.

The coarse deviation-adjusted social welfare problem reduces to the deviation-

adjusted social welfare problem. To see this, given an inputvectory for the coarse

deviation-adjusted social welfare problem, we can construct an input vectory′ ∈

QN for the deviation-adjusted social welfare problem withy′pi j = yp
j for all p∈ N

andi, j ∈ Sp.

8.4 The Deviation-Adjusted Social Welfare Problem for
Specific Representations

In this section we study the deviation-adjusted social welfare problem and its vari-

ants on specific representations. Depending on the representation, the deviation-

adjusted social welfare problem is not always solvable in polynomial time. In-

deed, Papadimitriou and Roughgarden [2008] showed that formany representa-

tions the problem of optimal CE is NP-hard. Nevertheless, for such representa-

tions we can often identify tractable subclasses of games. We will argue that the

deviation-adjusted social welfare problem is a more usefulformulation for identify-

ing tractable classes of games than the separation problem formulation of Papadim-

itriou and Roughgarden [2008], as the latter only applies toreduced-form-based

representations.

8.4.1 Reduced Forms

Papadimitriou and Roughgarden [2008] gave the following reduced form charac-

terization of representations.
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Definition 8.4.1([Papadimitriou and Roughgarden, 2008]). Consider a game G=

(N , {Sp}p∈N ,{up}p∈N ). For p= 1, . . . ,n, let Pp = {C1
p . . .C

rp
p } be a partition of

S−p into rp classes. The setP = {P1, . . . ,Pn} of partitions is areduced formof G

if up
s = up

s′ whenever (1) sp = s′p and (2) both s−p and s′−p belong to the same class

in Pp. Thesizeof a reduced form is the number of classes in the partitions plus

the bits required to specify a payoff value for each tuple(p,k, ℓ) where1≤ p≤ n,

1≤ k≤ rp andℓ ∈ Sp.

Intuitively, the reduced form imposes the condition thatp’s utility for choos-

ing an actionsp depends only on whichclassin the partitionPp the profile of the

others’ actions belongs to. Papadimitriou and Roughgarden[2008] showed that

several compact representations such as graphical games and anonymous games

have natural reduced forms whose sizes are (roughly) equal to the sizes of the rep-

resentation. We say such a compact representation has aconcise reduced form.

Intuitively, such a reduced form describes the structure ofthe game’s utility func-

tions.

Example 8.4.2. Recall from Section 2.1.1 that a graphical game [Kearns et al.,

2001] is associated with a graph(N ,E), such that player p’s utility depends only

on her action and the actions of her neighbors in the graph. The sizes of the utility

functions are exponential only in the degrees of the graph. Such a game has a

natural reduced form where the classes in Pp are identified with the pure profiles of

p’s neighbors, i.e., s−p and s′−p belong to the same class if and only if they agree

on the actions of p’s neighbors. The size of the reduced form is exactly the number

of utility values required to specify the graphical game’s utility functions.

Let Sp(k, ℓ) denote the set of pure strategy profilesssuch thatsp = ℓ ands−p is

in thek-th classCk
p of Pp, and letup

(k,ℓ) denote the utility ofp for that set of strategy

profiles. Papadimitriou and Roughgarden [2008] defined the following Separation

Problemfor a reduced form.

Definition 8.4.3 ([Papadimitriou and Roughgarden, 2008]). Let P be a reduced

form for game G. TheSeparation Problemfor P is the following: Given rational

numbersγp(k, ℓ) for all p ∈ {1, . . . ,n}, k∈ {1, . . . , rp}, andℓ ∈ Sp, is there a pure

strategy profile s such that∑p,k,ℓ:s∈Sp(k,ℓ) γp(k, ℓ)< 0?If so, find such an s.
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Sinces∈ Sp(k, ℓ) impliessp = ℓ, the left-hand side of the above expression is

equivalent to∑p ∑k:s∈Sp(k,sp) γp(k,sp). Furthermore, sincesbelongs to exactly one

class inPp, the expression is a sum of exactlyn summands, one for each player.

Papadimitriou and Roughgarden [2008] proved that if the separation problem

can be solved in polynomial time, then a CE that maximizes a given linear objec-

tive in the players’ utilities can be computed in time polynomial in the size of the

reduced form. How does Papadimitriou and Roughgarden [2008]’s sufficient con-

dition relate to ours, provided that the game has a concise reduced form? We show

that the class of reduced form games for which our weighted deviation-adjusted

social welfare problem is polynomial-time solvable contains the class for which

the separation problem is polynomial-time solvable.

Proposition 8.4.4. LetP be a reduced form for game G. Suppose the separation

problem can be solved in polynomial time. Then the weighted deviation-adjusted

social welfare problem can be solved in time polynomial in the size of the reduced

form.

Proof. First we observe that if a gameG has a reduced formP, then its deviation-

adjusted utilities (and weighted deviation-adjusted utilities) also satisfy the parti-

tion structure specified byP, i.e., giveny andv, the weighted deviation-adjusted

utility ûp
s(y,v) depends only on a player’s actionsp and the class inPp that s−p

belongs to. To see why, supposes−p ∈Ck
p. Then

ûp
ℓs−p

(y,v) = vpup
ℓs−p

+ ∑
j∈Sp

yp
ℓ, j(u

p
ℓs−p

−up
js−p

)

= vpup
(k,ℓ)+ ∑

j∈Sp

yp
ℓ, j(u

p
(k,ℓ)−up

(k, j)),

which depends only onℓ andk. This proves the following, which will be useful

later.

Lemma 8.4.5. LetP be a reduced form for game G.

1. For all y∈RN, v∈Rn, for all players p, sp ∈Sp, and for all s−p,s′−p ∈S−p, if

s−p and s′−p are in the same class in Pp then the weighted deviation-adjusted

utilities ûp
sp,s−p(y,v) = ûp

sp,s′−p
(y,v).

211



2. Write the weighted deviation-adjusted utility for player p, given her pure

strategyℓ ∈ Sp and class Ckp, as ûp
(k,ℓ)(y,v) (well defined by the above). We

have

ûp
(k,ℓ)(y,v) ≡ vpup

(k,ℓ)+ ∑
j∈Sp

yp
ℓ, j(u

p
(k,ℓ)−up

(k, j)).

Given an instance of the weighted deviation-adjusted social welfare problem

with a game with reduced formP and rational vectorsy ∈ RN, v ∈ Rn and t ∈

R, we construct an instance of the separation problem by letting γp(k, ℓ) = t/n−

ûp
(k,ℓ)(y,v), where ˆup

(k,ℓ)(y,v) is as defined in Lemma 8.4.5 and can be efficiently

computed given the reduced form. Recall that the separationproblem asks for

pure profiles such that∑p,k,ℓ:s∈Sp(k,ℓ) γp(k, ℓ) < 0, the left hand side of which is

a sum ofn terms. By construction, for alls, ∑p,k,ℓ:s∈Sp(k,ℓ) γp(k, ℓ) < 0 if and

only if ∑p ∑k:s∈Sp(k,sp)

(

t/n− ûp
(k,sp)

(y,v)
)

< 0, and since the left hand side is a

sum of n terms, this holds if and only if ˆwp
s(y,v) > t. Therefore the weighted

deviation-adjusted social welfare problem instance has a solutions if and only if the

corresponding separation problem instance has a solutions, and a polynomial-time

algorithm for the separation problem can be used to solve theweighted deviation-

adjusted social welfare problem in polynomial time.

We now compare the the weighted deviation-adjusted social welfare problem

with the optimal social welfare problem for these representations. We observe from

Lemma 8.4.5 that the weighted deviation-adjusted social welfare problem can be

formulated as an instance of the optimal social welfare problem on another game

with the same reduced form but different payoffs. Can we claim that the existence

of a polynomial-time algorithm for the optimal social welfare problem for a rep-

resentation implies the existence of a polynomial-time algorithm for the weighted

social welfare problem (and thus the optimal CE problem)? This is not necessar-

ily the case, because the representation might impose certain structure on the utility

functions that are not captured by the reduced forms, and thepolynomial-time algo-

rithm for the optimal social welfare problem could depend onthe existence of such

structure. The weighted deviation-adjusted social welfare problem might no longer

exhibit such structure and thus might not be solvable using the given algorithm.

Nevertheless, if we consider a game representation that is “completely charac-
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terized” by its reduced forms, the weighted deviation-adjusted social welfare prob-

lem is equivalent to the decision version of the optimal social welfare outcome

problem for that representation. To make this more precise,we say a game rep-

resentation is areduced-form-based representationif there exists a mapping from

instances of the representation to reduced forms such that it maps each instance to

a concise reduced form of that instance, and if we take such a reduced form and

change its payoff values arbitrarily, the resulting reduced form is a concise reduced

form of another instance of the representation.

Corollary 8.4.6. For a reduced-form-based representation, if there exists apolynomial-

time algorithm for the optimal social welfare problem, thenthe optimal social wel-

fare CE problem and the max-min welfare CE problem can be solved in polynomial

time.

Of course, this can be derived using the separation problem for reduced forms

without the deviation-adjusted social welfare formulation. On the other hand, the

deviation-adjusted social welfare formulation can be applied to representations

without concise reduced forms. In fact, we will use it to showbelow that the con-

nection between the optimal social welfare problem and the optimal CE problem

applies to a wider classes of representations than just reduced-form-based repre-

sentations.

8.4.2 Linear Reduced Forms

One class of representations that does not have concise reduced forms are those that

represent utility functions as sums of other functions, such as polymatrix games

and the hypergraph games of Papadimitriou and Roughgarden [2008]. In this sec-

tion we characterize these representations using linear reduced forms, showing that

linear-reduced-form-based representations satisfy a property similar to Corollary

8.4.6.

Roughly speaking, a linear reduced form has multiple partitions for each agent,

rather than just one; an agent’s overall utility is a sum overutility functions defined

on each of that agent’s partitions.

Definition 8.4.7. Consider a game G=(N ,{Sp}p∈N ,{up}p∈N ). For p= 1, . . . ,n,

let Pp = {Pp,1, . . . ,Pp,tp}, where Pp,q = {C1
p,q . . .C

rpq
p,q} is a partition of S−p into rpq
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classes. The setP = {P1, . . . ,Pn} is a linear reduced formof G if for each p there

exist up,1, . . . ,up,tp ∈ RM such that for all s, ups = ∑q up,q
s , and for each q≤ tp,

up,q
s = up,q

s′ whenever (1) sp = s′p and (2) both s−p and s′−p belong to the same class

in Pp,q. Thesizeof a reduced form is the number of classes in the partitions plus

the bits required to specify a number for each tuple(p,q,k, ℓ) where1 ≤ p ≤ n,

1≤ q≤ tp, 1≤ k≤ rpq andℓ ∈ Sp.

We write up,q
(k,ℓ) for the value corresponding to tuple(p,q,k, ℓ), and fork =

(k1, . . . ,ktp) we writeup
(k,ℓ) ≡ ∑qup,q

(kq,ℓ)
.

Example 8.4.8(polymatrix games). Recall from Section 2.1.1 that in a polyma-

trix game, each player’s utility is the sum of utilities resulting from her bilateral

interactions with each of the n− 1 other players: ups = ∑p′ 6=peT
sp

App′esp′
where

App′ ∈R|Sp|×|Sp′ | and esp ∈R|Sp| is the unit vector corresponding to sp. The utility

functions of such a representation require only∑p,p′∈N |Sp|×|Sp′ | values to specify.

Polymatrix games do not have a concise reduced-form encoding, but can easily be

written as linear-reduced-form games. Essentially, we create one partition for ev-

ery matrix game that an agent plays, with each class differing in the action played

by the other agent who participates in that matrix game, and containing all the

strategy profiles that can be adopted by all of the other players. Formally, given

a polymatrix game, we construct its linear reduced form withPp = {Pp,q}q∈N \{p},

and Pp,q = {Cℓ
p,q}ℓ∈Sq with Cℓ

p,q = {s−p|sq = ℓ}.

Most of the results in Section 8.4.1 straightforwardly translate to linear reduced

forms.

Lemma 8.4.9. Let P be a linear reduced form for game G. Then for all y∈

RN, v∈ Rn, for all players p, there exist̂up,1(y,v), . . . , ûp,tp(y,v) ∈ RM such that

the weighted deviation-adjusted utilitiesûp(y,v) = ∑q ûp,q(y,v), and for all q≤ tp,

sp ∈ Sp and s−p,s′−p ∈ S−p, if s−p and s′−p are in the same class in Pp,q, then

ûp,q
sp,s−p(y,v) = ûp,q

sp,s′−p
(y,v).

Write the weighted deviation-adjusted utility for player p, her pure strategy

ℓ∈Sp and classes Ck1
p,1, . . . ,C

ktp
p,tp

asûp
(k,ℓ)(y,v) wherek = (k1, . . . ,ktp). Furthermore,

we have

ûp
(k,ℓ)(y,v) ≡ vpup

(k,ℓ)+ ∑
j∈Sp

yp
ℓ, j(u

p
(k,ℓ)−up

(k, j)).
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Corollary 8.4.10. For a linear-reduced-form-based representation, if thereexists a

polynomial-time algorithm for the optimal social welfare problem, then the optimal

social welfare CE problem and the max-min welfare CE problemcan be solved in

polynomial time.

Graphical Polymatrix Games

A polymatrix game may have graphical-game-like structure:playerp’s utility may

depend only on a subset of the other player’s actions. In terms of utility functions,

this corresponds toApp′ = 0 for certain pairs of playersp, p′. As with graphical

games, we can construct the (undirected) graphG= (N ,E) where there is an edge

{p, p′} ∈ E if App′ 6= 0 orAp′p 6= 0. We call such a game a graphical polymatrix

game. This can also be understood as a graphical game where each playerp’s

utility is the sum of bilateral interactions with her neighbors.

A tree polymatrix game is a graphical polymatrix game whose correspond-

ing graph is a tree. Consider the optimal CE problem on tree polymatrix games.

Since such a game is also a tree graphical game, Papadimitriou and Roughgarden

[2008]’s optimal CE algorithm for tree graphical games can be applied. However,

this algorithm does not run in polynomial time, because the representation size of

tree polymatrix games can be exponentially smaller than that of the corresponding

graphical game (which grows exponentially in the degree of the graph). However,

we can give a different polynomial-time algorithm for this problem.

Theorem 8.4.11.Optimal CE in tree polymatrix games can be computed in poly-

nomial time.

Proof. It is sufficient to give an algorithm for the deviation-adjusted social welfare

problem. Using an argument similar to that given in Example 8.4.8, tree polymatrix

games have a natural linear reduced form, and it is straightforward to verify that

tree polymatrix games are a linear-reduced-form-based representation. By Corol-

lary 8.4.10 it is sufficient to construct an algorithm for theoptimal social welfare

problem.

Let Np be the set of players in the subtree rooted atp. Supposep’s parent in the

tree isq. Let thesocial welfare contributionof Np be the social welfare of players

in Np minuseT
sp

Apqesq. Let the social welfare contribution of the root player be the
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social welfare ofN . Then the social welfare contribution ofNp depends solely on

the pure strategy profile restricted toNp.

The following dynamic programming algorithm solves the optimal social wel-

fare problem in polynomial time. We go from the leaves to the root of the tree.

Each childq of p passes to its parent the message{wNq,sq}sq∈Sq, wherewNq,sq is

the optimal social welfare contribution ofNq provided thatq playssq. Given the

messages from all ofp′s childrenq1, . . . ,qk, we can compute the message ofp as

follows: for eachsp ∈ Sp,

wNp,sp = max
sq1,...,sqk

k

∑
j=1

[

wNqj ,sqj +eT
sp

Ap,qj esqj

]

=
k

∑
j=1

max
sqj

[

wNqj ,sqj +eT
sp

Ap,qj esqj

]

.

The second equality is due to the fact that thej-th summand depends only onsqj . It

is straightforward to verify that the optimal social welfare is maxsr wNr ,sr wherer is

the root player, and that the algorithm runs in polynomial time. The corresponding

optimal pure strategy profile can be constructed by going from the root to the leaves.

This algorithm can be straightforwardly extended to yield apolynomial-time

algorithm for optimal CE in graphical polymatrix games withconstant treewidth,

for hypergraphical games [Papadimitriou and Roughgarden,2008] on acyclic hy-

pergraphs, and more generally for hypergraphs with constant hypertree-width.

8.4.3 Representations with Action-Specific Structure

The above results for reduced forms and linear reduced formscrucially depend

on the fact that the partitions (i.e., the structure of the utility functions) depend

on p but do not depend on the action chosen by playerp. There are represen-

tations whose utility functions have action-dependent structure, including conges-

tion games [Rosenthal, 1973], local effect games [Leyton-Brown and Tennenholtz,

2003], and action-graph games [Jiang et al., 2011]. For suchrepresentations, we

can define a variant of the reduced form that has action-dependent partitions. For
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example:

Definition 8.4.12. Consider a game G= (N ,{Sp}p∈N ,{up}p∈N ). For p =

1, . . . ,n, ℓ ∈ Sp, let Pp,ℓ = {Pp,ℓ,1, . . . ,Pp,ℓ,tpℓ}, where Pp,ℓ,q = {C1
p,ℓ,q . . .C

rpℓq

p,ℓ,q} is a

partition of S−p into rpℓq classes. The setP = {Pp,ℓ}p∈N ,ℓ∈Sp is a action-specific

linear reduced formof G if for each p, ℓ there exist up,ℓ,1, . . . ,up,ℓ,tpℓ ∈RM such that

for each p∈ N , ℓ ∈ Sp, and q≤ tp,

1. for all s−p ∈ S−p, up
ℓs−p

= ∑qup,ℓ,q
ℓs−p

;

2. up,ℓ,q
ℓs−p

= up,ℓ,q
ℓs′−p

whenever both s−p and s′−p belong to the same class in Pp,ℓ,q.

Thesizeof a reduced form is the number of classes in the partitions plus the bits

required to specify a number for each tuple(p,q,k, ℓ) where1≤ p≤ n, 1≤ q≤ tpℓ,

1≤ k≤ rpℓq andℓ ∈ Sp.

However, unlike both the reduced form and linear reduced form, the weighted

deviation-adjusted utilities no longer satisfy the same partition structure as the util-

ities. Intuitively, the weighted deviation-adjusted utility at shas contributions from

the utilities of the strategy profiles when playerp deviates to different actions.

Whereas for linear reduced forms these deviated strategy profiles correspond to

the same class ass in the partition, we now consider different partitions for each

action to whichp deviates. As a result the weighted deviation-adjusted social wel-

fare problem has a more complex form that the optimal social welfare problem.

Singleton Congestion Games

As mentioned in Chapters 2 and 4, Ieong et al. [2005] studies aclass of games

called singleton congestion games and showed that the optimal PSNE can be com-

puted in polynomial time. Such a game can be formulated as an instance of con-

gestion games where each action contains a single resource,or an instance of sym-

metric AGGs where the only edges are self edges.

Formally, a singleton congestion game is specified by(N ,A ,{ f α}α∈A )where

N = 1, . . . ,n is the set of players,A the set of actions, and for each actionα ∈A ,

f α : [n] →R. The game is symmetric; each player’s set of actionsSp ≡ A . Each

strategy profiles induces an action countc(α) = |{p|sp = α}| on eachα : the

217



number of players playing actionα . Then the utility of a player that choseα is

f α(c(α)). The representation requiresO(|A |n) numbers to specify.

We now show that the optimal social welfare CCE problem can becomputed

in polynomial time for singleton congestion games. Before attacking the problem,

we first note that the optimal social welfare problem can be solved in polynomial

time by a relatively straightforward dynamic-programmingalgorithm which is a

simplified version of Ieong et al. [2005]’s algorithm for optimal PSNE in singleton

congestion games. First observe that the social welfare of astrategy profile can be

written in terms of the action counts:

ws= ∑
α

c(α) f α(c(α)).

The optimal social welfare problem is equivalent to finding avector of action

counts that sums ton and maximizes the above expression. The social welfare

can be further decomposed into contributions from each action α . The dynamic-

programming algorithm starts with a single action and adds one action at a time un-

til all actions are added. At each iteration, it maintains a set of tuples{(n′,wn′)}1≤n′≤n,

specifying that the best social welfare contribution from the current set of actions

is wn′ when exactlyn′ players chose actions in the current set.

Consider the optimal social welfare CCE problem. Can we leverage the algo-

rithm for the optimal social welfare problem to solve the coarse deviation-adjusted

social welfare problem? Our task here is slightly more complicated: in general

the coarse deviation-adjusted social welfare problem no longer has the same sym-

metric structure due to the fact thaty can be asymmetric. However, wheny is

player-symmetric (that is,yp
j = yp′

j for all pairs of players(p, p′)), then we recover

symmetric structure.

Lemma 8.4.13.Given a singleton congestion game and player-symmetric input y,

the coarse deviation-adjusted social welfare problem can be solved in polynomial

time.
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Proof. The coarse deviation-adjusted social welfare can be written as

w̃s(y) = ∑
p

up
s(1+ ∑

j 6=sp

yp
j )−∑

p
∑
j 6=sp

yp
j u

p
js−p

= ∑
α∈A

[

c(α) f α (c(α))

(

1+ ∑
j 6=α

yp
j

)

− (n−c(α)) f α(c(α)+1)yp
α

]

.

The contribution from each actionα depends only onc(α). Therefore, using a sim-

ilar dynamic-programming algorithm as above we can solve the coarse deviation-

adjusted social welfare problem in polynomial time.

Therefore if we can guarantee that during a run of ellipsoid method for (8.3.3)

all input queriesy to the separation oracle are symmetric, then we can apply Lemma

8.4.13 to solve the problem in polynomial time. We observe that for any symmetric

game, there must exist asymmetricCE that optimizes the social welfare. This is

because given an optimal CE we can create a mixture of permuted versions of this

CE, which must itself be a CE by convexity, and must also achieve the same social

welfare by symmetry. However, this argument in itself does not guarantee that

they we obtain by the method above will be symmetric. Instead, we observe that

if we solve (8.3.3) using a ellipsoid method with a player-symmetric initial ball,

and use a separation oracle that returns a player-symmetriccutting plane, then the

query pointsy will be player-symmetric. We are able to construct such a separation

oracle using a symmetrization argument.

Theorem 8.4.14.Given a singleton congestion game, the optimal social welfare

CCE can be computed in polynomial time.

Proof. As argued in Section 8.4.3, it is sufficient to construct a separation oracle

for (8.3.3) that returns a player-symmetric cutting plane.The cutting plane corre-

sponding to a pure strategy profile solutionsof the coarse deviation-adjusted social

welfare problem is not player-symmetric in general; but we can symmetrize it by

constructing a mixture of permutations ofs. Since by symmetry each permuted

version ofs correspond to a violated constraint, the resulting cuttingplane is still

correct and is symmetric. Enumerating all permutations over players would be ex-

ponential, but it turns out that for our purposes it is sufficient to use a small set of
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permutations.

Formally, letπi be the permutation over the set of playersN that maps each

p to p+ i modn. Then the set of permutations{πi}0≤i≤n−1 corresponds to the

cyclic group.

Supposes is a solution of the coarse deviation-adjusted social welfare problem

with symmetric inputy. The corresponding cut (violated constraint) is(Cs)
Ty+

ws≤ t. Recall that the(p, j)-th entry ofCs isCp, j
s = (up

s −up
js−p

). For a permutation

π overN , write sπ the permuted profile induced byπ, i.e. sπ = (sπ(1), . . . ,sπ(n)).

Thensπ is also a solution of the coarse deviation-adjusted social welfare problem.

Form the following convex combination ofn of the constraints of (8.3.3):

1
n

n−1

∑
i=0

[

(Csπi )
Ty+wsπi

]

≤ t

The left-hand side can be simplified tows+(Cs)
Ty whereCs =

1
n ∑n−1

i=0 Csπi . We

claim that this cutting plane is player-symmetric, meaningC
p, j
s =C

p′, j
s for all pairs

of playersp, p′ and all j ∈ A . This is because

C
p, j
s =

1
n

n−1

∑
i=0

Cp, j
sπi =

1
n

n−1

∑
i=0

(up
sπi −up

js
πi
−p
)

=
1
n

[

∑
α 6= j

c(α) f α (c(α))− (n−c( j)) f j (c( j)+1)

]

=C
p′, j
s .

This concludes the proof.

Our approach for singleton congestion games crucially depends on the fact

that the coarse deviation profileyp
j does not care which action it is deviating from.

This allowed us to (in the proof of Lemma 8.4.13) decompose the coarse deviation-

adjusted social welfare into terms that only depend on the action count on one

action. The same approach cannot be directly applied to solve the optimal CE

problem, because then the deviation profile would give a different yp
i j for each

action i that p deviates from, and the resulting expression for deviation-adjusted

social welfare would involve summands that depend on the action counts on pairs

of actions.
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An interesting future direction is to explore whether our approach for singleton

congestion games can be generalized to other classes of symmetric games, such as

symmetric AGGs with bounded treewidth.

8.5 Conclusion and Open Problems

We have proposed an algorithmic approach for solving the optimal correlated equi-

librium problem in succinctly represented games, substantially extending a previ-

ous approach due to Papadimitriou and Roughgarden [2008]. In particular, we

showed that the optimal CE problem is tractable when thedeviation-adjusted so-

cial welfare problemcan be solved in polynomial time. We generalized the reduced

forms of Papadimitriou and Roughgarden [2008] to show that if a representation

can be characterized by “linear reduced forms”, i.e. player-specific linear functions

over partitions, then for that representation, the deviation-adjusted social welfare

problem can be reduced to the optimal social welfare problem. Leveraging this

result, we showed that the optimal CE problem is tractable ingraphical polymatrix

games on tree graphs. We also considered the problem of computing the optimal

coarse correlated equilibrium, and derived a similar sufficient condition. We used

this condition to prove that the optimal CCE problem is tractable for singleton

congestion games.

Our work points the way to a variety of open problems, which webriefly sum-

marize here.

Price of Anarchy. Our results imply that for compactly represented games

with polynomial-time algorithms for the optimal social welfare problem and the

weighted deviation-adjusted social welfare problem, the Price of Anarchy (POA)

for correlated equilibria (i.e., the ratio of social welfare under the best outcome

and the worst correlated equilibrium) can be computed in polynomial time. Simi-

larly for the Price of Total Anarchy (i.e., the ratio of social welfare under the best

outcome and the worst coarse correlated equilibrium). There is an extensive litera-

ture on proving bounds on the POA for various solution concepts and for various

classes of games. One line of research that is particularly relevant to our work is

the “smoothness bounds” method pioneered by Roughgarden [2009]. In particular,

that work showed that if a certain smoothness relation can beshown to hold for a
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class of games, then it can be used to prove an upper bound on POA for these games

that holds for many solution concepts including pure and mixed NE, CE and CCE.

More recently, Nadav and Roughgarden [2010] gave a primal-dual LP formulation

for proving POA bounds and showed that finding the best smoothness coefficients

corresponds to the dual of the LP for the POA for average coarse correlated equilib-

rium (ACCE), a weaker solution concept than CCE. The primal-dual LP formula-

tion of Nadav and Roughgarden [2010] and our LPs (P) and (D) are equivalent up

to scaling; however whereas Nadav and Roughgarden [2010] focused on the task

of proving POA upper bounds for classes of games, here we focus on computing

the optimal CE / CCE and POA for individual games. One interesting direction

is to use our algorithms together with an game instance generator to automatically

find game instances with large POA, thus improving the lower bounds on POA for

given classes of games.

Complexity separations.We have shown that for singleton congestion games,

the optimal social welfare problem and the optimal CCE problem are tractable

while the complexity of the optimal CE problem is unknown. Anopen problem is

to prove a separation of the complexities of these problems for singleton congestion

games or for another class. Another related problem is the optimal PSNE problem,

which can be thought of as the optimal CE problem plus integerconstraints onx.

We do not know the exact relationship between the optimal PSNE problem and the

other problems. For example the optimal PSNE problem is known to be tractable

for singleton congestion games [Ieong et al., 2005] while wedo not know how to

solve the optimal CE problem. On the other hand for tree polymatrix games we

showed the CE problem is in polynomial time, while the complexity of the PSNE

problem is unknown.

Necessary condition for tractability. Another open question is the following:

is tractability of the deviation-adjusted social welfare problem anecessarycondi-

tion for tractability of the optimal CE problem? We know (e.g., from Grötschel

et al. [1988]) that the separation oracle problem for the dual LP (D) is equivalent

to the problem of optimizing an arbitrary linear objective on the feasible set of (D).

However this in itself is not enough to prove equivalence of the deviation-adjusted

social welfare problem and the optimal CE problem. First of all the separation

oracle problem is more general: it allows cutting planes other than constraints cor-
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responding to pure strategy profiles. Furthermore, (D) has a particular objective,

but optimizing an arbitrary linear objective means allowing the objective to depend

on y as well ast. If we take the dual of such an LP with (e.g.) objectiverTy+ t for

some vectorr ∈RN, we get a generalized version of the optimal CE problem, with

constraintsUx≥ r instead ofUx≥ 0.

Relaxations and approximations.Another interesting direction worth explor-

ing is relaxations of the incentive constraints of these problems, either as hard

bounds or as soft constraints that add penalties to the objective, as well as the

problem of approximating the optimal CE. For these problemswe can define cor-

responding variants of the deviation-adjusted social welfare problem as sufficient

conditions, but it remains to be seen whether one can prove concrete results, e.g.,

for approximating optimal CE for specific representations for which the exact opti-

mal CE problem is hard.

Communication complexity of uncoupled dynamics. Hart and Mansour

[2010] considered a setting in which each player is informedonly about her own

utility function, and analyzed the communication complexity for so-calleduncou-

pled dynamics to reach various kinds of equilibrium. They used a straightforward

adaptation of Papadimitriou and Roughgarden [2008]’s algorithm for a sample CE

to show that a CE can be reached using polynomial amount of communication. We

can consider the question of reaching an optimal CE by uncoupled dynamics. Our

approach can be straightforwardly adapted to this setting,reducing the problem

to finding a communication protocol for the uncoupled version of the deviation-

adjusted social welfare problem in which each player knows only her own utility

function.

Proposition 8.5.1. If there is a polynomial communication protocol for the uncou-

pled deviation-adjusted social welfare problem, then there is a polynomial commu-

nication protocol for the optimal CE problem.

At a high level, the protocol has a center running the ellipsoid method on (D),

using the communication protocol for the uncoupled deviation-adjusted social wel-

fare problem as a separation oracle. An open problem is whether there exist more

“natural” types of dynamics that converge to optimal CE. Forexample, there is

extensive literature on no-internal-regret learning dynamics that converges to the
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set of approximate CE in a polynomial number of steps. Can such dynamics be

modified to yield optimal CE?
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Appendix A

Software

In this chapter I describe software packages implemented aspart of my thesis re-

search. Overall they can be characterized as tools for computational analysis of

games using the AGG and BAGG representations. Source codes of these packages

are available for download at the AGG Project website (http://agg.cs.ubc.ca).

In Section A.1 I introduce file formats used by all of these packages for de-

scribing AGG and BAGG game instances. Section A.2 describescommand-line

programs for finding sample (Bayes) Nash equilibria in AGGs and BAGGs. Sec-

tion A.3 describes a graphical user interface for creating,editing and visualizing

AGGs, and Section A.4 describes extensions of GAMUT that generate AGG in-

stances. Finally in Section?? I discuss software projects that are currently under

development.

A.1 File Formats

These software packages can read and write a description of agame as a text file.

There are two formats, one for AGGs and one for BAGGs. All packages work with

the AGG format; additionally, the solvers in Section A.2 also work with the BAGG

format.
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A.1.1 The AGG File Format

Each representation of an AGG consists of 8 sections, separated by whitespaces.

Lines with a starting “#” are treated as comments and are allowed between sections.

1. The number of players,n.

2. The number of action nodes,|A |.

3. The number of function nodes,|P|.

4. Size of action set for each player. This is a row ofn integers:|A1|, |A2|, . . . , |An|

5. Each player’s action set. We haven rows; rowi has|Ai| integers in ascending

order, which are indices of action nodes. Action nodes are indexed from 0 to

|A |−1.

6. The Action Graph. We have|A |+ |P| nodes, indexed from 0 to|A |+

|P|−1. The function nodes are indexed after the action nodes. Thegraph

is represented as(|A |+ |P|) neighbor lists, one list per row. Rows 0 to

|A | − 1 are for action nodes; rows|A | to |A |+ |P| − 1 are for function

nodes. In each row, the first number|ν | specifies the number of neighbors

of the node. Then follows|ν | numbers, corresponding to the indices of the

neighbors.

We require that each function node has at least one neighbor,and the neighors

of function nodes are action nodes. The action graph restricted to the func-

tion nodes has to be a directed acyclic graph (DAG).

7. Signatures of functions. This is|P| rows, each specifying the mappingfp

that maps from the configuration of the function nodep’s neighbors to an

integer forp’s “action count”. Each function is specified by its “signature”

consisting of an integer type, possibly followed by furtherparameters. Sev-

eral types of mapping are implemented:

• Types 0 to 3 require no further input:

Type 0: Sum. The action count of a function nodep is the sum of the

action counts ofp’s neighbors.
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Type 1: Existence: boolean for whether the sum of the counts of neigh-

bors are positive.

Type 2: The index of the neighbor with the highest index that has non-

zero counts, or|A |+ |P| if none applies.

Type 3: The index of the neighbor with the lowest index that has non-

zero counts, or|A |+ |P| if none applies.

• Types 10 to 13 are extended versions of type 0 to 3, each requiring fur-

ther parameters of an integer default value and a list ofweights, |A |

integers enclosed in square brackets. Each action node is thus associ-

ated with an integer weight.

Type 10: Extended Sum. Each instance of an action inp’s neighbor-

hood being chosen contributes the weight of that action to the sum.

These are added to the default value.

Type 11: Extended Existence: boolean for whether the extended sum

is positive. The input default value and weights are required to be

nonnegative.

Type 12: The weight of the neighbor with the highest index that has

non-zero counts, or the default value if none applies.

Type 13: The weight of the neighbor with the lowest index that has

non-zero counts, or the default value if none applies.

The following is an example of the signatures for an AGG with three action

nodes and two function nodes:

2

10 0 [2 3 4]

8. The payoff function for each action node. So we have|A | sub-blocks of

numbers. Payoff function for actionα is a mapping from configurations to

real numbers. Configurations are represented as a tuple of integers; the size

of the tuple is the size of the neighborhood ofα . Each configuration specifies
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the action counts for the neighbors ofα , in the same order as the neighor list

of α .

The first number of each subblock specifies the type of the payoff function.

There are multiple ways of representing payoff functions; we (or other peo-

ple) can extend the file format by defining new types of payoff functions. We

define two basic types:

Type 0: The complete representation. The set of possible configurations can

be derived from the action graph. This set of configurations can also

be sorted in lexicographical order. So we can just specify the payoffs

without explicitly giving the configurations. So we just need to give

one row of real numbers, which correspond to payoffs for the ordered

set of configurations.

If action α is in multiple players’ action sets (say playersi and j), then

it is possible that the set of possible configurations givenai = α is dif-

ferent from the set of possible configurations givena j = α . In such

cases, we need to specify payoffs for the union of the sets of configura-

tions (sorted in lexicographical order).

Type 1: The mapping representation, in which we specify the configura-

tions and the corresponding payoffs. For the payoff function of action

α , first give |C (α)|, the number of elements in the mapping. Then fol-

lows |C (α)| rows. In each row, first specify the configuration, which is

a tuple of integers, enclosed by a pair of brackets “[” and “]”, then the

payoff. For example, the following specifies a payoff function of type

1, with two configurations:

1 2

[1 0] 2.5

[1 1] -1.2

A.1.2 The BAGG File Format

Each representation of a BAGG consists of the following sections, separated by

whitespaces. Lines with a starting “#” are treated as comments and are allowed
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between sections.

1. The number of players,n.

2. The number of action nodes,|A |.

3. The number of function nodes,|P|.

4. A row of n integers, specifying the number of types|Θi | for each playeri.

5. Type distribution for each playeri. The distributions are assumed to be in-

dependent. Each playeri’s type distribution is represented as a row of|Θi |

real numbers, one for each typeθi ∈ Θi , specifying Pr(θi), the probability of

i having typeθi . The following example block gives the type distributions

for a BAGG with two players and two types for each player.

0.5 0.5

0.2 0.8

6. Size of type-action set for each player’s each type.

7. Type-action set for each player’s each type. Each type-action set is repre-

sented as a row of integers in ascending order, which are indices of action

nodes. Action nodes are indexed from 0 to|A |−1.

8. The action graph: same as Block 6 in the AGG format.

9. Types of functions: same as Block 7 in the AGG format.

10. Utility function for each action node: same as Block 8 in the AGG format.

A.2 Solvers for finding Nash Equilibria

The AGGSolver package is a collection of solvers that computes (Bayes) Nash

equilibria given a game represented in (B)AGG format. The package is written in

C++, and makes use of the GameTracer package (which implements Govindan &

Wilson’s GNM and IPA algorithms), and GAMBIT’s implementation of the sim-

plicial subdivision algorithm. Our black-box algorithmicapproach is described in

Chapter 3 for AGGs and Chapter 6 for BAGGs.
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The following solvers are included:

gnm agg takes an AGG and computes one or more Nash equilibria using Govin-

dan & Wilson’s Global Newton Method (GNM).

gnm bagg takes a BAGG and computes one or more Bayes-Nash equilibria using

the GNM algorithm.

gnm ksym agg takes an AGG or a symmetric BAGG and computesk-symmetric

Nash equilibria using a modified GNM algorithm.

gnm tracing agg takes an AGG/BAGG and a file containing initial mixed strat-

egy profiles, for each initial mixed strategy profile sigma run a version of

the GNM algorithm that simulates the linear tracing procedure starting from

sigma. Good approximate equilibria can be used as “warm starts”.

ipa agg / ipa bagg takes an AGG/BAGG and computes an approximate Nash equi-

librium using Govindan & Wilson’s Iterated Polymatrix Approximation al-

gorithm.

simpdiv takes an AGG/BAGG and computes one or more Nash/Bayes-Nash equi-

libria using the simplicial subdivision algorithm as implemented in GAM-

BIT.

The source code is available for download athttp://agg.cs.ubc.ca. Detailed in-

structions on installation and usage of these solvers can befound in the README

file included in the package, which is also available athttp://agg.cs.ubc.ca/AGGSolver

README.txt.

A.3 AGG Graphical User Interface

Together with Damien Bargiacchi, we developed the AGGUI package, a graph-

ical user interface that allows users to create and edit AGGs, read in existing

AGGs, and visualize strategy profiles (e.g. Nash equilibria) as a density map

the action graph (see, e.g., Figures 3.17 and 3.18 in Chapter3). It is written in

Java and runs on any platform that supports Java. It is available for download at

http://agg.cs.ubc.ca/aggui.jar.
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A.4 AGG Generators in GAMUT

GAMUT [Nudelman et al., 2004] is a suite of generators of gameinstances. We

have extended GAMUT with generators of AGG instances in the AGG format. We

have implemented generators for three classes of AGGs:

RandomSymmetricAGG generates symmetric AGGs on random action graphs

with random utilities.

CoffeeShopGamegenerates instances of the Coffee Shop Game described in Chap-

ter 3.

IceCreamGame generates instances of the Ice Cream Game described in Chapter

3.

The extended GAMUT package and documentation on these AGG generators are

available for download athtt://agg.cs.ubc.ca.

A.5 Software Projects Under Development

GAMBIT [McKelvey et al., 2006] is a collection of software tools for game theo-

retic analysis that includes implementations of many of theexisting algorithms for

the normal form and the extensive form. Together with Professor Theodore Turocy,

who is the main author and maintainer of GAMBIT, we are working to incorporate

the AGG and BAGG representations into GAMBIT.
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