Representing and Reasoning with Large Games

by
Xin Jiang
B. Science, University of British Columbia, 2003
M. Science, University of British Columbia, 2006
A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
Doctor of Philosophy
in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia
(Vancouver)

December 2011

© Xin Jiang, 2011

Abstract

In the last decade, there has been much research at theaeterf computer sci-
ence and game theory. One important class of problems aintieigace is the
computation of solution concepts (such as Nash equilibwammorrelated equilib-
rium) of a finite game. In order to take advantage of the higittyctured utility
functions in games of practical interest, it is importantiésign compact represen-
tations of games as well as efficient algorithms for comgusnlution concepts

on such representations. In this thesis | present seveval nontributions in this
direction:

The design and analysis of Action-Graph Games (AGGs)a fully-expressive mod-
eling language for representing simultaneous-move ganiés propose a
polynomial-time algorithm for computing expected utégi given arbitrary
mixed strategy profiles, and leverage the algorithm to aehexponential
speedups of existing algorithms for computing Nash equalib

Designing efficient algorithms for computing pure-strateyy Nash equilibria in AGGs.
For symmetric AGGs with bounded treewidth our algorithmsrimpolyno-
mial time.

Extending the AGG framework beyond simultaneous-move ganse We propose
Temporal Action-Graph Games (TAGGS) for representing dyinagames
and Bayesian Action-Graph Games (BAGGSs) for representageBian games.
For certain subclasses of TAGGs and BAGGs we gave efficigiatrithms
for equilibria that achieve exponential speedups ovetiegigpproaches.

Efficient computation of correlated equilibria. In a landmark paper, Papadim-

itriou and Roughgarden described a polynomial-time atori(”Ellipsoid
Against Hope”) for computing sample correlated equilibolacompactly-
represented games. Recently, Stein, Parrilo and Ozddgbawes that this
algorithm can fail to find an exact correlated equilibriume Yesent a vari-
ant of the Ellipsoid Against Hope algorithm that guarantdespolynomial-
time identification of exact correlated equilibrium.

Efficient computation of optimal correlated equilibria. We show that the polynomial-
time solvability of what we call theleviation-adjusted social welfare prob-
lemis a sufficient condition for the tractability of the optinadrrelated equi-
librium problem.

Preface

Certain chapters of this thesis are based on publicatiorsufonissions to publica-
tions) by my collaborators and me (under the name Albert Xing). Per require-
ment of UBC Faculty of Graduate Studies, | describe heredlagive contributions

of all collaborators.

Chapter 3 is based on the artiddetion-Graph Gamesgy Albert Xin Jiang,
Kevin Leyton-Brown and Navin Bhat, published in Games andrimic Behav-
ior, Volume 71, Issue 1, January 2011, Pages 141-173, Ets&Navin and Kevin
first proposed Action-Graph Games without function nodefiéd AGG-0s in this
thesis), proposed an algorithm for computing expectedyufibr the symmetric
case, and proposed an approach for computing sample Nasibrégin symmet-
ric AGG-0s, by adapting Blum et al. [2006]'s approach foesging up Govindan
and Wilson’s [2003] global Newton method. My main contribas include: 1) ex-
tending the basic AGG-0 representation by introducingfiem nodes and additive
structure, yielding the more general representations A@i#s Function Nodes
(AGG-FNs) and AGG-FNs with Additive Structure (AGG-FNAS)) proposing
and implementing an algorithm for computing expectedtytitbr general AGGs,
and proving that it runs in polynomial time; 3) implementiggftware packages
for game-theoretic analysis using AGGs, including progrdhat speed up exist-
ing algorithms for sample Nash Equilibria [Govindan and 3&fi, 2003, van der
Laan et al., 1987] by leveraging the expected utility aldpon; 4) carrying out
computational experiments; 5) preparation of the manpiscikievin has played a
supervisory role throughout the project.

Chapter 4 is based on the pag@@mputing Pure Nash Equilibria in Symmetric
Action Graph Game$y Albert Xin Jiang and Kevin Leyton-Brown, published

in the Proceedings of AAAI, 2007, although the chapter dosta significant
amount of new material. My main contributions include: 1@ritfication of the
research problem and the design of the overall approachpXing out the details
of our algorithm and proving its correctness and runningetil®) preparation of
the manuscript. Kevin has played a supervisory role througthe project.

Chapter 5 is based on the pagemporal Action-Graph Games: A New Repre-
sentation for Dynamic Gamdsy Albert Xin Jiang, Kevin Leyton-Brown and Avi
Pfeffer, published in the Proceedings of UAI, 2009. The fiieation and design
of the overall research program is done via joint discussinall three co-authors.
My other contributions include: 1) working out the detaif¢lee Temporal Action-
Graph Game representation and our algorithm for computipgated utility, and
proving their properties; 2) implementing our algorithndamarrying out computa-
tional experiments; 3) preparation of a majority of the texhe manuscript. Kevin
has played a supervisory role throughout the project.

Chapter 6 is based on the pajayesian Action-Graph Gamegsublished in
the Proceedings of NIPS, 2010. The identification and desfghe overall re-
search program is done via joint discussions by both coeasithMy other contri-
butions include: 1) working out the details of the Bayesiattign-Graph Game
representation, our algorithm for computing expectedtyitind our approach for
computing Bayes-Nash equilibrium, and proving their préps; 2) implementing
our algorithm and carrying out computational experimeB)spreparation of the
manuscript. Kevin has played a supervisory role throughwproject.

Chapter 7 is based on the pagalynomial-time Computation of Exact Cor-
related Equilibrium in Compact Gamds/ Albert Xin Jiang and Kevin Leyton-
Brown, published in the Proceedings of ACM-EC, 2011. My meontributions
include: 1) identification of the research program; 2) desigour algorithm and
analysis of its properties; 3) preparation of the manuscrifevin has played a
supervisory role throughout the project.

Chapter 8 is based on the manusc#ptGeneral Framework for Computing
Optimal Correlated Equilibria in Compact Gambég Albert Xin Jiang and Kevin
Leyton-Brown, published in the Proceedings of the Severthkéhop on Internet
and Network Economics (WINE), 2011. My main contributionslude: 1) iden-
tification of the research program; 2) design of our alganithnd analysis of its

properties; 3) preparation of the manuscript. Kevin hagaulea supervisory role
throughout the project.

Vi

Table of Contents

Abstract. ii
Preface iv
Tableof Contents Vil
Listof Figures e Xii
Acknowledgments e XVi
1 |Introduction 1
2 A Brief Survey on the Computation of Solution Concepts 10
2.1 RepresentationsofGames 11
2.1.1 Representing Complete-information Static Games . . .11
2.1.2 Representing DynamicGames 17
2.1.3 Representing Games of Incomplete Information 18
2.2 Computation of Game-theoretic Solution Concepts 19

2.2.1 Computing Sample Nash Equilibria for Normal-Form @an20
2.2.2 Computing Sample Nash Equilibria for Compact Repre-

sentations of Static Games 27
2.2.3 Computing Sample Bayes-Nash Equilibria for Incortaple
information StaticGames 31

2.2.4 Computing Sample Nash Equilibria for Dynamic Games 3 3
2.2.5 Questions about the Set of All Nash Equilibria of a Game35
2.2.6 Computing Pure-Strategy Nash Equilibria 5 3

Vii

2.2.7 Computing Correlated Equilibrium 38

2.2.8 Computing Other Solution Concepts 41
23 Software 42
Action-Graph Games e 43
3.1 Introduction 43
3.1.1 OurContributions 43
3.2 ActionGraphGames 45
3.2.1 Basic Action GraphGames. 45
3.2.2 AGGswith FunctionNodes 51
3.2.3 AGG-FNs with Additive Structure 58
3.3 FurtherExamples 61
331 AJobMarket 61
3.3.2 Representing Anonymous Games as AGG-FNs 62
3.3.3 Representing Polymatrix Games as AGG-FNAs 63
3.3.4 Congestion Games with Action-Specific Rewards 4 6
3.4 Computing Expected PayoffwithAGGs 66
3.4.1 Computing Expected Payoff for AGG-0s 66
3.4.2 Computing Expected Payoff with AGG-FNs 77
3.4.3 Computing Expected Payoff with AGG-FNAs 81
3.5 Computing Sample Equilibria withAGGs 82
3.5.1 Complexity of Finding a Nash Equilibrium 83
3.5.2 Computing a Nash Equilibrium: The Govindan-Wilsor Al
gorithm 84
3.5.3 Computing a Nash Equilibrium: The Simplicial Subdivi
sion Algorithm, 88
3.5.4 Computing a Correlated Equilibrium 89
3.6 Experiments 90
3.6.1 Software Implementation and Experimental Setup . . .90
3.6.2 RepresentationSize. 92
3.6.3 Expected Utility Computation 93
3.6.4 Computing Payoff Jacobians 94

3.6.5 Finding a Nash Equilibrium Using Govindan-Wilson . . 96

viii

3.6.6 Finding a Nash Equilibrium Using Simplicial Subdigis 97
3.6.7 Visualizing Equilibria on the Action Graph oa
3.7 Conclusions 102

Computing Pure-strategy Nash Equilibria in Action-Graph Games . 104

4.1 Introduction 104
4.2 Preliminaries 106
421 AGGS e 106
4.2.2 Complexity of ComputingPSNE 107
4.3 Computing PSNE in AGGs with Bounded Number of Action N©d68
4.4 Computing PSNE in Symmetric AGGs 110
4.4.1 Restricted Games and Partial Solutions 0 11
4.4.2 Combining Partial Solutions 112
4.4.3 Dynamic Programming via Characteristics 311
4.4.4 Algorithm for Symmetric AGGs with Bounded Treewidth 201
445 FindingPSNE 125
4.4.6 Computing OptimalPSNE 126
45 BeyondsymmetricAGGS Lo 128
45.1 Algorithm fork-Symmetric AGG-0s 128
4.5.2 General AGG-0s and the Augmented Action Graph . . . 9 12
4.6 Conclusionsand OpenProblems 134

Temporal Action-Graph Games: A New Representation for Dymamic

Games 136
5.1 Introduction 136
5.2 Representation 138
5.2.1 Temporal Action-Graph Games 138
5.2.2 Strategies e 143
5.23 ExpectedUtility 144
5.2.4 Thelnduced MAIDofa TAGG 146
5.25 EXpressiveness e 147
5.3 Computing Expected Utility 148
5.3.1 Exploiting Causal Independence 149

5.3.2 Exploiting Temporal Structure 150

5.3.3 Exploiting Context-Specific Independence 153
5.4 Computing Nash Equilibria 154
5.5 Experiments 155
56 Conclusions 156
Bayesian Action-GraphGames, 159
6.1 Introduction 159
6.2 Preliminaries 161
6.2.1 Complete-information interpretations 162
6.3 Bayesian Action-GraphGames 163
6.3.1 BAGGs with FunctionNodes 166
6.4 Computing a Bayes-Nash Equilibrium 816
6.4.1 Computing Expected Utility in BAGGs 170
6.5 Experiments 173

Polynomial-time Computation of Exact Correlated Equilibrium in

CompactGames e e 176
7.1 Introduction 176
7.1.1 Recent Uncertainty About the Complexity of Exact CE 177
712 OurResults 178
7.2 Preliminaries 181
7.3 The Ellipsoid Against Hope Algorithm 82
7.4 OurAlgorithm 185
7.4.1 The Purified SeparationOracle 185
7.4.2 The Simplified Ellipsoid Against Hope Algorithm88
7.5 Uncoupled Dynamics with Polynomial Communication Ctaxrity 192
7.6 Computing Extensive-form Correlated Equilibria 194
7.7 Conclusion 197

A General Framework for Computing Optimal Correlated Equi lib-

rainCompactGames 199
8.1 Introduction 199
8.2 Problem Formulation, 203

8.3

8.2.1 Correlated Equilibrium
The Deviation-Adjusted Social Welfare Problem 204
8.3.1 The Weighted Deviation-Adjusted Social Welfare Rrob 207
8.3.2 The Coarse Deviation-Adjusted Social Welfare Pmoble 208

8.4 The Deviation-Adjusted Social Welfare Problem for Siie&ep-
resentations 209
841 ReducedForms 209
8.4.2 LinearReducedForms 213
8.4.3 Representations with Action-Specific Structure 216
8.5 Conclusionand OpenProblems. 221
Bibliography 225
AppendiX e e 237
A Software 238
Al FileFormats 238
A.1l.1 TheAGGFileFormat 239
A.l.2 TheBAGGFileFormat. 241
A.2 Solvers for finding Nash Equilibria 422
A.3 AGG Graphical UseriInterface 243

A4
A5

AGG Generators inGAMUT 244
Software Projects Under Development

Xi

List of Figures

Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5
Figure 3.6

Figure 3.7

Figure 3.8

AGG-0 representation of the Ice Cream Vendorggam . . . 48
AGG-0 representation of a 3-player, 3-actiapgical game. 51
A 5x 6 Coffee Shop game: Left: the AGG-0 representation
without function nodes (looking at only the neighborhood of

a). Middle: we introduce two function nodeg, (bottom) and

p” (top). Right:a now has only 3 neighbors. 57
Left: a two-player congestion game with thredlifees. The

actions are shown as ovals containing their respectivitfesi

Right: the AGG-FNA representation of the same congestion

game. e e e e e 60
AGG-0 representation of the Job Marketgame. 61
AGG-FN representation of a game with agent-fipediility
functions. L 63

AGG-FNA representation of a 3-player polymagaxne. Func-
tion nodeUag represents player As payoffs in his bimatrix
game against Bgp represents player B’s payoffs in his bi-
matrix game against A, and so on. To avoid clutter we do not
show the edges from the action nodes to the function nodes in
this graph. Such edges exist from A and B'’s actionidzg and
Uga, from A and C’s actions ttJac andUca, and from B and
CsactionstdJgcandUcg. 64

Projection of the action graph. Left: action gray the Ice
Cream Vendor game. Right: projected action graph and action
sets with respecttothe actionC1. 69

Xii

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Representation sizes of coffee shop games. fiop le5 grid

with 3 to 16 players (log scale). Top right: AGG onlyx%

grid with up to 80 players (log scale). Bottom left: 4-player

r x 5 grid, r varying from 3 to 15 (log scale). Bottom right:

AGGonly,upto80rows.. 93
Running times for payoff computation in the €efShop game.

Top left: 5x 5 grid with 3 to 16 players. Top right: AGG only,

5x 5 grid with up to 80 players. Bottom left: 4-playerx 5

grid, r varying from 3 to 15. Bottom right: AGG only, up to

Job Market games, varying numbers of playert: cempar-

ing representation sizes. Right: running times for conmayiti

1000 expected utilities. L. 95
Govindan-Wilson algorithm; Coffee Shop ganan fbw: 4x

4 grid, varying number of players. Bottom row: 4-playex 4

grid, r varying from 3 to 12. For each row, the left figure shows
ratio of running times; the right figure shows logscale plot o
CPU times for the AGG-based implementation. The dashed
horizontal line indicates the one day cutofftime. 8 9
Govindan-Wilson algorithm; Job Market gamesywmg num-

bers of players. Left: ratios of running times. Right: logisc

plot of CPU times for the AGG-based implementation. 99
Ratios of running times of simplicial subdigisialgorithms

on Coffee Shop games. Left:>44 grid with 3 to 4 players.

Right: 3-player x 3 grid,r varying from4to7. 99
Simplicial subdivision algorithm; symmetriG&-0s on small

world graphs. Top row: 5 actions, varying number of players.
Bottom row: 4 players, varying number of actions. The left

figures show ratios of running times; the right figures show
logscale plots of CPU times for the AGG-based implementa-

tion. The dashed horizontal line indicates the one day tutof

time. 100

Xiii

Figure 3.16

Figure 3.17

Figure 3.18

Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7
Figure 4.8

Figure 5.1

Figure 5.2

Visualization of a Nash equilibrium of a 16-@agoffee Shop
game on a & 4 grid. The function nodes and the edges of the
action graph are not shown. The action node at the bottom
corresponds to not entering the market. 101
Visualization of a Nash equilibrium of a Job Margame with
20 players. Left: expected configuration of the equilibrium

Right: two mixed equilibrium strategies. 102
Visualization of a Nash equilibrium of an Ice &reVendor
game. e e e e e 103

The road game withh = 8 and the action graph of its AGG

representation. o 111
Restricted game on the rightmost 6 actions. 111
A partial solution on the rightmost 6 actions dibss the con-
figuration overthese 8 actions. 112
Characteristic function €8 for the rightmost 6 actions with
P={T6,B6} andQ = {T5,T6,T7,B5B6,B7}. 118
Anactiongrap®. 120
Theprimalgrap@®’. 120
Tree decompositionohd(G) 120
Tree decomposition of primal gra@h satisfying the condi-
tionsof Lemma4.4.11. 120

Induced BN of the TAGG of Example 5.1.1, with 2 tisteps,
3 lanes, and 3 players per time step. Squares represent-behav
ior strategy variables, circles represent action counaiées,
diamonds represent utility variables and shaded diamaaais r
resent decision-payoff variables. To avoid clutteringdhegph,
we only show utility variables at time step 2 and a decision-

payoff variable for one of the decisions. 146
The transformed BN of the tollbooth game from Fegh.1
with 3 lanes and 3 cars pertimestep.. 150

Xiv

Figure 5.3

Figure 6.1

Figure 6.2

Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Running times for expected utility computatidriangle data

points represent Approach 1 (induced BN), diamonds repre-
sent Approach 2 (transformed BN), squares represent Approa

3 (proposed algorithm). 155

Action graph for a symmetric Bayesian game wiptayers, 2

types, 2 actionspertype. 0. 166
BAGG representation for a Coffee Shop game witip@< per
playeronan X kgrid. 169
GW, varyingplayers. e 417
GW, varying locations. 74
GW, varyingtypes. 174
Simplicial subdivision. 174

XV

Acknowledgments

First and foremost | would like to thank my parents, for thawconditional love
and support, for their wisdom, and for encouraging me toymiray interests. |
am the person | am because of them, and | am very lucky to have &is parents.

Kevin Leyton-Brown has been my advisor since my MSc degree.hés in-
troduced me to game theory, and mentored me through all #eareh projects
described in this thesis. | am eternally grateful to him feinly a great teacher and
communicator, for showing me his research vision yet givimg the freedom to
explore and find my research topics, for helping me refine nifyfbamed ideas,
for giving me concrete advice and pushing me to be bettet aspécts of being a
researcher, and for the career opportunities he introdoneeth. | can honestly say
that | really enjoyed my Ph.D. experience.

| would like to thank fellow members of Kevin's game theorygp and my
office mates, David Thompson, James Wright and Baharak gastéor stimulat-
ing discussions on research and otherwise, and for the ealerde. | have also had
many enjoyable discussions with Chris Ryan while he wasglbis Ph.D. in Oper-
ations Research at UBC, during which he introduced me t@gufew interesting
mathematical concepts including algebraic geometry andrgéing functions.

| would like to thank David Poole and Joel Friedman for segvim my super-
visory committee, my university examiners Michael Friedlar and Sergei Sev-
erinov, and my external examiner David Parkes. They havengine very helpful
feedbacks on my thesis. Many members of the algorithmic gaewry research
community have given me encouragement and help during ndiestu would like
to especially mention Vince Conitzer, Christos Papadimitr Tim Roughgarden,
Tuomas Sandholm, and Ted Turocy. | would also like to thahinglcollaborators,

XVi

some of which | have mentioned above: Kevin Leyton-BrowrnyiN&hat, Avi Pf-
effer, Mohammad Ali Safari, Chris Ryan, Nando de Freitas;hdel Buro, David
Thompson, James Wright, and Damien Bargiacchi.

During my Ph.D. studies | was supported by UBC’s Universitadiate Fel-
lowship for one year, the NSERC Canada Graduate Scholafshifiree years,
and partially by a Google Research Award “Advanced Commutat Analysis of
Position Auction Games”. | would like to thank them for thieirancial support.

XVii

Chapter 1

Introduction

Game theory is a mathematical theorygames interactions in which multiple
autonomous agents, each with their own utility functioret, according to their
own interests. Game theory has received a great deal of, sindyis perhaps the
dominant paradigm in microeconomics [e.g., Fudenberg arade] 1991]. In the
last decade, there has been much research at the interfeompiiter science and
game theory [e.g., Nisan et al., 2007, Shoham and LeytomaBr@009]. This
interdisciplinary field has been named “algorithmic ganmestly”, “computational
economics”, and “multiagent systems” by various reseaschEhis recent interest
in game theory by the computer science community has bedialfyamotivated
by the explosion in the popularity of the Internet, whichdgsentially a network of
computers controlled by selfish agents. There is thus mumEnteeffort to apply
game theory to various subdomains of the Internet such agIFC&uting, peer-
to-peer sharing, auction environments including eBay adilVérds, and social
networks.

One fundamental class of computational problems in ganueyhethe compu-
tation ofsolution conceptsf a finite game. Examples of solution concepts include
Nash equilibrium and correlated equilibrium. Intuitivethese solution concepts
are answers to the following type of questions: what areikiedyl outcomes of the
game, under certain models of rationality of the agents?sThe task of comput-
ing these solution concepts can be understood in the largofagl asreasoning
about the game. The goal is to be able to efficiently carry oah seasoning for

real-world multiagent systems. One application of sucheréimeoretic reasoning
is the development of autonomous agents that can act geetly by taking into
account the strategic behavior of other agents. Anothelicapipn is to help the
designer of a system to predict its likely outcomes and toxapé the parameters
of the system to achieve preferred outcomes. Furthermoree £omputer scien-
tists argue that the complexity of these computational lerab have implications
on whether equilibria can be reached in practice. A famowsegoy Kamal Jain is
“if your laptop cannot find the equilibrium, neither can thanket.”

The input to such computational problems is a descriptioth@fgame. Most
of the game theory literature presumes that simultanectisragames will be rep-
resented in normal form. This is problematic because in ndamyains of interest
the number of players and/or the number of actions per playtarge. In the
normal form representation, the game’s payoff functionasexl as a matrix with
one entry for each player’s payoff under each combinatioallgblayers’ actions.
As a result, the size of the representation grows exporignivith the number of
players. A similar problem arises in dynamic games, for Whie extensive form
serves as the standard representation. For large gamesoinles infeasible to
store the game in memory. Computations that require timgnpahial in the input
size are nevertheless impractical.

Fortunately, most large games of practical interest hagbifristructured pay-
off functions, and thus it is possible to represent themmpactly by which we
mean a representation that is exponentially smaller tisaimaduced normal form.
Intuitively, this helps to explain why people are able tos@aabout these games
in the first place: we understand the payoffs in terms of stmelationships rather
than in terms of enormous lookup tables. Of course, theramr@aumber of ways
of representing games compactly. For example, games oéstteould be assigned
short ID numbers. But we ultimately want to be able to comolation concepts
of the games, and we would like the running time of our alhong to depend on
the size of the compact representation rather than the $itee @orresponding
normal form.

Can we design representations of games that are able to ctynpacode a
wide range of interesting games and are amenable to efficegnputation? And
how do we design efficient algorithms for computing solut@mcepts in these

2

compactly represented games? These are the central quselstackle in this the-
sis.

Before discussing my contributions, | will first briefly suranze the relevant
literature; | will give a more in-depth survey in Chapter 2neéxthread of recent
work in the literature has explored compact game represensa(also called con-
cise or succinct representations) that are able to sugcidescribe games that
exhibit certain types of structure. Examples of such repeions for complete-
information simultaneous-action games include anonyngauses, graphical games
[Kearns et al., 2001], and congestion games [RosenthaB]1&xamples of struc-
ture include symmetry/anonymity, strict and action-sfieéndependence, and ad-
ditivity. However, the existing representations eithelyarapture a subset of these
types of structure, or are only able to represent a subsearokg that exhibit a
specific structure. There is a lack of a general modelingdagg that is fully
expressive (able to express arbitrary games) while alsotabtompactly encode
utility functions exhibiting commonly-encountered typ#sstructure.

Nash equilibrium (NE) is perhaps the most well-known andstidied game-
theoretic solution concept. There is a line of recent redutim the computational
complexity theory community on the hardness of various aatatfonal problems
regarding Nash equilibria, perhaps most prominently thesef papers [Chen and
Deng, 2006, Daskalakis et al., 2006b, Goldberg and Papaiimi2006] establish-
ing the PPAD-completeness of the the problem of finding a samjxed-strategy
Nash equilibrium in normal-form games of two or more playdrtake the view
that although these hardness results are important forstagkeling the problems,
they do not imply that practical algorithms cannot be bulor example, there
has been great advances in the design and implementatioaafgal solvers for
theoretically hard problems such as SAT and integer progriagn In terms of
algorithms for finding a Nash equilibrium, earlier literegufrom economics and
operations research focused on algorithms for the normat fe.g., Govindan
and Wilson, 2003, van der Laan et al., 1987]. In the last decaith more com-
pact game representations being proposed, there has beereffats from the
computer science community on algorithms for compact spr&ations. Such
efforts can roughly be divided into two categories, “bldmk” approaches and
“special-purpose” approaches. bfack-boxalgorithm requires certain subroutines

3

provided by the representation to work, but otherwise $rédad representation as
a black box. Examples include efforts to adapt algorithmsigihed for the nor-
mal form to compact representations [Bhat and Leyton-Bid®@94, Blum et al.,
2006]. The computation afxpected utilitthas emerged as a key subtask required
by many black-box algorithms. The ability to carry out thisrgutation efficiently
has become an important design criterion for compact reptagons. Fortunately,
most existing representations admit polynomial-time atbms for expected util-
ity. The existing black-box approaches are for the probldrfinoling a sample
Nash equilibrium; while this problem is very important, we aften interested
in questions regarding the set of equilibria such as findiegaptimal equilibrium.
On the other hand, special-purpos@pproach tries to exploit certain specific struc-
ture of the game, and is thus specific to the representatitthodgh not as general
as the black-box approach, a special-purpose approachitesmniadentify tractable
subclasses of games while the general case is hard; fuheltncan sometimes
compute a concise description of the set of equilibriayahg us to e.g., compute
the optimal equilibrium. Examples include algorithms fonguting pure-strategy
Nash equilibria for tree graphical games [Daskalakis anmhfianitriou, 2006, Got-
tlob et al., 2005] and singleton congestion games [leong),2@05], and for com-
puting mixed-strategy Nash equilibria for symmetric garfleapadimitriou and
Roughgarden, 2005] and anonymous games [Daskalakis aadiRafsiou, 2007].
In terms of software implementations, the GAMBIT [McKelveyal., 2006] pack-
age contains many of the existing algorithms for the normiahfand the extensive
form. There is a relative lack of publicly-available implentations of algorithms
for compact representations, except for the GametracenjBt al., 2002] pack-
age which provides implementations of black-box adaptatiof two of Govindan
and Wilson’s algorithms [Govindan and Wilson, 2003, 20@#t]finding a sample
Nash equilibrium.

In summary, although there have been many advances in theetioal under-
standing of how certain types of structure in games can bmigeg for efficient
computation, the lack of a general representation and gylaivailable software
implementations for structured games meant that the catipnal analysis of
large games has not become practical. Much of this thesibeamderstood as
my efforts to address these problems. Below | give an oudfrray contributions,

4

including the design of game representations that can m@jgtwide variety of
computation-friendly structure, novel algorithms for qmuiting sample equilibria
as well as optimal equilibria in compact games, and softwapementations of
tools for modeling and reasoning about structured games.

In Chapter 3 | present work (joint with Kevin Leyton-BrowndaNavin Bhat)
regarding Action-graph games (AGGs), a compact repretsemiaf complete-information
simultaneous-action games first proposed by Bhat and Legtown [2004]. We
make several contributions that significantly extends Birat Leyton-Brown’s
[2004] original work. First, we extended the original defimm of AGGs by in-
troducing function nodes and additive utility functiongpturing a wider vari-
ety of utility structure. The resulting AGG representatigna fully-expressive
modeling language that both extends and unifies previounapipes: it can com-
pactly express games with structure such as strict or cbapecific independence,
anonymity, and additivity; it can be used to compactly emecadl games that
are compact when represented as graphical games, symgeaines, anonymous
games, congestion games, and polymatrix games, as welldittondl realistic
games that would take exponential space to represent usasg existing repre-
sentations. Second, we gave a polynomial-time algorithnthi® important task of
computing expected utility for AGGs, which then allows ussteed up existing
normal-form-based equilibrium-finding algorithms indlugl Govindan and Wil-
son’s [2003] Global Newton Method and the simplicial sulxion algorithm of
van der Laan et al. [1987]. Third, we implemented and madédadla software
tools for constructing, visualizing, and reasoning with@& We present results
of experiments showing that using AGGs leads to a dramatrease in the size of
games accessible to computational analysis.

Pure-strategy Nash equilibrium (PSNE) is a more restrictetcept that Nash
equilibrium, and has certain theoretically and practicalitractive properties. In
Chapter 4 | present work (joint with Kevin Leyton-Brown) oobnaputing pure-
strategy Nash equilibria for AGGs. Unlike our black-box eggzh in Chapter
3 for computing equilibria, here we use a special-purpoggageh that exploits
the graph-theoretical properties of the action graph. miqdar, we propose a
dynamic-programming algorithm that constructs equiitof the game from equi-
libria of restricted games played on subgraphs of the agfraph. If the game is

5

symmetric and the action graph has bounded treewidth, goritim determines
the existence of pure-strategy Nash equilibrium in polyr@mrime. We also ex-
tend our approach to certain classes of asymmetric AGGsadusGGs unify and
extend existing representations, our approach can be stoddras a generaliza-
tion of existing special-purpose approaches for reprasiens including singleton
congestion games [leong et al., 2005] and graphical gamaskfakis and Pa-
padimitriou, 2006, Gottlob et al., 2005].

So far we have focused on representing and reasoning withtaineous-action
games. On the other hand, many multi-agent interactior@vievdecisions made
sequentially over time; such situations are modeledyasamic gamei game the-
ory. The standard representation for dynamic games, tlemgxe form, is ineffi-
cient for large, structured games, while the state-ofatiesompact representation,
multi-agent influence diagrams (MAIDS), only capture stuitlity independence
structure. In Chapter 5 | present work (joint with Kevin LegtBrown and Avi Pf-
effer), in which we propose temporal action-graph game<3@A), an extension
of AGGs that can compactly represent dynamic games extipitiwide range of
structure including anonymity or context-specific utilindependencies. We also
show that TAGGs can be understood as indirect MAID encodingshich many
deterministic chance nodes are introduced. We provide fareet algorithm for
computing expected utility for TAGGs, and show both theioedty and empirically
that our approach improves significantly on MAIDs.

Games of incomplete information, or Bayesian games, arenportant game-
theoretic model in which players are uncertain about tHéiesi of the game. De-
spite having many applications in economics, there ardivelp fewer results on
the computational aspects of Bayesian games, such as corepegsentations and
practical algorithms for computing solution concepts layes-Nash equilibria.
In Chapter 6 we extend AGGs to the incomplete-informaticttirege and present
Bayesian action-graph games (BAGGs), a compact repréwentar Bayesian
games. BAGGs can represent arbitrary Bayesian games, ghdrfunore can com-
pactly express Bayesian games exhibiting commonly eneocemttypes of struc-
ture including symmetry, action- and type-specific utilitdependence, and proba-
bilistic independence of type distributions. We provideafgorithm for computing
expected utility in BAGGSs, and discuss conditions undercivithe algorithm runs

6

in polynomial time. Sample Bayes-Nash equilibria of BAGG@Gs te computed
by adapting existing algorithms for complete-informatimermal form games and
leveraging our expected utility algorithm.

First proposed by Aumann [1974, 1987], correlated equilibr(CE) is another
important solution concept. In a landmark paper, Papadonitand Roughgar-
den [2008] described a polynomial-time black-box algonitffEllipsoid Against
Hope”) for computing sample correlated equilibria of caety-represented simultaneous-
move games. Recently, Stein, Parrilo and Ozdaglar [201@}ed that this algo-
rithm can fail to find an exact correlated equilibrium, bubdze easily modified
to efficiently compute approximate correlated equilibi@urrently, it remains an
open problem to determine whether the algorithm can be nedlditi compute an
exact correlated equilibrium. In Chapter 7 we show that iit, ggesenting a vari-
ant of the Ellipsoid Against Hope algorithm that guarantd®spolynomial-time
identification of exact correlated equilibrium. Also, odgarithm is the first to
tractably compute correlated equilibria with polynomséed supports; such cor-
related equilibria are more natural solutions than the unég of product distribu-
tions produced previously, and have several advantagksling requiring fewer
bits to represent, being easier to sample from, and beingréasserify.

However, since in general there can be an infinite numberroélated equilib-
ria in a game, finding an arbitrary one is of limited value. Ina@ter 8 we focus
on the problem of computing a correlated equilibrium thairojzes some objec-
tive (e.g., social welfare). Papadimitriou and Roughgai{@@08] gave a sufficient
condition for the tractability of the problem, however itlpapplies to a subset of
existing representations. We propose a different algoiittapproach for the opti-
mal CE problem that applies &l compact representations, and give a sufficient
condition that generalizes Papadimitriou and Roughgad=mdition. In partic-
ular, we reduce the optimal CE problem to ttheviation-adjusted social welfare
problem a combinatorial optimization problem closely relatedi® optimal social
welfare outcome problem. Our algorithm can be understoaghdsstance of the
black-box approach, with the computation of the deviatedatavelfare problem
as the key subroutine provided by the game representatitn.ffimework allows
us to identify new classes of games for which the optimal Gibl@m is tractable,
including graphical polymatrix games on tree graphs. We stady the problem

7

of computing the optimatoarse correlated equilibriugra solution concept closely
related to CE. Using a similar approach we derive a sufficiemidition for this
problem, and use it to prove that the problem is tractablesifayleton congestion
games.

In Appendix A | describe software packages we implementetinaade avail-
able athttp://agg.cs.ubc.ca.

Taken together, this thesis presents several basic comizooiean algorithmic
framework for computational analysis of large games: carhpapresentations
for complete-information and incomplete-information sitaneous-action games
as well as dynamic games, a collection of implemented alyos for comput-
ing sample Nash and correlated equilibria given such gaamessome theoretical
foundations for computing PSNE and optimal correlatedldaid. These are parts
of a larger ongoing effort by our research group, that ainegpjdy computational
game-theoretic analysis to real-world systems, espgdiadl design and analysis
of market mechanisms such as auctions. Suelchanism desigproblems have
traditionally been attacked via purely analytical meams$ domputational analysis
allows us to tackle settings for which theoretical analysidlifficult or impossi-
ble. Position auctions for advertising slots, such as theeGdized Second-Price
auction used by Google AdWords, have received much recesrest from com-
puter scientists and economists. Thompson and Leyton-B{@809] were able
to use AGGs to compactly represent complete-informaticsitipm auctions and
compute their Nash equilibria, which allows them to analize economic prop-
erties of such auctions such as revenue and efficiency. iBgilah their work, |
am currently working with David and Kevin to extend this gz to incomplete-
information models of position auctions using BAGGs.

Finally, | mention a couple of papers on related topics tlzatauthored but do
not include in this thesis. In [Jiang and Safari, 2010], Mahsad Ali Safari and |
analyzed the problem of deciding the existence of pureegiyaNash equilibria for
graphical games on restricted classes of graphs, and shhaftetthe problem is in
polynomial time if and only if the class of graphs has bountledwidth (after iter-
ated removal of sinks). We proved our result by applying @®bharacterization
of the complexity of homomorphism problems. This resulistrated a limitation
of a class of graph-based special-purpose approachesthadiés the algorithm

8

http://agg.cs.ubc.ca

of Chapter 4, that it cannot be extended much beyond boutrdedidth graphs.
It influenced my later focus on more general approaches ssi¢thoge in Chap-
ters 7 and 8. In [Ryan et al., 2010], Chris Ryan, Kevin LeyBrown and | ana-
lyzed the problem of computing pure-strategy Nash equglilor symmetric games
whose utilities are compactly represented, such that th&beu of players can be
exponential in the representation size. We showed thagitthity functions are
represented as piecewise-linear functions, there exighpmial-time algorithms
for finding a pure-strategy Nash equilibria and count the lnemnof equilibria. Our
approach made use of the rational generating function rdetbeeloped by Barvi-
nok and Woods. | do not include these papers here becausdahyt fit in with
the focus of the thesis.

Chapter 2

A Brief Survey on the
Computation of Solution
Concepts

In this chapter we give a brief survey on the economics andocten science lit-
erature on the computation of game-theoretic solution epts; focusing on Nash
equilibrium and correlated equilibrium. There have beees®# surveys on various
aspects of this topic: von Stengel [2002] focused on twggr@ames; McKelvey
and McLennan [1996] focused on algorithms for the normahfoPapadimitriou
[2007] focused on complexity results. In this survey we gimephasis to topics
most relevant to this thesis, i.e., results that are releealarge, structured games.
The goal of this chapter is to present a bird's-eye view ofdiate of the art. We
will largely follow the narrative outlined in Chapter 1. Ire&ion 2.1 we look at
representations of games and the types of structure thayreapin Section 2.2
we look at algorithmic and complexity-theoretic resultstrmemphasis on algo-
rithms for compact representations. In Section 2.3 we suseftware packages
for game-theoretic modeling and computation.

10

2.1 Representations of Games

A game is a mathematical model of interaction among sedfrgsted agents. Infor-
mally, to specify a game we need to specify a set of agents kalswn as players),
a set ofstrategiedor each agent, anduility functionfor each agent that assigns a
utility value (also known as payoff) to each outcome of themgaSuch models can
be further divided into complete-information static gafiesomplete-information
static games and dynamic games.

A game representatiois a data structure that stores all information needed to
specify a game. Ainstanceof a representation is a game encoded in that repre-
sentation. Thus it is often useful to think of a game repriegiEam as aclass(or
type in the language of object-oriented software engineeramg] an instance of
a representation as amjectin that class. Then thsizeof a representation is the
amount of data required to specify a game instance (i.¢iglime an object) of that
representation.

In this section we survey the existing literature on repnéag games. Section
2.1.1 focuses on representing complete-information csigdimes; Section 2.1.2
focuses on representing dynamic games; Section 2.1.3dsaus representing
incomplete-information games.

2.1.1 Representing Complete-information Static Games

In static games, also known as simultaneous-move gameds,ag@ent chooses a
strategy simultaneously (e.g., Rock-Paper-Scissors)cddyplete-informationwe
mean that each agent knows the utility functions of all agent

Definition 2.1.1. Acomplete-information static ganigea tuple(N, {A }ien, {Ui tien)
where

e N={1,...,n} is the set of agents;

e for each agent i, Ais the nonempty set of i's actions (or pure strategies). We
denote by ac A; one of agent i’'s actions. An action profile (or pure-strategy
profile) a= (ai,...,dn) € [ienAi is a tuple of actions of the n agents. We
also denote by g the (n— 1)-tuple of actions by agents other than i under

11

the action profile &

® Ui []jenAj — R is i's utility function, which specifies i's utility given gn
action profile.

A game representation fsilly expressivef it can represent arbitrary games.
We say a game representation pedynomial typegDaskalakis et al., 2006a] if
the number of players and the number of actions for each pkgebounded by
polynomials of the representation size. For example, ifsiteof players and the
sets of actions are encoded explicitly, then the representhas polynomial type.
This is the case for all representations of static gamesistigal in this section.

Normal Form

A normal formrepresentation of a game uses a multi-dimensional mbkrig
RIMievAi to represent each utility function. The size of this representation is
approximatelyn[J;en |Aj|, which isO(nnT') wherem = maxcn |Ai|. Two-player
normal-form games are also called bimatrix games, sinceitiliy functions of
such a game can be specified by tox A, matrices.

Although these games are fully expressive, the size of fliesentation grows
exponentially in the number of players. As a result, the rariorm is unsuitable
for representing large systems. Although several comipmi@ttasks such as find-
ing pure Nash equilibria and computing expected payoff undred strategies are
polynomial-time in the size of the normal form representatithey are intractable
for large games because the representation size itselpaextial.

Graphical Games

Fortunately, most real-world large games have structuae dhows them to be
represented compactly. A popular compact representafigares isgraphical
gamesproposed by Kearns et al. [2001]. A game is associated wgjthph whose

Iwhile in complete-information static games the conceptsctibns and pure strategies coincide,
we will see that this is no longer the case for incompletesimiation games and dynamic games.
For the cases when pure strategies are distinct from actiedenote pure strategies = S and
pure-strategy profiles by e S. For complete-information static games, both #hileased notation
and thes-based notation are commonly used in the literature to depote strategies/actions [e.g.,
Fudenberg and Tirole, 1991, Shoham and Leyton-Brown, 2009]

12

nodes correspond to the players of the game and edges amdeppayoff influ-
ence between players. In other words, each player’'s pagefiend only on his
actions and those of his neighbors in the graph. We call thid &f structurestrict
utility independence

Definition 2.1.2. A graphical gamés a tuple(G, {U; }ien) Where

e G=(N,E)is adirected graplf,with the set of vertices corresponding to the
set of agents. E is a set of ordered tuples correspondingdatbs of the
graph, i.e.(i, j) € E means there is an arc from i to j. Vertex j i;iaighbor
ofiif (j,i) €E.

e for each ic N, alocal utility functionU; : [7jcyi)Aj — R wherev(i) =
{itu{j e N|(j,i) € E} is theneighborhoodf i.

Each local utility functionU; is represented as a matrix of sifgcy) |Ajl-
Since the size of the local utility functions dominates tlee ©f the grapltG, the
total size of the representation@nm-”+1)) where.# is the maximum in-degree
of G.

A graphical gaméG, {U;}) specifies a gaméN, {Ai},{u;}) where eaclh is
specified by the domain of agenin U;, and for alli € N and all action profiles
a we haveu;(s) = Ui(ay()), wherea, ;) = (aj)jcv(i)- Graphical games are fully
expressive: an arbitrary game can be represented as agabgédume on a complete
graph.

Symmetric Games and Anonymous Games

A game issymmetriovhen all players are identical and interchangeable. Fdymal
a game is symmetric if each player has an identical set abrestand for all per-
mutation of playerst: {1,...,n} — {1,...,n},

ui(al,. .. ,an) = un(i)(an(l),. .. ,an(n)).

2Kearns et al. [2001] originally defined graphical games odinacted graphs, while some later
authors [e.g., Daskalakis and Papadimitriou, 2006, Guot#bal., 2005] used the directed graph
version given here. A undirected graphical game is equivdtea directed graphical game in which
each edgdi, j} from the undirected graph is replaced by two directed edigg¢s and(j,i). Thus
the directed graph version is more general.

13

Symmetric games have been studied since the beginning cboperative game
theory. For example, Nash proved that symmetric games allvaye symmetric
mixed Nash equilibria [Nash, 1951]. In a symmetric game,aygfl’'s utility de-
pends only on the player's chosen action andcibrfiguration which is the vector
of integers specifying the numbers of players choosing eattfe actions. We say
such a utility function exhibitanonymity As a result, symmetric games can be rep-
resented more compactly than the normal form: we only neegégify a utility
value for each action and each configuration. For a symmgsdrioe withn players
andm actions per player, the number of configurationg"i§™;). For fixedm,
this grows liken™ 1, in which cased(n™ 1) numbers are required to specify the
game.

A straightforward generalization of symmetric game-isymmetric games,
in which there arek equivalence classes of players. Nash’s [1951] result @ppli
to a very general notion of symmetry: roughly, if a game isaiant under a per-
mutation group, then there exists a Nash equilibrium sisapzofile that is invari-
ant under the same group. Specialized-®ymmetric games, it implies that they
always havek-symmetric Nash equilibria, where strategies within edelsscare
identical. Any game is &-symmetric game wittk = n. On the other hand, when
k is small compared tm, k-symmetric games can be compactly represented by
specifying utilities for eacltk-configuration, where k-configuration is a tuple df
configurations, one for each equivalence class.

There has also been research [e.g., Brandt et al., 2009a&skand Papadim-
itriou, 2007] on a generalization of symmetric games caflednymous gamem
which a given player’s utility depends on his identity as Iveed the action cho-
sen and the configuration. Anonymous games can be compaptigsented in a
similar manner, requirin@(n™) numbers for fixedn.

Polymatrix Games

Polymatrix games are a class of games in which each playtity is the sum of
utilities resulting from her bilateral interactions witaah of then— 1 other players.
This can be represented by specifying for each pair of ptayand j a bimatrix
game (two-player normal form game) with sets of actiénandA,.

14

When a utility function can be expressed as a sum of otherting; as in
polymatrix games, we say it exhibigglditive structure.

Congestion Games

A congestion game [Rosenthal, 1973] is a tuiNeM, (Ai)ien, (Kjk) jem k<n), Where

N = {1,...,n} is the set of playersM = {1,...,m} is a set of facilities (or re-
sources);A; is playeri’s set of actions; each acticm € A; is a subset of the fa-
cilities: & C M. Kk is the cost of using facilityy when a total ok players have
chosen actions that include facility For notational convenience we also define
K;j(k) = Kjx. Let #j,a) be the number of players that chose faciljtgiven the
action profilea. The total cost (or disutility) of playarunder pure strategy profile
a= (a,a_) is the sum of the costs on each of the facilitiesin

Cost(a,a i) = —u(a,ai) =) Kj(#(j,a)). (2.1.1)
j<a

Only nmnumbers are needed to specify the c@kig) cmk<n. The represen-
tation also needs to specify tiyg- |Ai| actions, each of which is a subset\df If
we use am-bit binary string to represent each of these subsets, thksiae of the
congestion game representatiotoignn+myicy |Ail).

From the above definition we can see that congestion gamdsitexispecific
combination of anonymity and additive structure, plus aetgb utility indepen-
dence which we caltontext-specific independence (CSlhis means that the in-
dependence structure of play&rutility function (i.e., which subset of players that
affect playet’s utility) changes depending on tkentext which is a certain feature
of the players’ strategies (in this case the facilities udeld ini's chosen action).
This is a more general type of independence structure thasttitt independen-
cies captured by graphical games. On the other hand, cimgegtmes are not
fully expressive.

Local Effect Games

Local Effect Games (LEGS), proposed by Leyton-Brown andnéaholtz [2003],
were the first graphical representation of games that facoseactions. In an LEG,

15

we have a graph whose nodes correspond to the actions of e dzach player
can choose any one of the nodes. Define configuration as in synnrgames, and
let the configuration over node denotecc(k), be the number of players choosing
nodek. There is a node functiody associated with each no#tevhich maps the
configuration of nod& to a real number. There is an edge funclityy, associated
with each edgék, m) of the graph, which maps the configuration over nddaad
mto a real number. The utility of a playechoosing nodé is the sum of the node
functionUy and all incoming edge functions, evaluated at the curremfigaration

C:

Uk(c(k) + 5 Umk(c(m),c(k)).

mev (k)
Like congestion games, LEGs also exhibit a combination ohgmity, additivity
and context-specific independence structure. In this dasedntextfor player
i's utility independence is thaction chosen byi. We call such structure action-
specific independence. Unfortunately, like congestiongmmEGs are also not
fully expressive.

Action-Graph Games

We have seen representations that capture various typésiciuse such as strict
and context-specific independence, anonymity, and adgitiMowever, the exist-
ing representations either only capture a subset of thess tyf structure (graph-
ical games, symmetric/anonymous games, polymatrix garoegye only able to
represent a subset of games (symmetric/anonymous ganiasaghiax games, con-
gestion games, local-effect games).

Action-graph games (AGGSs), proposed by Bhat and LeytorwBrf@004] and
extended by Jiang et al. [2011], are a compact represem@tsimultaneous-move
games that extends and unifies these previous approaché&zs &@ fully expres-
sive (able to represent arbitrary games), can compactlyeszmames whose util-
ity functions exhibit action-specific independence, amoity or additivity, and fur-
thermore have nice computational properties. Chaptereésgivdetailed discussion
of AGGs.

16

2.1.2 Representing Dynamic Games

In dynamic gamesagents move sequentially. When agents are able to pgrigst|
serve all moves, dynamic games are said to expiuitect informationotherwise,
dynamic games exhibitnperfect information

The standard representation for dynamic games issttensive formwhich is
a tree whose edges represent moves of players. Thus eaclointbéetree corre-
sponds to a unigue sequence of moves. Utilities for all pkayee specified for
each leaf of the tree. Each internal node is assigned to &pleyno can choose
among the edges below that node. Imperfect informationésifipd usinginfor-
mation setseach player’s set of internal nodes is partitioned intorimfation sets,
and a player is unable to distinguish nodes in any of his imfdion sets. Random-
ness in the environment can be represented as nodes for theeNalso known
as Chance) player, who randomizes over his actions acgptaisome fixed distri-
bution. See e.g., [Shoham and Leyton-Brown, 2009] for a &rmhefinition of the
extensive form.

Each extensive-form game can be transformed tondnced normal form
where each pure strategy of a player prescribes an actioaafth of her infor-
mation sets. The number of pure strategies can be expohentfze size of the
extensive form, so transforming to the induced normal fomaiés an exponential
blowup in representation size. In this sense the extensira tan be seen as a
compact representation of dynamic games. However, thigseptation requires
us to specify utilities for every possible sequence of mpwden the game exhibits
more structure than this, a more compact representatiozedad.

For imperfect-information dynamic games, the most inflisrdtompact rep-
resentation is multiagent influence diagrams (MAIDs) [koland Milch, 2003],
which generalize single-agent influence diagrams to naltigents. A MAID is
represented as a directed graph, consisting of decisicegsnotdance nodes and util-
ity nodes. Each chance node corresponds to a random varigtiiéts domain and
its probability distribution conditioned on its parent®¢es with incoming edges)
specified by input. Each decision node represents a ded@i@n a finite number
of choices) taken by some player, given her observationstwdrie the instantiated
values of the decision node’s parents. Each utility nodeessmts the payoff to

17

some player, as a function of the instantiated values of toe’s parents. MAIDs
are compact when players’ utility functions exhibit stiistlependencies, but are
unable to compactly represent utility functions with anmity or action-specific
independencies.

In Chapter 5 we discuss temporal action-graph games (TAG@sEh are a
generalization of AGGs to the dynamic setting, and are abtetpactly represent
dynamic games with anonymity or context-specific utilitgépendencies.

2.1.3 Representing Games of Incomplete Information

In many multi-agent situations, players are uncertain atimigame being played.
Harsanyi [1967] proposed games of incomplete informatmmB@ayesian games)
as a mathematical model of such interactions.

Definition 2.1.3. A Bayesian game is a tup{®l, {A }ien, ©, P, {Ui }ien) Where N=
{1,...,n} is the set of players; each /s player i's action set, and A: []; A is the
set of action profiles@ = []; ©; is the set of type profiles, whe® is player i's
set of types; P © — R is the type distribution andju A x © — R is the utility
function for player i.

As in the complete-information case, we denoteabwan element ofy;, and
a=(a,...,ay) an action profile. Furthermore we denote $yan element ob);,
and by6 a type profile.

The game is played as follows. A type profle= (0,...,6,) € © is drawn
according to the distributio®. Each playeii observes her typ& and, based on
this observation, chooses from her set of actidnsEach player’s utility is then
given byu;(a, 8), wherea is the resulting action profile. Intuitively playés type
represents her private information about the game.

Bayesian games can be encoded as dynamic games with ahnmiva by
Nature. Thus dynamic game representations such as theseetdorm can be
used to represent Bayesian games. This is also why we do smisdi dynamic
games of incomplete information here, as they can also bededcusing existing
dynamic game representations. However, incompletesimdition static games do
have independent interest apart from their dynamic gareegretation, as they are
more similar to complete-information static games thanytoanic games.

18

In specifying a Bayesian game, the space bottlenecks atgghalistribution
and the utility functions. Without additional structureewannot do better than
representing each utility functiam : A x © — Ras a table and the type distribution
as a table as well. We call this representationBagesian normal formThe size
of this representation isx L1 (|&i] x |Al]) + L1 |G

A Bayesian game can be converted toiftduced normal formwhich is a
complete-information game with the same seh@layers, in which each player’s
set of actions is her set of pure strategies in the BayesiaregeEach player's
utility under an action profile is defined to be equal to theygts expected utility
under the corresponding pure strategy profile in the Bagagane. Alternatively,
a Bayesian game can be transformed tagent form where each type of each
player in the Bayesian game is turned into one player in a teteynformation
game. The sizes of the normal forms for the two completermétion interpreta-
tions are both exponential in the size of the Bayesian nofomad.

Singh et al. [2004] proposed a incomplete information wersf the graphi-
cal game representation. Gottlob et al. [2007] considersitndar extension of
the graphical game representation. Like graphical ganues, iepresentations are
limited in that they can only explogtrict utility independencies.

In Chapter 6 we discuss Bayesian Action-Graph Games (BAG&$)lly-
expressive compact representation for Bayesian gamesahaiompactly express
Bayesian games exhibiting commonly encountered typesroétate including
symmetry, action- and type-specific utility independeramag probabilistic inde-
pendence of type distributions.

2.2 Computation of Game-theoretic Solution Concepts

Being able to compactly represent structured games is segedut often not suf-
ficient for our purposes. We would like to efficiently reasdroat these games, by
computing game-theoretic solution concepts such as Nashbemgym and corre-
lated equilibrium.

19

2.2.1 Computing Sample Nash Equilibria for Normal-Form Games

In this subsection, we survey the literature on computingiNaquilibria in games
represented in normal form. We start with the definition oENaquilibrium and
some theoretical results on the complexity of finding a sanash equilibrium,
then look at existing algorithms, focusing on approachesgiomes with more
than two players. In summary, the problem of computing onshNequilibrium
is PPAD-complete: polynomial time algorithms are unlikédyexist. Unsurpris-
ingly, existing approaches all require exponential time¢ha size of the normal
form.

In a simultaneous-move game, a playetays apure strategywhen she deter-
ministically chooses an action from her action AgtShe can also randomize over
her actions, in which case we say that she playsixed strategy Formally, let
¢ (X) denote the set of all probability distributions over aXetDefine the set of
mixed strategies forasZ; = ¢ (A)); then a mixed strategy; € Z; is a probability
distribution overA;. Define the set of all mixed strategy profilesas: [ien Zi;
then a mixed strategy profile € X is a tuple of then players’ mixed strategies.
The expected utilityalso known as expected payoff) of playeunder the mixed
strategy profileo, denote by (o), is

4(0)= 3 u@ [] 01(@) (2.2.1)
ac je

whereg; (g) denotes the probability thaplaysa;. Thesupportof a mixed strategy
oj is the set of actions with positive probability under theriisition g;. A support
profile is a tuple of all players’ supports. Given ;, a tuple of mixed strategies of
players other than we define the best response set t be the set of's mixed
strategies that maximize her expected utility:

BR(0-i) = argmaxi (i, 0-i)

Given o_j, the expected utility of playing mixed strategy; is a convex combi-
nation of the expected utilities of playing pure strategies, so at least one of
the pure strategies must be a best response. Thus to chethewbgis a best
response, we just need to compare its expected utility agtia expected utilities

20

of playing each of’s pure strategies.
One of the central solution concepts in game theory is NasHiledgum.

Definition 2.2.1(Nash Equilibrium) A mixed strategy profile is a Nash equilib-
rium if for alli € N, g € BR(0_).

Intuitively, a Nash equilibrium is strategically stableo player can profit by
unilaterally deviating from her current mixed strategyofgrthe above discussion
on best response, an equivalent condition for Nash equifibis that for alli € N,
forallg € A, ui(0) > ui(a,0_;), where by a slight abuse of notation, we denote by
(&, 0-i) the mixed strategy profile wherglays pure strategg and other players
play according tao.

One of the most famous results in game theory is Nash'’s phaafany finite
game always has a Nash equilibrium [Nash, 1951]. For a altori Nash’s proof
(as well as a derivation of Brouwer’s fixed-point theorem,ichihis used by his
proof), see [Jiang and Leyton-Brown, 2007b].

Although a Nash equilibrium always exists, the existena®fw do not give an
efficient algorithm for finding one. The central computatibproblem we consider
here is the problem of findingsample Nash equilibrium

Problem 2.2.2(NASH). Given a game represented in normal form, find one Nash
equilibrium.

McKelvey and McLennan [1996] showed that this problem cafob@ulated
as instances of other of computational problems, e.g.,

¢ finding a fixed point of a continuous function;
¢ finding a global minimum of a continuous function;

e solving a system of polynomial equations and inequalities.

A frequently-used notion of approximation for Nash equilin is the so-
callede-Nash equilibrium:

Definition 2.2.3 (e-Nash Equilibrium) A mixed strategy profiler is an e-Nash
equilibrium for somee > Oif foralli € N, for all g € A, u(0) + € > ui(g,0-;).

Intuitively, each player cannot gain more thay deviating from her mixed
strategy. Wher = 0, we recover Nash equilibrium.

21

Complexity

The NASH problem is different from decision problems stddie complexity the-
ory (e.g. SAT), which have a yes/no answer. Since a Nashileduih always
exists, the decision problem asking about the existenceashiquilibrium can be
solved by a trivial algorithm that always returns “yes”. teesd, we are interested
in finding a Nash equilibrium. This is an example duaction problemwhich re-
quires more complex answers than yes/no. Because we cakwhether a given
mixed strategy profile is a Nash equilibrium by computingeetpd utilities, the
NASH problem is in FNP, the function problem version of NPfdat it belongs to
TFNP, the class of FNP problems whose solutions are gua@bdeexist.

Another issue is that a Nash equilibrium for a game of morettha players
may require irrational numbers in the probabilities, ed¥ghe game itself involves
only rational payoffs. It is impossible to represent suclolation exactly using
floating point numbers. Instead, in such cases we look farrikgns that given
a game and an error toleraneaepresented in binary, computes gfNash equi-
librium. As always, we evaluate complexity as a functionta input size, which
here includes.

A recent series of papers [Chen and Deng, 2006, Daskalakas,e2006b,
Goldberg and Papadimitriou, 2006] established that the NAa®blem is PPAD-
complete for normal form games, even if the game has only tageps. The
complexity class PPAD, introduced by Papadimitriou [19%thnds for Polyno-
mial Parity Argument (Directed version). It is the class ¢fNIP problems whose
solutions are guaranteed by a parity argument. It is wideljeted that PPAD-
complete problems are unlikely to be in P [e.g., Papdimitriz007].

Although any Nash equilibrium is close to arNash equilibrium (in the space
of mixed strategy profiles), a givesiNash equilibrium may be arbitrarily far from
any Nash equilibrium of the game. Etessami and Yannakaki@7[2studied the
complexity of the problem of finding as-Nash equilibrium close to some exact
Nash equilibrium. They showed that the problem is at leastaag as the square-
root sum problem, which is not known even to belong to NP.

22

Algorithms for Two-Player Games

A two-player game igero-sumif for all action profilesa, we haveu; (a) + uz(a) =
0. For zero-sum games, Nash equilibria can be computed impuaiial time by
linear programming (see, e.g., [Shoham and Leyton-BrowA92von Neumann
and Morgenstern, 1944)).

For general two-player games, the NASH problem can be fatedlas a
linear complementarity problem (LCP). The canonical médthar solving such
games is the Lemke-Howson Algorithm [Lemke and Howson, 19&&ts of la-
bels are assigned to mixed-strategy profiles and Nash leqaikre characterized
as “completely-labeled” mixed-strategy profiles. The alpon uses pivoting tech-
niques that are similar to the Simplex Algorithm to trace t¢hphat ends at a
completely-labeled point (i.e., Nash equilibrium). It isgganteed to find a Nash
equilibrium but in the worst case may require exponentiaktiSavani and von
Stengel, 2004]. Lemke’s algorithm [Lemke, 1965] is a redateethod that uses
similar pivoting techniques.

Lipton et al. [2003] used the probabilistic method to shoat tlor any two-
player game, there always exists aquilibrium with log-sized support. Their
result implies a quasi-polynomial algorithm for finding &equilibrium.

Another interesting property of two-player games is thédath of the payoff
matrices have small rank (s&y, then there exists a Nash equilibrium with small
(sizek) support. Such a Nash equilibrium can be found efficientlgbiyng through
the small-sized support profiles. This was discussed byohigt al. [2003], but
they mentioned that the result was known earlier.

For bimatrix games whose entry-wise sum of the two matrieee lsmall rank,
Kannan and Theobald [2009] proposed a polynomial time #hguorfor finding
approximate Nash equilibria. More recently, Adsul et a][2] showed that if the
rank of the sum of the two matrices is 1, a Nash equilibrium lsarcomputed in
polynomial time.

Fictitious Play

We now focus on algorithms faor-player games, whene > 2. We start with Fic-
titious Play [e.g., Brown, 1951, Shoham and Leyton-Browd0%, well-known

23

in the study of learning in games but can also be used as arnthigdor finding
Nash equilibria. It is an iterative process; at each steph @éayeri plays a best
response assuming each of the other playef®oses a mixed strategy correspond-
ing to the empirical distribution of's past actions. For certain classes of games
(e.g., zero-sum games and potential games) the empiristibdition of this pro-
cess converges to a Nash equilibrium. However it is not gueea to converge for
all games, hence it is only a heuristic for general games.

Simplicial Subdivision

One influential class of algorithms for computing Nash eqrid in n-player games
aresimplicial subdivisioralgorithms, which are based on Scarf’s algorithm [1967].
A modern version is due to van der Laan, Talman & van der Heytieé87]. In a
high level, the algorithm does the following:

1. The space of mixed strategy profiles= []; Zi is partitioned into a set of
subsimplexes.

2. We assign labels to vertices of the subsimplexes, in a wely that a “com-
pletely labeled” subsimplex corresponds to an approxinigsh equilib-
rium.

3. The algorithm follows a path of “almost completely laliBlsubsimplexes,
and eventually reaches a “completely labeled” subsimplex.

4. The approximate equilibrium is refined by restarting tlgo@dthm near the
approximate equilibrium, but using a finer grid.

It can be proven (using Sperner's Lemma) that the algorithitinalways find
an e-equilibrium for any givere. However the running time is exponential. In par-
ticular, the path could go through an exponential numbeubgnplexes. Within
each step of the path, one of the computational bottlensat@mputation of labels
of the subsimplex. The computation of labels in turn depemdsomputation of
expected utilities under mixed strategy profiles.

24

Function Minimization

McKelvey and McLennan [1996] discussed formulating Nastildgjia as solu-
tions of a function minimization problem. Given mixed stgy profile o, let
gij(0) be the amount playercould gain by deviating to actiof (and O if j is
worse). A Nash equilibrium then corresponds to a global mimh of the function

V(o) =3 36 (o))
T

subject too being a mixed strategy profile.

Note that the global minimum of(o) is always O, due to the existence of
Nash equilibria. Standard function minimization techmigican then be applied.
In order to find a global minimum, a good starting point is eisé According
to McKelvey and McLennan [1996], this approach is “gengralower than other
methods”.

Homotopy Methods and the Global Newton Method

At a high level, a homotopy method starts with a game that hsisnale solu-
tion, then continuously deforms the payoffs of the gamei] irends at the orig-
inal game of interest. Meanwhile, the method traces the patllash equilibria
for these games, starting at a Nash equilibrium of the simgplme and ending
at a Nash equilibrium of the game of interest. Several hopyotoethods for
computing Nash equilibria have been proposed (a recenegusv[Herings and
Peeters, 2009]). One such approach is Govindan and Wilg003] global New-
ton method (also known as continuation method [e.g., Blurl.eR006]), which
can be thought of as a generalization of the Lemke-Howsoorighgn to then-
player case. It starts at a deformed game where one actioplaar is given a
large bonus, such that there exists a unique equilibriuneagh iteration, it com-
putes the direction of next step by following a gradient.c8ithe path is nonlinear,
the algorithm needs to periodically correct accumulateorersing a local Newton
method.

One implementation of the algorithm is available in Game&rdBlum et al.,
2002]. The bottleneck of each iteration is the computatibthe so-called payoff

25

Jacobian matrix given a mixed strategy profile. Entries efdacobian correspond
to the expected utility of playerwheni plays actiona, playeri’ plays actiond,
and all other players play according to the given mixed sgpaprofile.

Iterated Polymatrix Approximation

Iterated Polymatrix Approximation is another algorithnmoposed by Govindan
and Wilson [2004]. At a high level, the algorithm can be sumizeal as follows.

1. Start at some strategy profie.

2. Consider the problem linearizedait: we get a polymatrix game, which (as
we will see in Section 2.2.2) can be solved using a variarth®the Lemke-
Howson algorithm, to find equilibriune®. The payoffs of the polymatrix
game correspond to entries of the payoff Jacobian.

3. Repeat with starting poirat?.

If this process converges, it converges to a Nash equiitritdowever the algo-
rithm is not guaranteed to converge. Thus, like fictitiousypthis belongs to the
category of heuristics. In cases of non-convergence, tti@epropose using the
result of the algorithm as a starting point for the Govindfgifson global Newton
method.

Support Enumeration

Porter et al. [2008] proposed an algorithm that finds Naslilibga by searching
through support profiles. The algorithm can be summarizddliasvs.

1. Enumerate all support profiles, starting with small suppiaes

2. Given a support profile, determine whether there existaghMquilibrium
having that support profile.

e For 2-player games, this involves solving a linear feai$ybgrogram.

26

e Forn-player games, this involves solving a system of polynoredpla-
tions and inequaliti€sof degreen — 1.

3. Stop when one equilibrium is found.

Since the number of possible support profiles is exponeintitde size of the
normal form, and fon-player games step 2 requires exponential time, the above
algorithm has exponential worst-case complexity. Newtets, the motivation
behind the algorithm is the observation that many games $ranadi-support Nash
equilibria. When such equilibria exist, the algorithm cancgly find them.

Another effective speedup Porter et al.’s algorithm empl®y/to prune off
support profiles by eliminating dominated strategies dmmued on the current
support profile.

2.2.2 Computing Sample Nash Equilibria for Compact
Representations of Static Games

So far we have focused on the NASH problem for normal form gamnia this
section we give an overview of literature on the computatbmNash equilibria
under compact representations. Overall, we will see thatoflmany representa-
tions the NASH problem is in PPAD, and is PPAD-complete fdlyfaxpressive
representations, and (2) algorithms for the NASH problemroaghly be divided
into two categories, “black-box” approaches which trea thpresentation as a
black box, and “special-purpose” approaches which areesgmtation-specific al-
gorithms that exploit the structure of the representatiochsas symmetry and
graph-theoretic properties.

30ne may wonder why not just solve the system of polynomiahéqos and inequalities charac-
terizing the Nash equilibria of the game (see Section 2.Zgre are two reasons one might prefer
to solve the support-profile-specific system here: (1) faalssupport profiles, the resulting systems
are much smaller; (2) it is known that for generic games, thation set of a support-profile-specific
system minus all the inequality constraints has dimens@mw,z.e., it consists of isolated points.
This means one method for solving this system is to solveyk®m minus all the inequality con-
straints (which is a system of polynomial equations), theeck the solutions against the inequality
constraints. Compared to the problem of solving systemslyihpmial equations and inequalities,
a wider variety of algorithms are available for solving padynial equations, including ones based
on (complex) algebraic geometry such as Groebner basisoagetnd polynomial homotopy contin-
uation methods.

27

Complexity

Fully-expressive game representations such as graphacatgand AGGs can en-
code arbitrary normal form games. Therefore finding Nasliliega for these
representations is PPAD-hard. In other words, polynonma talgorithms are un-
likely to exist.

On the other hand, Daskalakis et al. [2006a] proved thewitig result:

Theorem 2.2.4([Daskalakis et al., 2006a])f a game representation satisfies the
following properties: (1) the representation hpslynomial type(defined in Sec-
tion 2.1.1), and (2) expected utility can be computed usmguithmetic binary
circuit with polynomial length, with nodes evaluating tonstant values or per-
forming addition, substraction, or multiplication on thenputs, then the NASH
problem for this representation can be polynomially redlittiethe NASH problem
for some two-player, normal-form game.

Since the NASH problem is in PPAD for two-player, normalafiogames, the
theorem implies that if the above properties hold, the NASbbfem for such
a compact game representation is in PPAD. Many of the egistipresentations
satisfy these conditions. This is a positive result: sirieee NASH problems for
such a compact representation reduces to NASH for a tweplggme with size
polynomial in the size of the compact representation, aghsuch a two-player
game can be much easier than solving the normal form of tigghatigame.

The above result suggests that the computation of expedttid is of funda-
mental importance for the NASH problem. Another exampla®fmportance is
the observation that if we can compute expected utilitiesscan verify a solution
of the NASH problem. We will see more useful applications xpected utility
computation throughout this survey.

Speeding up Existing Algorithms and the Black-box Approach

Quite a few of the existing algorithms for finding Nash edurikh of normal form
games use computation of expected utility as a subroutineamfles include
Govindan and Wilson’s Global Newton Method and IteratedyPaltrix Approxi-
mation, as well as the simplicial subdivision algorithm.

28

For many compact representations (including all compamtesentations in-
troduced in Section 2.1.1), there exist efficient algorghior computing expected
utility that scale polynomially in the representation sjeeg., Papadimitriou and
Roughgarden, 2008]. Using these methods instead of ndormatbased methods
for the expected utility subroutine, we can achieve exptakespeedup of these
existing Nash equilibrium algorithms without introduciagy change in the algo-
rithms’ behavior or output. Blum et al. [2006] were the firstdropose such an
approach, speeding up Govindan and Wilson’s algorithm832R2004] for graphi-
cal games and MAIDs. In Chapter 3 we discuss our work on spgegh Govindan
and Wilson’s Global Newton Method and the simplicial sulgion algorithm for
AGGs.

From a software-engineering point of view, such algorithrage a nice modu-
lar structure: an algorithm calls certain subroutines ples by the representation
that access information about the game, but is otherwisevangaof the internal
structure of the representation. At the same time, the septation-specific sub-
routines do not need to know about the details of the calliggrahm. We call
such algorithmsblack-boxalgorithms.

Another example of the black-box approach is the very readaptation of
the support-enumeration approach to AGGs and graphicatg@iimompson et al.,
2011]. Here there are several required subroutines; orfeeifotmulation of the
polynomial system given a support profile. The polynomisksgn contains expres-
sions for expected utilities, the construction of which barthought of as symbolic
computation of expected utilities. Many techniques for ¢lxpected utility prob-
lem in compact games translate to the symbolic problem. Herasubroutine is
the elimination of dominated strategies conditioned onpgpstt profile.

The black-box approach is not limited to the problem of cotimgua sample
Nash equilibrium. For example, in Section 2.2.7 we look gid@mitriou and
Roughgarden’s [2008] algorithm for the problem of compgitencorrelated equi-
librium, which requires a polynomial-time expected wiktubroutine. This is also
an example of a black-box algorithm that isn’t a direct adaph of an existing
algorithm for the normal form.

On the other hand, specific representations may exhibidicestructure that
can be exploited for efficient computation. We call theseasgntation-specific al-

29

gorithmsspecial-purposalgorithms. Intuitively, black-box algorithms and spécia
purpose algorithms both exploit the compact represemtatistructure, albeit at
different levels: a black-box algorithm exploits struetdo speed up a subroutine
of the algorithm, keeping the rest of the algorithm intacbas different represen-
tations, while in a special-purpose approach the entirerilgn is designed with
a specific representation in mind. We now go through sevepksentations and
their corresponding special-purpose algorithms.

Polymatrix Games

Yanovskaya [1968] showed that Nash equilibria of a polyir@ame are solutions
of an LCP. Such equilibria can be computed using a variarfiet.emke Howson
algorithm [Howson Jr, 1972].

Symmetric Games

As mentioned in Section 2.1.1, Nash [1951] proved that amyrsgtric game al-
ways has a symmetric Nash equilibrium. The space of symosthategy profiles
has lower dimension than the space of mixed strategy pro$itesne might expect
the problem of finding symmetric Nash equilibria to be eatian NASH in the

general case.

Gale et al. [1950] showed that NASH for bimatrix games candukiced to
finding a symmetric Nash equilibrium for symmetric bimatgames. Therefore,
the recent PPAD-completeness result for bimatrix gamesiesthat finding sym-
metric Nash is also PPAD-complete.

On the other hand, for symmetric games with a large numbetagfeps but
a small number of actions, Papadimitriou and Roughgardé69Rproposed a
polynomial-time algorithm for finding a symmetric Nash didium. The algo-
rithm is based on the enumeration of all symmetric suppafilps and the solution
of a polynomial system for each support profile.

Anonymous Games

For anonymous games, the existence of symmetric equilibrieo longer guar-
anteed. Thus the above algorithm for symmetric games witmall ssumber of

30

actions does not apply. Nevertheless, in a series of passisalakis and Papadim-
itriou [2007, 2008, 2009] proposed polynomial-time altfums for finding approx-
imate Nash equilibria for anonymous games having a constamber of actions
per player.

Graphical Games

Kearns et al. [2001] presented a polynomial-time algorifiomfinding approxi-
mate Nash equilibrium in graphical games on tree graphs.algwithm is based
on a discretization of the mixed strategy space and a megses3ing approach
similar to probabilistic inference algorithms for Bayesiaetworks. For comput-
ing approximate Nash equilibria in graphical games on gdrgraphs, Ortiz and
Kearns [2003] and Vickrey and Koller [2002] proposed selvapproaches based
on similar ideas.

Elkind et al. [2006] presented a polynomial-time algoritfon finding exact
Nash equilibria for graphical games on path graphs. Thel@nolof finding exact
Nash for tree graphs is still open.

Symmetric AGGs

Besides the black-box algorithms that we discuss in Chaht&askalakis et al.
[2009] presented a polynomial-timepecial-purposelgorithm for finding an ap-
proximate symmetric Nash equilibrium in symmetric AGGs metgraphs. Their
algorithm is based on a discretization of the space of symenmixed strategies
and a message-passing/dynamic programming approach.

2.2.3 Computing Sample Bayes-Nash Equilibria for
Incomplete-information Static Games

Bayes-Nash equilibrium is a solution concept for Bayesemes that is analogous
to Nash equilibrium for complete-information games. Befae give its definition
we first need to define strategies in Bayesian games. In a Baygame, player

i can deterministically choosepaure strategy is in which given eaclf € ©; she
deterministically chooses an actigi{8). Playeri can also randomize and play
a mixed strategyo;, in which her probability of choosing; given 6 is ci(&|8).

31

That is, given a typé € ©;, she plays according to distributian(-|6) over her
set of actiong\,. A mixed strategy profiler = (o1,...,0y) is a tuple of the players’
mixed strategies.

The expected utilityof i given 6 under a mixed strategy profile is the ex-
pected value of’'s utility under the resulting joint distribution ad and 8, condi-
tioned oni receiving types:

u(018) = 3 P(6.18) 3 u(@6)[] 0i(a16)). (2.2.2)
S a j

A mixed strategy profileo is a Bayes-Nash equilibriunf for all i, for all 6,
forall a € Ay, u(a|8) > u(0%3%|8), wherea¥% 3 is the mixed strategy profile
that is identical tao except that playsa; with probability 1 giveng,.

Computing Bayes-Nash Equilibria via Complete-information Interpretations

Harsanyi [1967] showed that a Bayesian game can be intethest one of two
equivalent complete-information games via both “inducedmal form” and “agent
form” interpretations. Specifically, the Nash equilibridteese complete-information
games correspond to Bayes-Nash equilibria of the Bayesiareg (A detailed de-
scription of these correspondences is given in Chapter BYs Dne approach is
to interpret a Bayesian game as a complete-information ganabling the use of
existing Nash-equilibrium-finding algorithms. Howeves, mentioned in Section
2.1.3, generating the normal form representations undgér @othese complete-
information interpretations leads to an exponential blpuwurepresentation size.
Howson and Rosenthal [1974] applied the agent form tramsdtion to 2-
player Bayesian games, resulting in a complete-informatidymatrix game which
(recall from Section 2.2.2) can be solved using a varianheflLtemke-Howson al-
gorithm. Their approach was able to avoid the aforementi@xg@onential blowup
because in this case the agent forms admit a more compaesegpation (as poly-
matrix games). However, fan-player Bayesian games the corresponding agent
forms do not correspond to polymatrix games or any other knmpresentation.
Nevertheless, in Chapter 6 we propose a general approaatofioputing sam-
ple Bayes-Nash equilibria in-player Bayesian games (and BAGGs in particular).

32

Specifically, our approach solves the agent form of the BAGBgI black-box
versions of the Global Newton Method [Govindan and Wilsdd03 and the sim-
plicial subdivision algorithm [van der Laan et al., 1987danstead of explicitly
constructing the normal form of the agent form we use the BA#3& compact
representation of its agent form.

Special-purpose Approaches

Singh et al. [2004] proposed an incomplete information ieeref the graphical

game representation, and presented efficient algorithme®foputing approximate
Bayes-Nash equilibria in the case of tree games. Gottlob ¢2@07] considered

a similar extension of the graphical game representatidreaalyzed the problem
of finding a pure-strategy Bayes-Nash equilibrium. Oligheeal. [2010] pro-

posed a heuristic search algorithm for common-payoff Bayegames, which has
applications to cooperative multi-agent problems.

2.2.4 Computing Sample Nash Equilibria for Dynamic Games

In perfect-information extensive-form games, all infotina sets contain a single
node. As a result, each subtree of the extensive-form gaseefdrm asubgame
which can be solved independently of the rest of the tree.bBlokward induction
algorithm computes a Nash equilibrium of the game by sohgnggames from
the leaves to the root. The running time is linear in the sizth® extensive form.
Furthermore, when the game is zero sum, it is possible toeppants of the game
tree that are not optimal. The canonical algorithm, AlpleaBpruning, has been
influential in the design of high-performance game-playaygtems for perfect-
information games such as chess and checkers.

For extensive-form games with imperfect information, sfanming to the in-
duced normal form entails an exponential blowup in repriegiem size. This is
the main difficulty of the Nash equilibrium problem for dyn@ngames compared
to the simultaneous-move case, and avoiding this expaidntwup is the focus
of considerable existing literature.

One common assumption eerfect recall roughly, that each player remem-
bers all her decisions and observations. For dynamic gantbsperfect recall,

33

there always exists a Nash equilibriumbehavior strategieswhere a player in-
dependently chooses a distribution over actions at eacleofriformation sets
[Kuhn, 1953]. Computationally, behavior strategies arserao work with, since
representing a behavior strategy requires space lineaeiaxtensive form, while
representing a mixed strategy (i.e. a distribution oveemirategies) requires ex-
ponential space. For MAIDs, a behavior strategy for a pl&ygails choosing, at
each of her decision nodes and for each possible instamtiafithe node’s parents,
a probability distribution over her choices.

The sequence fornfiormulation of Koller, Meggido and von Stengel [1996]
encodes a behavior strategy as a vector of “realizationgtitities”. Using this
formulation, the Nash equilibrium problem for zero-sum alyric games can be
formulated as a linear program of size polynomial in the msitee form represen-
tation. For two-player general-sum dynamic games, usiagéguence form the
Nash equilibrium problem can be formulated as a linear cemphtarity program
(LCP) and solved using Lemke’s algorithm.

For n-player games, Govindan and Wilson [2002] proposed an sixterof
their Global Newton Method to perfect-recall extensivesiaggames. As with the
sequence form, strategies are encoded as realizationjités. Daskalakis et al.
[2006a] showed that the problem of finding a Nash equilibrinrbehavior strate-
gies for perfect-recall extensive-form games is in PPAD.

For compact representations, existing approaches can agadlivided into
black-box and special-purpose ones. Koller and Milch [2@@tposed a special-
purpose approach for decomposing a MAID into subgraphd) ebahich can be
solved independently. As in the simultaneous-move cage¢cdmputation of ex-
pected utility is again an important subtask used by manyegtmeoretic compu-
tations. For example, such a subroutine can be used to riiofistplay, although
(like in the simultaneous-move case) it is not guaranteatbtwerge. Blum et al.
[2006] proposed a black-box approach for adapting GovirsgehWilson’s Global
Newton Method for extensive-form games to MAIDs, by spegdip the subtask
of computing the Jacobian matrix using a MAID-specific sultiree. In Chapter 5
we show that this algorithm can also be adapted to TAGGs.

34

2.2.5 Questions about the Set of All Nash Equilibria of a Game

So far we have focused on finding one arbitrary Nash equilibri Since in gen-
eral there can be more than one Nash equilibrium in a game revecaetimes
more interested in questions about the set of all Nash egaili Such problems
include finding all Nash equilibria, counting the number qfigibria, and finding
optimal Nash equilibria according to some objective suchazsal welfare which
is defined to be the sum of the players’ utilities. Unsurpgsi, such problems are
usually intractable in the worst case (see e.g. [ConitzdrSandholm, 2008]).

For the problem of finding all Nash equilibria, Mangasaria@dg4] proposed
an algorithm for bimatrix games. More recently, Avis et @0]0] described and
implemented two algorithms for bimatrix games. Herings Beéters [2005] pro-
posed an algorithm that computes all Nash equilibria im-gutayer normal form
game by enumerating all support profiles. Compared to thpastygnumeration
method for finding a sample Nash equilibrium as discussecatiéh 2.2.1, here
the algorithm does not stop at a single Nash equilibrium a@pk going until all
support profiles have been visited. At each support profiecorresponding poly-
nomial system is solved by either polynomial homotopy curdtion or Groebner
basis methods.

For the problem of computing optimal Nash equilibria, Sardhet al. [2005]
proposed and evaluated a practical approach for bimatnregaising mixed-integer
programming.

2.2.6 Computing Pure-Strategy Nash Equilibria

A pure-strategy Nash equilibrium (PSNEB)Jso known agpure Nash equilibriunor
pure equilibrium is a pure strategy profile that is a Nash equilibrium. Edenty:

Definition 2.2.5. An action profile ac A is apure-strategy Nash equilibrium (PSNE)
of the gamd if for alli € N, for all & € A;, ui(a,a;) > ui(a,ai).

Unlike mixed strategy Nash equilibria, PSNEs do not alwagisten a game.
Nevertheless, in many ways PSNE is a more attractive salatiacept than mixed-
strategy Nash equilibrium. First, PSNE can be easier tdfyustcause it does not
require the players to randomize. Second, it can be eas@malyze because of

35

its discrete nature (see, e.g., [Brandt et al., 2009]). &laee several versions of
the problem of computing PSNEs: deciding if a PSNE existsliffim one, count-
ing the number of PSNESs, enumerating them, and finding thenapequilibrium
according to some obijective (e.g., social welfare). Uniilee NASH problem, for
games in normal form these problems can be solved in polyedime in the in-
put size, by enumerating all pure strategy profiles. Of aausiice the size of the
normal form representation grows exponentially in the nemdd players, this is
problematic in practice. We thus focus on the problem for gach representations.
The problem is hard in the most general case, when utilitgtfans are arbitrary,
efficiently-computable functions represented as cird@ithoenebeck and Vadhan,
2006] or Turing Machines [Alvarez et al., 2005]. This is imt@st to the NASH
case, where the Nash problems for both the normal form ahddupressive com-
pact representations are PPAD-complete.

Iterated Best Response

Iterated best response is a well-known both as a learningrdigs and as a heuris-
tic algorithm for PSNE [e.g., Shoham and Leyton-Brown, J000is an iterative
process starting at some arbitrary pure strategy profileeakh step, if there ex-
ists a player that is not playing a best response to the dustee strategy profile,
that player changes her strategy to a best response. Thespretops when all
are playing best responses, in which case we have reachel& RSelated pro-
cess idterated better respons@ which a deviating player only has to pick a pure
strategy that is better than the current one. These prcceasebe carried out for
all representations that provide efficient evaluation ditigls under arbitrary pure-
strategy profiles. However, like fictitious play, these aseguaranteed to converge
for games in general.

Graphical Games

Gottlob et al. [2005] were the first to analyze the existerroblem of pure-strategy
Nash equilibria in graphical games. They proved that whike problem is NP-
complete in general, on games with graphs of bounded hyeevtidth there ex-
ist a dynamic-programming algorithm that determines thstemce of PSNE (and

36

finds one if it exists) in time polynomial in the size of the regentation. Daskalakis
and Papadimitriou [2006] reduced the problem to a MarkovdRenField (MRF),
and then applied the standard clique tree algorithm to thgltreg MRF. Among
their results they showed that for graphical games on grajthdog-sized treewidth,
and bounded neighborhood size and bounded number of apiomayer, the ex-
istence of pure Nash equilibria can be decided in polynotitias.

Jiang and Safari [2010] analyzed the problem of decidingitigtence of pure-
strategy Nash equilibria for graphical games on restricledses of graphs, and
gave a complete characterization of hard and easy clasggapifical games with
bounded indegree, showing that the only tractable cladsgsphs are those with
bounded treewidth (after iterated removal of sinks).

Daskalakis and Papadimitriou [2005] analyzed the compefifinding pure
and mixed Nash equilibria of graphical games on highly ragglkaphs (specifi-
cally, thed-dimensional grid) with identical local payoff functionsrfevery player.
Such games can be represented very compactly, as only thieplayoff function
at one neighborhood needs to be stored. They showed thatdipdire-strategy
Nash equilibria is tractable d = 1 and NEXP-complete otherwise.

Symmetric Games

For symmetric games, questions about PSNE can be compusgghsiorwardly
by checking all configurations, which requires polynomiald in the size of the
representation, and polynomial timenrnwhen the number of actions is fixed. In-
deed, Brandt et al. [2009] proved that the existence proliber@SNE of symmet-
ric games with constant number of actions is in the complexissAC®, which

is the set of problems that can be solved by polynomial-scmtstant-depth cir-
cuits with unlimited-fanin AND- and OR-gates. For anonymm@ames, efficient
algorithms for PSNE have also been proposed [Brandt et@9,2Daskalakis and
Papadimitriou, 2007].

Ryan et al. [2010] considered the problem of finding purategy Nash equi-
libria in symmetric games whose utilities are very compaapresented, such that
the number of players can be exponential in the representaire, and showed
that if the utility functions are represented as pieceMiisear functions, there exist

37

polynomial-time algorithms for finding a pure-strategy Na&sgjuilibria and count
the number of equilibria.

Congestion Games

For congestion games, a PSNE always exists [Rosenthal].1@in3hermore, iter-
ated best-response dynamics always converge to a PSNE fviarahd Shapley,
1996]. However, Fabrikant et al. [2004] showed that suctadyins may require an
exponential number of steps to converge, and furtherma@tbblem of finding
a PSNE for congestion games is complete for the complexagscPLS (which
stands for Polynomial Local Search), which implies that bmpamial-time algo-
rithm is unlikely to exist.

For singleton congestion gameahere the game is symmetric and each ac-
tion consists of choosing only a single resource, leong.€R805] presented a
polynomial-time algorithm for finding an optimal PSNE.

AGGs

Since AGGs can compactly encode arbitrary graphical gathesxistence prob-
lem is NP-complete for AGGs. Conitzer [pers. comm., 2004] Baskalakis et al.
[2009] showed that the problem is NP-complete even for symoeGGs.

In Chapter 4 we present a dynamic programming approach fawpuating
PSNE in AGGs. For symmetric AGGs with bounded treewidth, algorithm de-
termines the existence of PSNE (and returns one if any gxisfolynomial time.
We also show that our approach can be extended to certaseslas asymmetric
AGGs.

2.2.7 Computing Correlated Equilibrium

First proposed by Aumann [1974, 1987], correlated equilibr (CE) is another
important solution concept. Whereas in a mixed strategyhMagiilibrium play-
ers randomize independently, in a correlated equilibribmplayers are allowed
to coordinate their behavior based on signals from an irgdrany. CE has in-
teresting connections to the theory of online learning: ehwpirical distribution
of no-internal-regret learning dynamics converge to theo§€E [e.g., Hart and

38

Mas-Colell, 2000, Nisan et al., 2007].

A correlated equilibrium is defined as a distributioaver action profiles, such
that when a trusted intermediary draws a strategy prafftem this distribution,
privately announcing to each playeher own componeng;, i will have no in-
centive to choose another strategy, assuming others falhevsuggestions. This
requirement can be written as a set of lingaentive constrainten x. Combining
these with the constraints thats a distribution, the set of correlated equilibria can
be formulated as a linear feasibility program with size polyial in the size of
the normal form. (A detailed description of this formulatiis given in Chapter 7.)
Thus it takes polynomial time in the size of the normal fornteonpute one CE,
and indeed to compute an optimal CE according to some lingactve function.

For compact representations, the same LP can have an exjgbmeimber of
variables, due to the fact that the input size can be exp@atignsmaller. Thus,
the above approach is not efficient for compact representatiAnother challenge
is that even explicitly representing a solution vectaran take exponential space.
Thus, a compact representation for the distributiois required. Furthermore,
in order for the intermediary to be able to tractably implemsuch a correlated
equilibrium, we also need an efficient algorithm for samgplirom the distribution.

In a landmark paper, Papadimitriou and Roughgarden [20@fjgsed a black-
box algorithm for computing a sample CE, which runs in polyia time when
the game representation has polynomial type and when tharpalynomial-time
algorithm for computing expected utility given mixed ségy profiles. The solu-
tions are represented as mixtures of product distributi®ecently, Stein, Parrilo
and Ozdaglar [2010] showed that this algorithm can fail td &in exact correlated
equilibrium, but can be (easily) modified to efficiently camg approximate corre-
lated equilibria. In Chapter 7 we present a variant of thg&tid Against Hope
algorithm that guarantees the polynomial-time identifaratof exact correlated
equilibrium.

For the problem of computing the optimal CE, Papadimitriod &oughgar-
den [2008] showed that the problem is NP-hard for many exjstepresentations,
and gave a sufficient condition for the problem to be traetalilhey showed that
symmetric games, anonymous games and graphical gameseogréghs satisfy
such a condition. In Chapter 8 we give a sufficient conditivet generalizes Pa-

39

padimitriou and Roughgarden’s condition. In particulae weduce the optimal
CE problem to thaeleviation-adjusted social welfare probleacombinatorial op-
timization problem closely related to the optimal socialfas® outcome problem.
This framework allows us to identify new classes of gamesaoich the optimal
CE problem is tractable, including graphical polymatrixrges on tree graphs. Our
algorithm can be understood as a black-box algorithm, détiation-adjusted so-
cial welfare problermas the required subroutine.

A couple of special-purpose approaches have been propmsgihphical games.
Kakade et al. [2003] proposed an algorithm for computing av@& maximum en-
tropy in tree graphical games in polynomial time. More ralyeikKamisetty et al.
[2011] proposed a practical approach for approximatingotstenal CE in graphi-
cal games.

Computing Coarse Correlated Equilibria

Coarse correlated equilibrium (CCE) [Hannan, 1957] is atgwh concept closely
related to CE. The difference between the two is the clasgwadfatons they con-
sider. Whereas CE requires that each player have no prefitabiation even if she
takes into account the signal she receives from the intaemgd CE only requires
that each player have no profitableconditional deviationCCE is also related to
online learning: the empirical distribution of a no-extrregret learning dynam-
ics converge to the set of CCE.

As in the case of CE, the set of CCE can also be formulated a®at formal
description is given in Chapter 8. A CE is also a CCE, and heeselts for the
polynomial-time computation of a sample CE also apply todbmputation of a
sample CCE.

On the other hand, since the optimal CE problem is not alwadable, the
optimal CCE problem could be easier than the optimal CE praldbr some repre-
sentations. In Chapter 8 we show that for singleton congesgfames, the optimal
CCE problem can be solved in polynomial time, while the caxity of the opti-
mal CE problem for this class of games is unknown.

40

Computing Extensive-form Correlated Equilibria

Recently, von Stengel and Forges [2008] proposed extefwine correlated equi-
librium (EFCE), a solution concept for perfect-recall exdige-form games that is
closely related to correlated equilibrium. Recall that mextensive-form game,
each pure strategy of a player prescribes a move for eachr afifoemation sets.
Like correlated equilibria, an EFCE is a distribution overestrategy profiles.
Whereas in a CE of the induced normal form of the game thenmdiary rec-
ommends a pure strategy to each player at the start of the, garae EFCE the
intermediary recommends a move to the player only when thesimonding infor-
mation set is reached.

Huang and Von Stengel [2008] described a polynomial-tirgerithm for com-
puting sample extensive-form correlated equilibria. Thégorithm follows a very
similar structure as Papadimitriou and Roughgarden’'p$&did Against Hope algo-
rithm, and the flaws of the Ellipsoid Against Hope algorithoirted out by Stein
et al. [2010] also carry over. As a result, the algorithm caihtb find an exact
EFCE. In Chapter 7 we extend our fix for Papadimitriou and Rgagden’s Ellip-
soid Against Hope algorithm to Huang and Von Stengel’s dtlgar, allowing it to
compute an exact EFCE.

2.2.8 Computing Other Solution Concepts

Other solution concepts have been proposed in the econditaresure to represent
different notions of rational behavior. Computer scidstisave studied the corre-
sponding computational problems, including the comporedif (iterated) elimina-
tion of dominated strategies [Conitzer and Sandholm, 208&jckelberg equilib-
rium [Conitzer and Sandholm, 2006, Paruchuri et al., 20€18ked under rational
behavior (CURB) sets [M. Benisch and Sandholm, 2010], anil eguilibrium
[Goemans et al., 2005].

While these are interesting problems, they are not direetbted to this thesis
and we refer interested readers to the papers referenced.abo

41

2.3 Software

GAMBIT [McKelvey et al., 2006] is a collection of softwaredls for game theo-
retic analysis. It includes implementations of many of tRistang algorithms for
the normal form and the extensive form. It also provides lyal user inter-
face for creating normal form and extensive form games, ingnalgorithms for
computing Nash equilibria, and visualizing the resultimgfites. It is available at
http://www.gambit-project.org.

Gametracer [Blum et al., 2002] provides black-box adapatof two of Govin-
dan and Wilson’s algorithms for finding a sample Nash equiih: Global New-
ton Method [Govindan and Wilson, 2003] and Iterated Polymatpproximation
[Govindan and Wilson, 2004]. The algorithms are written as-@unctions that
takes an instance ofyhngane”, an abstract class with an abstract methéat
computing expected utilities.As a result, in order to apply these algorithms to a
specific game representation, one merely has to implemenefiresentation as a
subclass ofnngane. The package itself only provides a subclass for the normal
form representation. Gametracer’s source code is avaifabldownload at
http://dags.stanford.edu/Games/gametracer.html. It has also been adapted and in-
corporated into GAMBIT.

GAMUT [Nudelman et al., 2004] is a suite of game instance gaoes. It
includes many classes of games studied in the economicsamguter science
literature, and parameterization options for the dimemsiof the game, the types
of utility functions and randomization. The stated purpoE&AMUT is for eval-
uating game-theoretic algorithms. The main output forrmetFAMUT is normal
form. GAMUT is available ahttp://gamut.stanford.edu.

In Appendix A we describe the software tools we implementatiraake avail-
able athttp://agg.cs.ubc.ca. They include command-line programs for finding sam-
ple Nash equilibria in AGGs and BAGGs, a graphical user fater for creating,
editing and visualizing AGGs, and extensions of GAMUT thahgrate AGG in-
stances.

4An abstract method in C++ means that only the interface ohotets given; any subclass that
is not also abstract needs to provide an implementationeorfrtéthod.

5Another abstract method is for computing payoff Jacobiaee (Chapter 3 for the definition),
which usually requires similar types of computations aseetgd utilities.

42

http://www.gambit-project.org
http://dags.stanford.edu/Games/gametracer.html
http://gamut.stanford.edu
http://agg.cs.ubc.ca

Chapter 3

Action-Graph Games

3.1 Introduction

In this chapter we focus on complete-information simulaargeaction games. An
overview of the literature on compact representations andputation of solution
concepts for such games is given in Chapter 2, specificaltyi®es 2.1.1, 2.2.2
and 2.2.7. As we summarized in Chapter 1, the existing reptasons either
only capture a subset of the known types of structure (andgystrict and action-
specific independence, and additivity), or are only ableeforesent a subset of
games. Meanwhile, the computationexfpected utilitthas emerged as a key sub-
task required by many black-box algorithms for computinigitson concepts.

3.1.1 Our Contributions

Action-graph games (AGGs) are a general game representat can be under-
stood as offering the advantages of—and, indeed, unifyiegjsting representa-
tions including graphical games and congestion games. grkphical games,
AGGs can represent any game, and important game-theomtiputations can

be performed efficiently when the AGG representation is cachpHence, AGGs

offer a general representational framework for game-tteocomputation. Like
congestion games, AGGs compactly represent contextfgpieciependence, anonymity,
and additivity, though unlike congestion games they do equire any of these.
Finally, AGGs can also compactly represent many games that@ compact as

43

either graphical games or as congestion games.

We begin this chapter in Section 3.2 by defining action-grgaimes, includ-
ing the basic representation and extensions with functomtes and additive utility
functions, and characterizing their representation siteSection 3.3 we provide
several more examples of structured games which can be ctisnpegpresented as
AGGs. Then we turn from representational to computatiosglés. In Section 3.4
we present a dynamic programming algorithm for computing@ent’'s expected
utility under an arbitrary mixed-strategy profile, prove @domplexity, and explore
several elaborations. In Section 3.5 we show that (as alaoyalf the polynomial
complexity of our expected utility algorithm) the problerhfmding an e-Nash
equilibrium of an AGG is in PPAD: this is a positive result, 8Gs can be ex-
ponentially smaller than normal-form games. We also show toouse our dy-
namic programming algorithm to speed up existing methodsdmputing sample
e-Nash ande-correlated equilibria. Finally, in Section 3.6 we prestm results
of extensive experiments with some of these algorithms,afstnating that AGGs
can feasibly be used to reason about interesting gamesénaimaccessible to any
previous techniques. The largest game that we tackled irexpgriments had 20
agents and 13 actions per agent; we found its Nash equitibiriul4.3 minutes. A
normal form representation of this game would have invo®dd 1034 numbers,
requiring an outrageous¥x 10*2° gigabytes even to store.

Finally, let us describe the relationship between this tdrapnd past work
on AGGs. Leyton-Brown and Tennenholtz [2003] introducechleeffect games,
which can be understood as symmetric AGGs in which utilityclions are re-
quired to satisfy a particular linearity property. Bhat drel/ton-Brown [2004]
introduced the basic AGG representation and some of the etatignal ideas for
reasoning with them. The dynamic programming algorithm firas proposed in
Jiang and Leyton-Brown [2006], as was the idea of functiodeso An extended
version of that paper appeared as Chapter 2 of the MSc thiaigg] 2006]. The
current chapter is based on the journal publication [Jidrad.£2011], which sub-
stantially elaborates upon and extends the represergadioch methods from these
earlier papers. Specifically, [Jiang et al., 2011] intrasiithe additive structure
model and the encoding of congestion games, several of drapgs, our compu-
tational methods fok-symmetric games and for additive structure, our speedup of

44

the simplicial subdivision algorithm, and all experimeptssented in this chapter
(Section 3.6).

3.2 Action Graph Games

This section has three parts, each of which defines a diff &@G variant. In Sec-
tion 3.2.1 we define the basic AGG representation (which weABG-0), char-
acterize its representation size, and show how it can be tosegbresent normal-
form, graphical, and symmetric games. In Section 3.2.2 wedunce the idea
of function nodesshow how AGGs with function nodes (AGG-FNSs) can capture
additional structure in several example games, and showtbeepresent anony-
mous games as AGG-FNs. In Section 3.2.3 we introduce AGGvHtiisadditive
structure (AGG-FNA), which compactly represent addititreicture in the utility
functions of AGGs, and show how congestion games can bersilyciritten as
AGG-FNAs.

3.2.1 Basic Action Graph Games

We begin with an intuitive description of basic action-dgragames. Consider a
directed graph with nodes’ and edge<, and a set of agents = {1,...,n}.
Identical tokens are given to each agemt N. To play the game, each agdnt
simultaneously places her token on a negde A, whereA; C /. Each node in
the graph thus corresponds to an action choice that is bl@ila one or more of
the agents; this is where action-graph games get their neawh agent’s utility is
calculated according to an arbitrary function of the nodediose and theumbers
of tokens placed on the nodes that neighbor that chosen ndlde graph. We will
argue below that any simultaneous-move game can be repedgarthis way, and
that action-graph games are often much more compact thaagyapresented in
other ways.

We now turn to a formal definition of basic action-graph gamést N =
{1,...,n} be the set of agents. Central to our model isab&on graph

Definition 3.2.1 (Action graph) Anaction graphG = (<, E) is a directed graph
where:

45

e o/ is the set of nodes. We call each nade < anaction and.«/ theset of
distinct actions For each agent £ N, let A be the set of actions available
to i, with & = UieNAi.l We denote byjae A one of agent i's actions. An
action profile(or pure strategy profileis a tuple a= (ay,...,a,). Denote
by A the set of action profiles. Then=A[];cy A where[] is the Cartesian
product.

e E is a set of directed edges, where self edges are allowed. awea’ss
a neighborof a if there is an edge frona’ to a, i.e,, (a’,a) € E. Let
the neighborhoodof a, denotedv(a), be the set of neighbors df, i.e.,
v(ia)={a'e #|(a',a) e E}.

Given an action graph and a set of agents, we can further defimefiguration
which is a feasible arrangement of agents across nodes ictian graph.

Definition 3.2.2(Configuration) Given an action graplie/, E) and a set of action
profiles A, aconfigurationc is a tuple of|.<7| non-negative integeréc(a))ge.r,
where ¢a) is interpreted as the number of agents who chose actien</, and
where there exists someaA that would give rise to c. Denote the set of all
configurations as C. Le¥ : A— C be the function that maps from an action
profile a to the corresponding configuration c. Formally, Ec#’(a) then ¢a) =
HieN:ag=a}|foral ae.

We can also restrict a configuration to a given node’s neigidum.

Definition 3.2.3(Configuration over a neighborhoodpiven a configuration € C
and a nodex € <7, let theconfiguration over the neighborhoofla, denoted &,
be the restriction of c tv(a), i.e., ¢ = (c(a’)) grcy(q)- Similarly, let G denote
the set of configurations overa) in which at least one player plays.? Let#(@) :
A — C(?) be the function which maps from an action profile to the cqoesling
configuration ovew(a).

1Different agents’ action setdj, Aj may (partially or completely) overlap. The implications of
this will become clear once we define the utility functions.

2|f action o is in multiple players’ action sets (say playérsj), and these action sets do not
completely overlap, then it is possible that the set of caméiions given that playeda (denoted
c(s))y is different from the set of configurations given thatlayeda. C(?) is the union of these sets
of configurations.

46

Now we can state the formal definition of basic action-gragimgs as follows.

Definition 3.2.4 (Basic action-graph gamep basic action-graph game (AGG-
is atuple(N, A, G, u) where

e N is the set of agents;
o A=]ienA is the set of action profiles;

e G = (&/,E) is an action graph, where7 = Jicy A is the set of distinct
actions;

e U= (U%)qc. is a tuple of|.e7| functions, where each®u C(%) — R is the
utility function for actiona. Semantically, #i(c(?)) is the utility of an agent
who choser, when the configuration over(a) is @),

For notational convenience, we defin@r, c(@)) = u?(c(@) andu;(a) = u(a;, @ (a)).
We also definé_; = [, Aj as the set of action profiles of agents other thamd
denote an element &_; by a_;.

Example: Ice Cream Vendors

The following example helps to illustrate the elements &f 8GG-0 representa-
tion, and also exhibits context-specificity and anonynmityiility functions. This
example would not be compact under the existing game rape&ms discussed
in the introduction. It was inspired by Hotelling [1929],chelaborates an example
used in Leyton-Brown and Tennenholtz [2003].

Example 3.2.5(Ice Cream Vendor game)lConsider a setting in which n vendors
sell ice cream or strawberries, and must choose one of faations along a beach.
There are three kinds of vendors; ite cream vendors, gistrawberry vendors,
and ny vendors who can sell both ice cream and strawberry, but onlthe west
side. Ice cream (strawberry) vendors are negatively adfibdty the presence of
other ice cream (strawberry) vendors in the same or neigimgolocations, and
are simultaneously positively affected by the presenceesaflly strawberry (ice
cream) vendors.

The AGG® representation of this game is illustrated in Figure 3.1. &#s
ways, nodes represent actions and directed edges repnesgnbership in a node’s

47

Figure 3.1: AGG-0 representation of the Ice Cream Vendor game.

neighborhood. The dotted boxes represent the action setadh group of players;
for example, the ice cream vendors have action seNate that this game exhibits
context-specific independence without any strict indepecel and that the graph
structure is independent of n.

Size of an AGGY Representation

Intuitively, AGG-0s capture two types of structure in gane

1. Shared actions capture the ganms®nymitystructure: agenits utility de-
pends only on her actios and the configuration. Thus, agerdares about
the numberof players that play each action, but not the identities okéh
players.

2. The (lack of) edges between nodes in the action graph ssgseontext-
specific independencies utilities of the game: for ali € N, if i chose
actiona € o7, theni’s utility depends only on the configuration over the
neighborhood ofx. In other words, the configuration over actions not in

v(a) does not affect’s utility.

We have claimed informally that action graph games providewg of repre-
senting games compactly. But what exactly is the size of aGAGepresentation,
and how does it grow with the number of agen® In this subsection we give a

48

bound on the size of an AGG-0, and show that asymptotictibyniever worse than
the size of the equivalent normal form.

From Definition 3.2.4 we observe that to completely specifyf&G-0 we
need to specify (1) the set of agents, (2) each agent’s settioiha, (3) the ac-
tion graph, and (4) the utility functions. The first three easily be compactly
represented:

1. The setof agentd = {1,...,n} can be specified by the integer

2. The set of actions? can be specified by the intege?|. Each agent’s action
setA; C o can be specified i®(].<7|) space.

3. The action grapks = (<7, E) can be straightforwardly represented as neigh-
bor lists: for each node € < we specify its list of neighborg(a) C <.
The space required i§ 4./ |V(a)|, which is bounded by.</|.#, where
4 =max [v(a)], i.e., the maximum in-degree &

We observe that whereas the first three components of an B@GA, G, u)
can always be represented in space polynomialand|A;|, the size of the utility
functions is worst-case exponential. So the size of th#yufilnctions determines
whether an AGG-0 can be tractably represented. Indeedhéorest of the paper
we will refer to the number of payoff values stored as theasentation size of the

AGG-0. The following proposition gives an upper bound oa ttumber of payoff
values stored.

Proposition 3.2.6. Given an AGGB, the number of payoff values stored by its
utility functions is at mos|t;z%|%. If .7 is bounded by a constant as n grows,

the number of payoff values ig[@7|n”), i.e. polynomial with respect to n.

Proof. For each utility functioru® : C(%) — R, we need to specify a utility value
for each distinct configuration(®) € C(?), The set of configurationg(®) can be
derived from the action graph, and can be sorted in lexiqggcal order. Thus, we
can just specify a list ofc(?)]| utility values that correspond to the (ordered) set of
configurations’ In general there is no closed form expression]@iﬁ’) , the num-
ber of distinct configurations over(a). Instead, we consider the operation of ex-

tending all agents’ action sets w@: A; — <. The number of configurations over

49

v(a) under the new action sets is an upper bound®f)|. This is the number of
(ordered) combinatorial compositionsrof- 1 (since one player has already chosen

a) into |v(a)|+ 1 nonnegative integers, WhichQ%"l\f(o‘r’)ﬁ“)‘) - % Then
the total space required for the utilities is bounded fromvatby |.o/]%. If

.# is bounded by a constant agrrows, this grows like(|.<7 |n”). O

For each AGG-0, there exists a uniqumeluced normal fornrepresentation
with the same set of players afd| actions for each; its utility function is a
matrix that specifies each playes payoff for each possible action profitec A.
This implies a space complexity off]i_; |Ai|. WhenA; > 2 for all i, the size of
the induced normal form representation grows exponentiglh respect tan. On
the other hand, we observe that the number of payoff valueedin an AGG-0
representation is always less than or equal to the numbeayaffipvalues in the
induced normal form representation. Of course, the AG@pbasentation has the
extra overhead of representing the action graph, whichusded by|.c7|.#. But
this overhead is dominated by the size of the induced noronal,in[T; |Aj|. Thus,
an AGG-0’'s asymptotic space complexity is never worse thah of its induced
normal form game.

It is also possible to describe a reverse transformationgheodes any arbi-
trary game in normal form as an AGG-0. Specifically, a unigodea must be
created for each action available to each agerithusVa € <7, c(a) € {0,1},
andVi, 3 ,ep c(a) must equal 1. The configuration simply indicates each agent
action choice, and expresses no anonymity or contextfspewlependence struc-
ture.

This representation is no more or less compact than the hdomma. More
precisely, the number of distinct configurations ovés) is the number of action
profiles of the other players, which 3, |A;j|. Sincei has|A;| actions,[q; |Aj|
payoff values are needed to represéspayoffs. So in totah[]; |Aj| payoff values

are stored, exactly the number in the normal form.

SThis is the most compact way of representing the utility fiows, but does not provide easy
random access to the utilities. Therefore, when we want toatoputation using AGGs, we may
convert each utility function® to a data structure that efficiently implements a mappingfse-
qguences of integers to (floating-point) numbers, (e.g.stri@sh tables or Red-Black trees), with
space complexit(.#|C(@)]).

50

Figure 3.2: AGG-0 representation of a 3-player, 3-action graphicahga

One might ask whether AGG-0s can compactly represent kndesses of
structured games. Consider the graphical game represengatdefined in Defini-
tion 2.1.2. Graphical games can be represented as AGG+@&placing each node
i in the graphical game by a distinct cluster of nodesepresenting the action set
of agenti. If the graphical game has an edge froto j, edges must be created
in the AGG-0 so that'a; € Aj,Va; € Aj, & € v(a;). The resulting AGG-0s are as
compact as the original graphical games. Figure 3.2 shosv&G-0 representa-
tion of a graphical game having three nodes and two edgespleger 1 and player
3 do not directly affect each others’ payoffs).

Another important class of structured games are symmedriteg as defined in
Section 2.1.1. An arbitrary symmetric game can be encodad &6 G-0 without
an increase in asymptotic size. SpecificallyAgt o7 for all i € N. The resulting
action graph is a clique, i.ev(a) = <« forall a € «.

3.2.2 AGGs with Function Nodes

There are games with certain kinds of context-specific inddpnce structures that
AGG-0s are not able to exploit (see, e.g., Example 3.2.GWjelln this section we
extend the AGG-0 representation by introduciingction nodesallowing us to
exploit a much wider variety of utility structures. Of coersas always, compact
representation is not interesting as an end in itself. Irti@ed.4.2 we identify
broad subclasses of AGG-FNs—indeed, rich enough to encesrgdd AGG-FN
examples presented in this chapter —which are amenabl&dizief computation.

51

Examples: Coffee Shops and Parity

Example 3.2.7(Coffee Shop game)Consider a game involving n players; each
player plans to open a coffee shop in a downtown area, reptedeby a rx k grid.
Each player can choose to open a shop located within any d8taek blocks or
decide not to enter the market. Conditioned on player i clmgpsome locatior,
her utility depends on the numbers of players who chosedi3éime block; (ii) any
of the surrounding blocks; and (iii) any other location.

The normal form representation of this game hassjzé|" = n(B+1)". Since
there are no strict independencies in the utility functitie, asymptotic size of the
graphical game representation is the same. Let us now myrd®e game as an
AGG-0. We observe that if agenichooses an action corresponding to one of
theB locations, then her payoff is affected by the configuratieerall B locations.
Hence,v(a) must consist oB action nodes corresponding to tBdocations, and
so the action graph has in-degrgfe= B. Since the action sets completely overlap,
the representation size &(|«/||C(@)|) = © (B((r;r_ll;%)!!). If we hold B constant,
this become®©(BnP), which is exponentially more compact than the normal form
and the graphical game representation. If we instead malohstant, the size of
the representation ®(B"), which is only slightly better than the normal form and
graphical game representations.

Intuitively, the AGG-0 representation is able to explaibaymity structure in
this game. However, this game’s payoff function also hagesdrspecific struc-
ture that the AGG-0 does not capture. Observe tifatlepends only on three
guantities: the number of players who chose the same blbekpamber of play-
ers who chose an adjacent block, and the number of playerschbge another
location. In other wordsy® can be written as a functiog of only three integers:
ua(cl) = g(c(a), S grem (@), S gregmc(a”)) where o7’ is the set of actions
surroundinga and «7” the set of actions corresponding to other locations. The
AGG-0 representation is not able to exploit this contedesfic information, and
so duplicates some ultility values.

There exist many similar examples in which the utility fuoos u® can be
expressed as functions of a small number of intermediatenpeters. Here we

give one more.

52

Example 3.2.8(Parity game) In a “parity game”, each ¥ depends only on whether
the number of agents at neighboring nodes is even or odd|las/fo

¥ 1 if Ygev@c(a’) mod2=0;
~]lo otherwise.

Observe that in the Parity ganu€ can take just two distinct values; however,
the AGG-0 representation must specify a value for everfigorationc(@),

Definition of AGG-FNs

Structure such as that in Examples 3.2.7 and 3.2.8 can beiexplvithin the AGG
framework by introducingunction nodedo the action graplG; intuitively, we
use them to describe intermediate parameters upon whighrglautilities depend.
Now G's vertices consist of both the set of action nodésand the set of function
nodesZ, i.e. G= (& UZ,E). We require that no function nodec &2 can

be in any player’s action setw” N1 &2 = {}. Thus, the total number of nodes in
Gis |#7| 4+ |Z?|. Each node irG can have action nodes and/or function nodes
as neighbors. We associate a functibh: C(P — R with eachp € 22, where
clP) € C(P) denotes configurations overs neighbors. The configuratiorsare
extended to include the function nodes by the definitign) = fP(c(P). If pe &

has no neighbordi,P is a constant function. To ensure that the AGG is meaningful,
the graphG restricted to nodes i is required to be a directed acyclic graph
(DAG). This condition ensures that for @llandp, c(a) andc(p) are well defined.
To ensure that everp € & is “useful”, we also require thap has at least one
outgoing edge. As before, for each action nadeve define a utility function

u? : Cl@ — R. We call this extended representation an Action Graph Gaitre w
Function Nodes (AGG-FN), and define it formally as follows.

Definition 3.2.9(AGG-FN). An Action Graph Game with Function Nodes (AGG-FN)
is atuple(N,A, Z,G, f,u), where:

e N is the set of agents;
o A=lienA is the set of action profiles;

o 7 is a finite set of function nodes;

53

e G=(«/UZ,E)isan action graph, where7 = iy A is the set of distinct
actions. We require that the restriction of G to the nodeéss acyclic and
that for every pe & there exists an & <7 U & such that(p,m) € E;

e fis atuple(fP)pc», where each T:CP) — R is an arbitrary mapping
from neighbors of p to real numbers;

e uis atuple(u)qe.s, where each @i: C(%) — R is theutility function for
actiona.

Given an AGG-FN, we can construct an equivalent AGG-0 withdame play-
ersN and actionseZ and equivalent utility functions, but without any function
nodes. We call this thienduced AG@B of the AGG-FN. There is an edge froai
to a in the induced AGG-0 either if there is an edge frarto o in the AGG-FN,
or if there is a path frona’ to a through a chain consisting entirely of function
nodes. From the definition of AGG-FNs, the utility of playiagtiona is uniquely
determined by the configuratia®®®), which is uniquely determined by the config-
uration over the actions that are neighborsrah the induced AGG-0. As a result,
the utility tables of the induced AGG-0 can be filled in unaguiously. We observe
that the number of utility values stored in an AGG-FN is noagee than the num-
ber of utility values in the induced AGG-0. On the other ha~f@G-FNs have to
represent the functiong® for eachp € &2. In the worst case, these functions can
be represented as explicit mappings similar to the utilityctionsu®. However, it
is often possible to define these functions algebraicallgdmbining elementary
operations, as we do in most of the examples given in thistehapn this case the
functions’ representations require a negligible amourspafce.

Representation Size

What is the size of an AGG-FIN, A, &, G, f,u)? The following proposition gives
a sufficient condition for the representation size to be patgial. Here we speak
about aclassof AGG-FNs because our statement is about the asymptotevimh

of the representation size. This is in contrast to Propwsii.2.6, where we gave
an exact bound on the size of an individual AGG-0.

Proposition 3.2.10. A class of AGG-FNs has representation size bounded by a
function polynomial in n</| and| 2| if the following conditions hold:

54

1. for all function nodes g &, the size of p’s rangeZ(fP)| is bounded by a

function polynomial in nj.e/| and|2?|; and

2. Maxneau V(M) (the maximum in-degree in the action graph) is bounded by
a constant.

Proof. Given an AGG-FNN,A, &2, G, f,u), it is straightforward to check that all
components exceptand f are polynomial im, |</| and|Z?|.

First, consider an action nodec or. Recall that the size of the utility function
u isCl@), Partitionv(a), the set ofa’s neighbors, intov,,(a) = v(a)N .« and
ve(a) =v(a)n £ (neighboring action nodes and function nodes respecjively
Since for each action’ € v, (a), c(a’) € {0,...,n}, and for eachp’ € vy (a),
c(p) € Z(fP), thenC'®) < (n+ 1)l @I, o) [2(P)]. This is polynomial
because all action node in-degrees are bounded by a canstant

Now consider a function nodp € &2. Without loss of generality, assume
that its function fP is represented explicitly as a mapping. (Any other repre-
sentation offP can be transformed into this explicit representation.) Tdm@e-
sentation size off P is thenC(P. Using the same reasoning as above, we have
CP < (n+ 1)V PNy o [2(19)], which is polynomial since all function node
in-degrees are bounded by a constant. O

When the functionsP do not have to be represented explicitly, we can drop
the requirement on the in-degree of function nodes.

Corollary 3.2.11. A class of AGG-FNs has representation size bounded by a func-
tion polynomial in n).<7| and|Z?| if the following conditions hold:

1. for all function nodes g £, the function has a representation whose
size is polynomial in n,«7| and | Z|;

2. for each function node ¢ &7 that is a neighbor of some action nodethe
size of p’s rangeZ(fP)| is bounded by a function polynomial in|&7| and
|2|; and

3. maxgeaVv(a) (the maximum in-degree among action nodes) is bounded by a
constant.

A very useful type of function node is ttsgmple aggregator

55

Definition 3.2.12(Simple aggregator)A function node g 7 is asimple aggrega-
tor if each of its neighbors (p) are action nodes andPfis the summation function:

fp(c(p)) = Zmev(p) C(m)-

Simple aggregator function nodes take the value of the tatadber of players
who chose any of the node’s neighbors. Since these functamdbe specified in
constant space, and sing& fP) = {0,...,n} for all p, Corollary 3.2.11 applies.
That is, the representation sizes of AGG-FNs whose functmies are all simple
aggregators are polynomial whenever the in-degrees ajrantbdes are bounded
by a constant. In fact, under certain assumptions we carepaaveven tighter
bound on the representation size, analogous to Propo8itibé for AGG-0s. Intu-
itively, this works because both configurations on actiodesoand configurations
on simple aggregators count the numbers of players who beéhaertain ways.

Proposition 3.2.13. Consider a class of AGG-FNs whose function nodes are all
simple aggregators. For each ene7 U &2, define the function

B(m):{ m me A;

v(m) otherwise.

Intuitively, B(m) is the set of nodes whose counts are aggregated by node m. If fo
eacha € .« and for each nm’ € v(a), B(m)NB(mM) = {} unless m=n" (i.e., no
action node affectsr in more than one way), then the AGG-FNSs’ representation
sizes are bounded uwy(“—};f) where.# = maxyea|v(a)| is the maximum in-
degree of action nodes.

Proof. Consider the utility functioru® for an arbitrary actiora. Each neighbor
m e v(a) is either an action or a simple aggregator. Observe that fgcoa-
tion c(@ e C(@) is a tuple of integers specifying the numbers of players stmgp
each action in the sg8(m) for eachme v(a). As in the proof of Proposition
3.2.6, we extend each player’s set of actiong4d, making the game symmet-
ric. This weakly increases the number of configurations. c&ithe setg3(m)
are non-overlapping, the number of configurations possiblbe extended action
space is equal to the number of (ordered) combinatorial ositipns ofn— 1 into

|v(a)| + 1 nonnegative integers, which (§*‘l\f(|o‘,’)(|“)‘). This includes one bin for

56

Figure 3.3: A5 x 6 Coffee Shop game: Left: the AGG-0 representation with-
out function nodes (looking at only the neighborhoodogf Middle:
we introduce two function nodeg’ (bottom) andp” (top). Right: a
now has only 3 neighbors.

each action or simple aggregatoni(o), plus one bin for agents that take an action
that is neither inv(a) nor in the neighborhood of any simple aggregatov (o).
Then the total space required for representirig bounded by.<7| (") where
J = maxgea|V(a)l. O

Consider the Coffee Shop game from Example 3.2.7. For ed@nawdea
corresponding to a location, we introduce two simple agafiggfunction nodes,
p, and p}. Letv(p,) be the set of actions surroundirrg and v(p}) be the
set of actions corresponding to other locations. Then we&e} = {a, p,, P},
as shown in Figure 3.3. Now eadff") is a configuration over only three nodes.
Since eachfP is a simple aggregator, Corollary 3.2.11 applies and the @fizhis
AGG-FN is polynomial inn and.e/. In fact since the game is symmetric and the
B()'s as defined in Proposition 3.2.13 are non-overlapping, areaalculate the
exact value ofC(?)| as the number of compositions 10f- 1 into four nonnegative
integers,% =n(n+1)(n+2)/6 = O(n®). We must therefore storBn(n+-
1)(n+2)/6 = O(Br®) utility values. This is significantly more compact than the
AGG-0 representation, which has a representation simf%ﬂ).

We can represent the parity game from Example 3.2.8 in aaimihy. For
each actiona we create a function nodpy, and letv(py) = v(a). We then
modify v(a) so that it has only one membegy,. For each function node we
define fP as fP(clP)) = S 4cy(pc(a) mod 2. SinceZ(fP) = {0,1}, Corollary
3.2.11 applies. In fact, each utility function just needstire two values, and so
the representation size®|.<7|) plus the size of the action graph.

57

3.2.3 AGG-FNs with Additive Structure

So far we have assumed that the utility functiads: C(?) — R are represented
explicitly, i.e., by specifying the payoffs for alf®) € C(@). This is not the only
way to represent a mapping; the utility functions could béngel as analytical
functions, decision trees, logic programs, circuits, oerewarbitrary algorithms.
These alternative representations might be more naturblUfmans to specify, and
in many cases are more compact than the explicit repregantatiowever, this
extra compactness does not always allow us to reason moceeffy with the
games. In this section, we look at utility functions witditive structure These
functions can be represented compactly and do allow moesfticomputation.

Definition of AGG-FNs with Additive Structure

We say that a multivariate function hadditive structurdf it can be written as a
(weighted) sum of functions of subsets of the variabless T¢1im is more compact
because we only need to represent the summands, which esedimensionality
than the entire function.

We extend the AGG-FN representation by allowintyto be represented as a
weighted sum of the configuration of the neighborsxdf

Definition 3.2.14. A utility function ' of an AGG-FN isadditiveif forallm e v(a)
there existAy, € R, such that

u(c)=y Amc(m). (3.2.1)

mev(a)

Such an additive utility function can be represented as up&{Am)mey (q)-
This is a very versatile representation of additivity, hessathe neighbors @f can
be function nodes. Thus additive utility functions can egent weighted sums of
arbitrary functions of configurations over action nodes.nMa formally define an
AGG-FN representation where some of the utility functiores additive.

4Such a utility function could also be represented usingdsteth function nodes representing
summation. However, we treat the common case of additidpagtely because it is amenable
to special-purpose computational methods (intuitivedyetaging the linearity of expectation; see
Section 3.4.3).

58

Definition 3.2.15. An AGG-FN with additive structure (AGG-FNA} a tuple(N,
A2 G, f o, \u)where NA & G, f are as defined in Definition 3.2.9, and

e of, C o/ isthe set of actions whose utility functions are additive;

o A=(A%)q, cor,, Where eacih % = (Am")mey(a) is the tuple of coefficients
representing the additive utility functiorf't;

o U= (U")gex\ o, » Where each Uiis as defined in Definition 3.2.9. These are
the non-additive utility functions of the game, which aneresented explic-

itly.

Representation Size

We only needv(a)| numbers to represent the coefficients of an additive utility
functionu®, whereas the explicit representation requj@€’| numbers. Of course
we also need to take into account the sizes of the neighbéuimgion nodes €
v(a) and their corresponding functiorf®, which represent the summands of the
additive functions. EacHP either has a simple description requiring negligible
space, or is represented explicitly as a mapping. In therlatse its size can
be analyzed the same way as utility functions on action noddsat is, when
the neighbors ofp are all actions then Proposition 3.2.6 applies; otherwhse t
discussion in Section 3.2.2 applies.

Representing Congestion Games as AGG-FNAs

An arbitrary congestion game can be encoded as an AGG-FNA natloss of
compactness, where alf are represented as additive utility functions. Given a
congestion gaméN, M, (A))ien, (Kjk) jemk<n) as defined in Definition 2.1.1, we
construct an AGG-FNA with the same number of players and sanmeber of
actions for each player as follows.

e Createy -\ |Ai| action nodes, corresponding to the actions in the congestio
game. In other words, the action sets do not overlap.

e Create I function nodes, labelefs, ..., Pm,d1,---,0qm). For eachj € M,
there is an edge fromp; to g;. For all j € M and for alla € <7, if facility j

59

Figure 3.4: Left: a two-player congestion game with three facilitiesheT
actions are shown as ovals containing their respectivéitfesi Right:
the AGG-FNA representation of the same congestion game.

is included in actiorr in the congestion game, then in the action graph there
is an edge from the action nodeto p;, and also an edge from) to a.

e For eachp;, definec(pj) = zaev(j>c(a), i.e., pj is a simple aggregator.
Since its neighbors are the actions that includes facjlitthusc(p;) is the
number of players that chose facilifywhich is # |, a).

¢ Assign eacly; only one neighbor, namely;, and define(q;) = % (c¢(p;)) =
Kj(c(pj)). In other wordsg(q;) is exactlyK;(#(j,a)), the cost on facilityj.

e For each action node, represent the utility function® as an additive func-
tion with weight—1 for each of its neighbors,

W) =y —ei)=- 5 Ki#ij,a). (322)

jev(a) jev(a)

Example 3.2.16(Congestion game)Consider the AGG-FNA representation of
a two-player congestion game (see Figure 3.4). The cormegiime has three
facilities labeled{1, 2, 3}. Player A has actions A1} and A2={1, 2}; Player

B has actions B1#2, 3} and B2={3}.

Now let us consider the representation size of this AGG-FINAe action graph
has|.<7| + 2mnodes an®(m|.<7|) edges; the function nodes, ..., pm are simple
aggregators and each only requires constant space;féaaquiresn numbers to
specify so the total size of the AGG-FNA@& mn+m|.eZ|) = O(mn+mYicy |Ail).

60

Computer Electrical
Science Engineering

Economics

Figure 3.5: AGG-0 representation of the Job Market game.

Thus this AGG-FNA representation has the same space coitypbexthe original
congestion game representation.

One extension of congestion gamepleyer-specific congestion gandilch-
taich, 1996, Monderer, 2007]. Instead of all players havivgsame costij, in
these games each player has a different set of costs. Thizseceasily represented
as an AGG-FNA by following the construction above, but usandifferent set of
function nodesy,...,qm for each player.

3.3 Further Examples

In this section we provide several more examples of stradtgames that can be
compactly represented as AGGs.

3.3.1 A Job Market

Here we describe a class of example games that can be coynpgmtsented as
AGG-0s. Unlike the Ice Cream Vendor game, the followingregke does not
involve choosing among actions that correspond to geogralplocations.

Example 3.3.1(Job Market game)Consider the individuals competing in a job
market. Each player chooses a field of study and a level ofatiuncto achieve.

61

The utility of player i is the sum of two terms: (a) a constamstadepending only
on the chosen field and education level, capturing the diffiaf studies and the
cost of tuition and forgone wages; and (b) a variable rewatdpending on (i)
the number of players who chose the same field and educatiehds i, (ii) the
number of players who chose a related field at the same educkvel, and (iii)
the number of players who chose the same field at one levetalvdyelow i.
Figure 3.5 gives an action graph modeling one such job maskehario, in
which there are three fields, Economics, Computer SciendeEectrical Engi-
neering . For each field there are four levels of postseconpddndy: Diploma,
Bachelor, Master and PhD. Economics and Computer Scieneeansidered re-
lated fields, and so are Computer Science and Electrical iigaging. There is an-
other action representing high school education, whichsdoet require a choice
of field. The maximum in-degree of the action graph is fiveyeasea naive repre-
sentation of the game as a symmetric game (see Section®dulj correspond to
a complete action graph with in-degree 13. Thus this Alt@presentation is able
to take advantage of anonymity as well as context-speciigp@ndence structure.

3.3.2 Representing Anonymous Games as AGG-FNs

One property of the AGG-0 representation as defined in @e&ti2.1 is that utility
function u® is shared by all players who haeein their action sets. What if we
want to represent games walgent-specifiaitility functions, where utilities depend
not only ona andc(?), but also on thédentity of the player playingx?

As mentioned in Section 2.1.1, researchers have stumhedymous games
which deviate from symmetric games by allowing agent-djeeatility functions
[Daskalakis and Papadimitriou, 2007, Kalai, 2004, 2005].rdpresent games of
this type as AGGs, we cannot just let multiple players shatmma, because
that would force those players to have the same utility fonai®. It does work
to give agents non-overlapping action sets, replicatingh eaction once for each
agent. However, the resulting AGG-0 is not compact; it doeistake advantage
of the fact that each of the replicated actions affects gptegrers’ utilities in the
same way. Using function nodes, it is possible to compaetprasent this kind
of structure. We again split into separate action nodes for each player able

62

Figure 3.6: AGG-FN representation of a game with agent-specific utility
functions.

to take the action. Now we also introduce a function npdeith everya; as a
neighbor, and definéP to be a simple aggregator. Ngwgives the total number of
agents who chose actian expressing anonymity, and action nodes inclpdes a
neighbor instead of ead. This allows agents to have different utility functions
without sacrificing representational compactness.

Example 3.3.2(Anonymous game)Consider an anonymous game with two classes
of players, each class sharing the same utility functioee AGG-FN representa-
tion of the game is shown in Figure 3.6. Players from the fie$shave action set
{Al, A2, A3, and players from the second class have actio{Bét B2, B3. Fur-
thermore, the utility functions of the second class of plagehibit certain context-
specific independence structure, which are expressed abdence of some of the
possible edges from function nodes to action nodes B1, B2, B3

3.3.3 Representing Polymatrix Games as AGG-FNAs

A polymatrix game (defined in Section 2.1.1) can be compadfyresented as
an AGG-FNA. The encoding is as follows. The AGG-FNA has nearlapping
action sets. For each pair of playérsj), we create two function nodes to represent
i and j’s payoffs under the bimatrix game between them. Each oktl@sction
nodes has incoming edges from allitf and j's actions. For each playerand
each of his actions, there are incoming edges from the- 1 function nodes
representing’s payoffs in his bimatrix games against each of the otheygrka

63

Figure 3.7: AGG-FNA representation of a 3-player polymatrix game. Func
tion nodeUag represents player A's payoffs in his bimatrix game against
B, Uga represents player B’s payoffs in his bimatrix game againstl
so on. To avoid clutter we do not show the edges from the actoles
to the function nodes in this graph. Such edges exist from dABia
actions toUag andUga, from A and C's actions t&Jac andUca, and
from B and C'’s actions ttgc andUcg.

ud is an additive utility function with weights equal to 1. Bdsen arguments
similar to those in Section 3.2.1, this AGG-FNA represaaiahas the same space
complexity as the total size of the bimatrix games.

Example 3.3.3(Polymatrix game) Consider the AGG-FNA representation of a
three-player polymatrix game, given in Figure 3.7. Eachyplgs payoff is the sum

of her payoffs iR x 2 game with played with each of the other players; she is only
able to choose her action once. This additive utility fumttcan be captured by
introducing a function node Jto represent each player i's utility in the bimatrix
game played with player j.

3.3.4 Congestion Games with Action-Specific Rewards

So far the only use we have shown for AGG-FNASs is bringing texgsgame rep-
resentations into the AGG framework. Of course, anotherdayantage of our
approach is the ability to compactly represent games thaldvoot have been
compact under these existing game representations. We wevsgch an exam-

ple.

64

Example 3.3.4(Congestion game with action-specific rewardSpnsider the fol-
lowing game with n players. As in a congestion game, theresist af facilities M,
each action involves choosing a subset of the facilitied,tha cost for facility j de-
pends only on the number of players that chose facility j. Nother assume that,
in addition to the cost of using the facilities, each playalso derives some ultility
R, depending only on her own action, ae., the set of facilities she chose. This
utility is not necessarily additive across facilities. Ths in general if ABC M
and AAB=0, R(AUB) # R(A) + R(B). So i’s total utility is

(@) =R(@) - > Kj#(,a)). (3.3.1)
i<a

This game can model a situation in which the players use tikties to complete
a task, and the utility of the task depends on the facilitressen. Another interpre-
tation is given by Ben-Sasson et al. [2006], in their anaysfi “congestion games
with strategy costs,” which also have exactly this type dityifunction. This work
interpreted (the negative of) &) as the computational cost of choosing the pure
strategy @in a congestion game.

Due to the extra Ra;) term in the utility expressio(8.3.1) this game cannot be
directly represented as a congestion game or a player-fipemmngestion game,
but it can be compactly represented as an AGG-FNA. We crggi| action
nodes, giving the agents nonoverlapping action sets. We bBhown in Section
3.2.3 that we can use function nodes and additive utilitycions to represent
the congestion-game-like costs. Beyond this constructi@njust need to create
a function node jrfor each player i and define(ig) to be equal to Ra). The
neighbors of rare i's entire action set:v(r;) = A;. Since the action sets do not
overlap, there are onlyA| distinct configurations over;Aln other words|C(") | =
|Aj| and we need only QA|) space to represent each.RThe total size of the
representation is Qnn+my;cy |A]).

SInterestingly, Ben-Sasson et al. [2006] showed that thiseghelongs to the set of potential
games, which implies that there exists an equivalent cdiogegame. However, building such a
congestion game from the potential function following Merer and Shapley’s [1996] construction
yields an exponential number of facilities, meaning thi tongestion game representation is expo-
nentially larger than the AGG-FNA representation presthire.

65

3.4 Computing Expected Payoff with AGGs

Up to this point, we have concentrated on how AGGs may be usedrmpactly
represent games of interest. But compact representatimmyishalf the story, and
indeed by itself is relatively easy to achieve. Our goal islémtify a compact repre-
sentation that can be used directly (e.g., without coneart its induced normal
form) for the computation of game-theoretic quantitiesridéiest. We now turn
to this computational perspective, and show that we caremhdeverage AGG’s
representational compactness in the computation of ghewrdtic quantities. In
this section we focus on the computational task of compudim@gent’s expected
payoff under a mixed strategy profile. As we discussed ini@e@.2, this task
is important as an inner-loop problem in the computation ahyngame-theoretic
guantities, including Govindan and Wilson’s [2003, 200Kjcgithms for finding
Nash equilibria, the simplicial subdivision algorithm fianding Nash equilibria
[van der Laan et al., 1987], and Papadimitriou and Rouglegesd2008] algo-
rithm for finding correlated equilibria. We discuss sometlwse applications in
Section 3.5.

Our main result of this section is an algorithm that effidgm@omputes ex-
pected payoffs of AGGs by exploiting their context-spedifidependence, anonymity
and additivity structure. In Section 3.4.1 we introduce exippected payoff algo-
rithm for AGG-0s, and show (in Theorem 3.4.1) that the &thar runs in time
polynomial in the size of the input AGG-0. For the speciateaf symmetric
strategies in symmetric AGG-0s, we present a differentrétlym in Section 3.4.1
which runs asymptotically faster than our general algaritor AGG-0s; in Section
3.4.1 we extend this approach to the broader clakssyinmetriAGG-0s. Finally,
in Sections 3.4.2 and 3.4.3 we extend our expected payaifitigh to AGG-FNs
and AGG-FNAs respectively, and identify (in Theorems 3ah8 3.4.6) conditions
under which these extended algorithms run in polynomia¢tim

3.4.1 Computing Expected Payoff for AGGOs

Following the notation of Section 2.2, we denote a mixedetyaofi by g; € 2, a
mixed-strategy profile by € %, and the probability thatplays actionx aso;i(a).
Now we can write the expected utility to agerfor playing pure strategg;,

66

given that all other agents play the mixed strategy prdfilg as

Va(ooi) = ; ui(@,a)Pr(a-ilo-i). (3.4.1)
Pr(a_i|o_j) = Daj (aj)- (3.4.2)
£

Note that Equation 3.4.2 gives the probabilityaof under the mixed strategy_;.
In the rest of this section we focus on the problem of comgmgu(a,i) given
i, & and o_j. Having established the machinery to comp\lge(o_i), we can
then compute the expected utility of playiemnder a mixed strategy profile as
Saea Gi(a)V4 (0-).

One might wonder why Equations (3.4.1) and (3.4.2) are netetid of the
story. Notice that Equation (3.4.1) is a sum over thefsgtof action profiles of
players other than The number of terms if];.;; |A;|, which grows exponentially
in n. If we were to use the normal form representation, therdyreajuld be|A_;|
different outcomes to consider, each with potentiallyidittpayoff values. Thus,
using normal form the evaluation of Equation (3.4.1) wouddtbe best possible
algorithm for computing/;. Since AGGs are fully expressive, the same is true for
games without any structure represented as AGGs. Howevet about games
that are exponentially more compact when represented assAks® when repre-
sented in the normal form? For these games, evaluating iBqu&t4.1) amounts
to an exponential-time algorithm.

In this section we present an algorithm that given gray and o_;, computes
the expected payoWqu(a_i) in time polynomial in the size of the AGG-0 repre-
sentation. In other words, our algorithm is efficient if th&®&-0 is compact, and
requires time exponential mif it is not. In particular, recall from Proposition 3.2.6
any AGG-0 with maximum in-degree bounded by a constant hrapr@sentation
size that is polynomial im. As a result our algorithm is polynomial imfor such
games.

Exploiting Context-Specific Independence: Projection

First, we consider how to take advantage of the contextdpaodependence
structure of an AGG-0: the fact thés payoff when playingg; only depends on

67

configurations over the neighborhoodi o he key idea is that we cammojectother
players’ strategies onto a smaller action space that itegically the same from
the point of view of an agent who chose actign That is, we construct a graph
from the point of view of a given agent, expressing his sehagedctions that do
not affect his chosen action are in a sense the “same acfibis’can be seen as in-
ducing a context-specific graphical game. Formally, forgeetiona € o/ define

a reduced grapts(®) by including only the nodeg(a) and a new node denoted
0. The only edges included @& are the directed edges from each of the nodes
v(a) to the noden. Playerj’s actiona; is projected to a nodaﬁ“) in the reduced

graphG(@) by the mapping

A E{ Bac (343)
J

In other words, actions that are notuia) (and therefore do not affect the payoffs
of agents playingx) are projected onto a new action, 0. The resulfimgjected
action setAE“) has cardinality at most m{fA;|,|v(a)|+ 1). This is illustrated in
Figure 3.8, using the Ice Cream Vendor game described in gheaBn2.5.

We define the set of mixed strategies on the projected acmivhﬁ%? by Zga) =
(a)

cp(Aga)). A mixed strategyo; on the original action se; is projected tooj €
ZEO’) by the mapping
za’eAj\v(a) Gj(a) aj =0

So giveng; ando_;, we can computefai") in O(n|.<7|) time in the worst case. Now
we can operate entirely on the projected space, and writexjpected payoff as

Vio)= Y ufa@®(a.a))Pr(d?o).
aﬁ)eAﬁi)
Pr(a¥0'%)) = !;Ilf’j(a) ().

The summation is oveﬁ(a?), which in the worst case hdsv(a)|+ 1) terms.

68

Agll)

I
A

Al

Figure 3.8: Projection of the action graph. Left: action graph of the Ice
Cream Vendor game. Right: projected action graph and asgtswith
respect to the action C1.

So for AGG-0s with strict or context-specific independesteicture, computing
Vai‘_(a,i) in this way is exponentially faster than doing the summatinii3.4.1)
directly. However, the time complexity of this approachti exponential inn.

Exploiting Anonymity: Summing over Configurations

Next, we want to take advantage of the anonymity structutbeBGG-0. Recall
from our discussion of representation size that the numbelistinct configura-
tions is usually smaller than the number of distinct pur@agprofiles. So ideally,
we want to compute the expected payqf(a_i) as a sum over the possible con-
figurations, weighted by their probabilities:

Viloi)="S u (a;,c(a“)) Pr(c(a‘)|a(a“)> , (3.4.5)
cl@) eclai)
Pr(c(ai)|a(ai)) — Z Iﬂllaj (). (3.4.6)
a: =
cg(a)(a) — cla)

wherec@) = (a;,0'%) and P¢c(@)|o(@)) is the probability o&@) given the mixed
strategy profiles(®). Recall thaC®/) s the set of configurations overa;) given
thati playeda;. So Equation (3.4.5) is a summation of sj@&)|, the number of
configurations given thatplayeda;, which is polynomial imif |v(g;)| is bounded
by a constant. The difficult task is to computgd®)|c(@)) for all @) e C(&1),

69

i.e., the probability distribution oveZ(@:) induced byo(@). We observe that the
sum in Equation (3.4.6) is over the set of all action profileg@sponding to the
configurationc'@). The size of this set is exponential in the number of players.
Therefore directly computing the probability distributiesing Equation (3.4.6)
would take time exponential in.

Can we do better? We observe that the players’ mixed stestege indepen-
dent, i.e.,o is a product probability distributiow(a) = []; gi(a). Also, each
player affects the configuratianindependently. This structure allows us to use dy-
namic programming (DP) to efficiently compute the probapilistribution P¢c(®)|g(@)).
The intuition behind our algorithm is to apply one agent'sedi strategy at a time,
effectively adding one agent at a time to the action grapltlol_.(féf(denote the pro-
jected strategy profile of agen{s, ..., k}. Denote b)Clga") the set of configurations
induced by actions of agentd, ... ,k}. Similarly, writecl((a‘> € Cﬁ"’"). Denote byR
the probability distribution o induced byo.*), and byR[c] the probability of
configurationc. Atiterationk of the algorithm, we computg from B_; andaém.
After iterationn, the algorithm stops and returi®. The pseudocode of our DP
algorithm is shown as Algorithm 1, and our full algorithm 'ir.nrmputingvfj‘j (0-)
is summarized in Algorithm 2.

Eachcf(a” is represented as a sequence of integerg} s a mapping from
sequences of integers to real numbers. We need a data striictmanipulate
such probability distributions over configurations (sewes of integers) which
permits quick lookup, insertion and enumeration. An effitidata structure for
this purpose is &ie [Fredkin, 1962]. Tries are commonly used in text processing
to store strings of characters, e.g. as dictionaries fdi sheckers. Here we use
tries to store strings of integers rather than characteath Bokup and insertion
complexity is linear iNv(a)|. To achieve efficient enumeration of all elements of
a trie, we store the elements in a list, in the order of thesertion. We omit the
proof of correctness of our algorithm, which is relativelsagyhtforward.

Complexity

LetC(@)(g_;) denote the set of configurations o) that have positive prob-
ability of occurring under the mixed strateds,o_;). In other words, this is the

70

Algorithm 1: Computing the induced probability distribution(E#)|g(®)).

Input: &, o(@)

Output: P,, which is the distribution Rc®)|a(®)) represented as a trie.
@ = (0,...,0);

Pc?)]=1.0;// Initialization: C& ={c®h

for k=1to ndo
Initialize B to be an empty trie;
foreach ¢?), from R._; do
foreacha® € A such thatg* (a®)) > 0 do
cla) _ @),
K k1
if & £ 0 then
| c™@®)+=1;// Apply action a®
if P[c\®)] does not exist yehen
| R =0.0;

| RG] +=RAcaled)] < 6 @)

return P,

number of terms we need to add together when doing the weigita in Equation
(3.4.5). Whero_; has full supportC@)(g_;) = C&1),

Theorem 3.4.1. Given an AGQD representation of a game, i's expected payoff
V. (0_;) can be computed i®(n|.</|+ n|v(a)[?|C) (0_;)|) time, which is poly-
nomial in the size of the representation.4f, the in-degree of the action graph, is
bounded by a constant;{_‘(/a,i) can be computed in time polynomial in n.

Proof. Since looking up an entry in a trie takes time linear in the sizthe key,
which is|v(g)| in our case, the complexity of doing the weighted sum in Equat
(3.4.5) isO(|v(a)|[C@") (0_)]).

Algorithm 1 requiresn iterations; in iteratiork, we look at all possible combi-
nations ofc®} anda ™, and in each case do a trie look-up which c@ta (a;)|).
since|#®| < |v(a)| +1, and|C?]| < |C(@)], the complexity of Algorithm 1
is O(n|v(a)|?|C®) (g_;)|). This dominates the complexity of summing up Equa-
tion (3.4.5). Adding the cost of computirtg(_?>, we get the overall complexity of

71

Algorithm 2 Computing expected utility; (0-i), giveng ando_;.

1. for eachj # i, compute the projected mixed strategjg?” using Equation (3.4.4):

(&) A(3)y — oj(aj) aj € v(a)
(a) ! (&) _ :
zg/eAj\v(a)GJ(a) a; " =

2. compute the probability distribution @) |a;, ') by following Algorithm 1.
3. calculate the expected utility using the following weaigghsum (Equation (3.4.5)):

Vi (0-i) = c<a1'>ezc<a+i> Ui (auc(a‘)) Pr(c<a‘>|o<a*')) :

expected payoff computatic®(n|.< | + n|v(a)[2|C&1 (a_)]).

Since|C@1) (g_;)| < |C®1| < |C(@)], and|C®) | is the number of payoff values
stored in payoff function®, this means that expected payoffs can be computed in
polynomial time with respect to the size of the AGG-0. Farthore, our algorithm
is able to exploit strategies with small supports which lead small|C@) (g_;)|.
Since|C®)| is bounded byt AL this implies that if the in-degree of the
graph is bounded by a constant, then the complexity of coimgpekpected payoffs
is O(n|«/| +n”*1). O

The proof of Theorem 3.4.1 shows that besides exploitingctimepactness of
the AGG-0 representation, our algorithm is also able tdathe cases where the
mixed strategy profiles given have small support sizes,Usecthe time complex-
ity depends oriC@)(g_;)| which is small when support sizes are small. This is
important in practice, since we will often need to carry oxpected utility com-
putations for strategy profiles with small supports. Poeteal. [2008] observed
that quite often games have Nash equilibria with small stippod proposed algo-
rithms that explicitly search for such equilibria. In ottagorithms for computing
Nash equilibria such as Govindan-Wilson and simplicialsubion, it is also quite
often necessary to compute expected payoffs for mixedeglyairofiles with small
support.

Of course it is not necessary to apply the agents’ mixedegfies in the order

72

1...n. In fact, we can apply the strategies in any order. Althoughriumber of
configurationgC(@1) (g_;)| remains the same, the ordering does affect the interme-
diate configurationé:lﬁa‘). We can use the following heuristic to try to minimize
the number of intermediate configurations: sort the plaireescending order of
the sizes of their projected action sets. This reduces tlwianof work we do in

earlier iterations of Algorithm 1, but does not change itsrall complexity.

The Case of Symmetric Strategies in Symmetric AGQs

As described in Section 3.2.1, if a game is symmetric it carepeesented as an
AGG-DwithA; = o for all i € N. Given a symmetric game, we are often interested
in computing expected utilities undeymmetricmixed strategy profiles, where a
mixed strategy profiler is symmetric ifg; = g; = o, for all i, j € N. In Section
3.5.2 we will discuss algorithms that make use of expectddyutomputation
under symmetric strategy profiles to compute a symmetrichMNaglilibrium of
symmetric games.

To compute the expected utilit\y;(a*), we could use the algorithm we pro-
posed for general AGG-0s under arbitrary mixed strategigsch requires time
polynomial in the size of the AGG-0. But we can gain addiéibaomputational
speedup by exploiting the symmetry in the game and the girguefile.

As before, we want to use Equation (3.4.5) to compute theaggdautility, so
the crucial task is again computing the probability disttibn over projected con-
figurations, Pfc®)|c(@)). Recall thato(®) = (a,0'¥). Define Ptc@|o!®) to
be the distribution induced bgf@, the partial mixed strategy profile of players
other thani, each playing the symmetric strateg;?a"). Once we have the distri-
bution P(c@)|c!®)), we can then compute the distribution(@#)|o(®)) straight-
forwardly by applying player’s strategya;. In the rest of this section we focus on
computing Pfc®) |a(®)).

Define.# (c®)) to be the set containing all action profiled) such thats (al®)) =
c(@). Since all agents have the same mixed strategies, each gioe profile in

73

7 (c@) is equally likely, so for ana(®) € .7 (c(@))

Pr(c(""”\a,fa)) = ‘Y(C("’“))‘ Pr(a(a‘)\a,fa)) : (3.4.7)
Pr<a<a>|a§a*‘>) = [@ (@)@ (3.4.8)
aco/ (@)

The sizes of7 (c®)) are given by the multinomial coefficient

@))] = (n—1)!
‘Y(c)‘ T (3.4.9)

Better still, using a Gray code technique we can avoid reewmlg these equa-
tions for everyc®) e C(@), Denote the configuration obtained fra%) by decre-
menting by one the number of agents taking actiog <@ and incrementing
by one the number of agents taking actiohe «7(@) asc@)’ = cg)_m,>. Then
consider the graphi~.) whose nodes are the elements of theG$&t, and whose
directed edges indicate the effect of the operati@n— a’). This graph is a regu-
lar triangular lattice inscribed within @.<7(®)| — 1)-dimensional simplex. Having
computedPr(c® |a'®)) for one node 0Hs) corresponding to configuratia®®),

we can compute the result for an adjacent nod®(ih) time,

! ! (@) [yt (&) _
Pr(cgz)_}a,)mga“)) = _a* (@)™ (a) Pr(c(a‘)|a£a“)) . (3.4.10)
o' (a) (c@(a’) + 1)

Hce) always has a Hamiltonian path (attributed to an unpublistesdlt of
Knuth by Klingsberg [1982]), so having computed &% |a'®)) for an initial ¢
using Equation (3.4.8), the results for all other projeatedfigurations (nodes in
Hc@)) can be computed by using Equation (3.4.10) at each subsesfe@ on the
path. Generating the Hamiltonian path corresponds to finglicombinatorial Gray
code for compositions; an algorithm with constant amodtizenning time is given
by Klingsberg [1982]. Intuitively, it is easy to see that apie, “lawnmower”
Hamiltonian path exists for any lower-dimensional prajctof H.s), with the
only state required to compute the next node in the path teedigection value for
each dimension.

Our algorithm for computing the distribution ém(ai>|a§a‘)) is summarized in

74

Algorithm 3 Computing distribution P(c(ai)|a§a‘)) in a symmetric AGG-0

1. letc® = ¢, whereci®’ is the initial node of a Hamiltonian path bf.(z, .

2. compute P(c(ai>|a,£a*')) using Equation (3.4.7):

’ . —1)! ; @)
pr(c@|g®) = (n | (0!8 ()™ @),
() naeyj(ai) (C(&)(C{))' ag;{(ai)

3. While there are more configurationsGff):

(a) getthe next configuratia}éﬁla,) in the Hamiltonian path, using Klingsberg’s

algorithm [Klingsberg, 1982].
(b) compute P(c(a*') >|0§a‘)) using Equation (3.4.10):

(a—a’

! ! (@) (7\ (@) _
Pr(cﬁzLa/)laia)) _ U* (Cf)C (C{) PF(C(a>|U£a)).
o' (a) (c@)(a’) +1)

(c) letc(®) = cg

4. output Pr(c(ai>|o*<a‘)) for all ¢®) ¢ C(&),

Algorithm 3. For computing expected utility, we again us@d@ithm 2, except
with Algorithm 3 replacing Algorithm 1 as the subroutine fmmputing the distri-
bution Pr(c(ai>|a,fa)).

Theorem 3.4.2. Computation of the expected utiIit;éw*) under a symmetric
strategy profile for symmetric action-graph games usingdfigns(3.4.5) (3.4.7)
(3.4.8)and (3.4.10)takes time Q.<| + [v(a)||C@) (g@))]).

Proof. Projection tog!® takesO(|.«7|) time since the strategies are symmetric.
Equation (3.4.5) hatC(@ (g(@))| summands. The probability for the initial con-
figuration require€O(n) time. Using Gray codes the computation of subsequent
probabilities can be done in constant amortized time foh eanfiguration. Since
each look-up of the utility function takeéd(|v(a;)|) time, the total complexity of
the algorithm i0(|<| + |v(a)| |C&) (o@))]). O

75

Algorithm 4 Computing the probability distribution Rf®)|c(®)) in a k-
symmetric AGG-0 under B-symmetric mixed strategy profile(®).

1. Partition the players according £l ..., Ng}.

2. Foreach € {1,...,k}, compute P(m(a*'>|o,5f‘)), the probability distribution induced

by G,Ef‘), the partial strategy profile of players M. Sincea,sf‘> is symmetric, this

can be computed efficiently using Algorithm 3 as discussefeiction 3.4.1.

3. Combine thé probability distributions together using Algorithm 1, u#ttng in the
distribution P¢c(@)|g(@)),

Note that this is faster than our dynamic programming atgorifor general
AGG-0s under arbitrary strategies, whose complexig(is|.</ |+ n|v(a)[* |C&) (g(@))|)
by Theorem 3.4.1. In the usual case where the second ternmdtesithe first, the
algorithm for symmetric strategies is faster by a facton|of(a)|.

k-symmetric Games

We now move to a generalization of symmetry in games that Wekesymmetry.

Definition 3.4.3. An AGG¥® is k-symmetric if there exists a partitidiNg, ..., Nk}
of N such that for all le {1,... k}, foralli,j e N, A =A;.

Intuitively, k-symmetric AGG-0s represent games whiltlasses of identical
agents, where agents within each class are identical. Kateatl games are triv-
ially n-symmetric. The Ice Cream Vendor game of Example 3.2.5 isrdrinal
k-symmetric AGG-0 withk = 3.

Given ak-symmetric AGG-0 with partitioq Ny, ..., Nk}, a mixed strategy pro-
file o isk-symmetric if for alll € {1,...,k}, foralli,j € Ni, i = gj. We are often
interested in computing expected utility undesymmetric strategy profiles. For
example in Section 3.5.2 we will discuss algorithms thatenade of such expected
utility computations to find-symmetric Nash equilibria ik-symmetric games. To
compute expected utility underkasymmetric mixed strategy profile, we can use a
hybrid approach when computing the probability distribatover configurations,
shown in Algorithm 4. Observe that this algorithm combinas specialized Algo-
rithm 3 for handling symmetric games from Section 3.4.1 \lighidea of running

76

Algorithm 1 on the joint mixed strategies of subgroups ofragaliscussed at the
end of Section 3.4.1.

3.4.2 Computing Expected Payoff with AGG-FNs

Algorithm 1 cannot be directly applied to AGG-FNs with arbity fP. First of
all, projection of strategies does not work directly, bexseaa playerj playing an
actiona; ¢ v(a) could still affectc@ via function nodes. Furthermore, the gen-
eral idea of using dynamic programming to build up the prdigtdistribution
by adding one player at a time does not work because for atragbifunction
nodep € v(a), each player would not be guaranteed to aftég) independently.
We could convert the AGG-FN to an AGG-0 in order to apply oigiogthm, but
then we would not be able to translate the extra compactfeA&6G-FNs over
AGG-0s into more efficient computation. In this section weritify two sub-
classes of AGG-FN for which expected utility can be effidgmomputed. In
Section 3.4.2 we show that when all function nodes belong testricted class
of contribution-independent function nodes, expectelityutan be computed in
polynomial time. In Section 3.4.2 we reinterpret the exedattility problem as a
Bayesian network inference problem, which can be computgublynomial time
if the resulting Bayesian network has bounded treewidth.

Contribution-Independent Function Nodes

Definition 3.4.4. A function node p in an AGG-FN isontribution-independent
(Ch)if

e v(p) C &, i.e., the neighbors of p are action nodes.

e There exists a commutative and associative operatand for eacha <
v(p) an integer v, such that given an action profile-a(ay, ..., an), c(p) =
XieN:aev(p) Wa; -

e The running time of each operation is bounded by a polynomial in|p7|

and|Z?|. Furthermorex can be represented in space polynomial in.|
and|Z|.

77

An AGG-FN is contribution-independent if all its functioades are contribution-
independent.

Note that it follows from this definition that(p) can be written as a function
of c!P) by collecting termsc(p) = FP(C(P)) = #gey(p (% Wa).

Simple aggregators can be represented as contributi@pémitient function
nodes, with thet operator serving ag, andw, = 1 for all a. The Coffee Shop
game is thus an example of a contribution-independent AGIGHor the parity
game in Example 3.2.8&,is instead addition mod 2. An example of a non-additive
Cl function node arises in a perfect-information model ofavertising) auction
in which actions correspond to bid amounts [Thompson anddreBrown, 2009].
Here we want(p) to represent the amount of the winning bid, and so wevjet
be the bid amount corresponding to actmpandx be the max operator.

The advantage of contribution-independent AGG-FNs is fiwaall function
nodesp, each player's strategy affect$p) independently. This fact allows us
to adapt our algorithm to efficiently compute the expectdﬁtwt\/aii(a_i). For
simplicity we present the algorithm for the case where weehae operatok
for all p e &2, but our approach can be directly applied to games with rdiffe
operators angv, associated with different function nodes.

We define theontributionof actiona to nodem € .7 U &2, denotedd, (M), as
lifm=a,0if me o\ {a}, andseym (" wq) if me 2. Then it is easy
to verify that given an action profile = (ay,...,an), c(a) = y_; &, (a) for all
o € o andc(p) = *Tzl Oq;(p) for all pe &2. Given that playei playeda;, and
for all a € o7, we define therojected contributiorof actiona undera;, denoted
50(,3"), as the tuplédy (M))mev(s)- Note that different actione may have identical
projected contributions undey. Playerj’s mixed strategyo; induces a probabil-
ity distribution overj’s projected contributions, P8(®)|g;) = Xajzagja*):5<a1‘> oj(a).
Now we can operate entirely using the probabilities on tejg contributions in-
stead of the mixed strategy probabilities. This is analsgouthe projection o6
to aj(a“) in our algorithm for AGG-0s.

Algorithm 1 for computing the distribution Rﬂa*')]o) can be straightforwardly
adopted to work with contribution-independent AGG-FNs. aifver we apply

playerk’s contribution 66(3') to cl@l, the resulting configurationl((a‘> is computed

78

componentwise as follows. (m) = & (m) +c®) (m) if me o7, andc™ (m) =
33 (m) s ¥ (m) if me 2.

To analyze the complexity of computing expected utilityjsithecessary to
know the representation size of a contribution-independ€nG-FN. For each
function nodep we need to specify and (Wg)qey(p) instead offP directly. Let
|+ || denote the representation sizesof Then the total size of a contribution-
independent AGG-FN i©(S 4c., [C@ |+ || x[)). As discussed in Section 3.2.2,
this size is not necessarily polynomialnn|</| and|Z|; although when the con-
ditions in Corollary 3.2.11 are satisfied, the represemmagize is polynomial.

Theorem 3.4.5. Expected utility can be computed in time polynomial in tze sif

a contribution-independent AGG-FN. Furthermore, if thediegrees of the action
nodes are bounded by a constant and the sizes of rdagel)| for all p € & are
bounded by a polynomial in hg/| and | 7|, then expected utility can be computed
in time polynomial in n|.<7| and |.Z7|.

Proof Sketch.Following similar complexity analysis as Theorem 3.4. ABnfAGG-FN

is contribution-independent, expected utiity(o_;) can be computed i@(n|.7||C&)| (T, +
[v(a)|)) time, whereT, denotes the maximum running time of anoperation.
SinceT, is polynomial inn, |.</| and|Z?| by Definition 3.4.4, the running time for
computing expected utility is polynomial in the size of th&@&-FN representa-

tion. The second part of the theorem follows from a directiappon of Corollary

3.2.11.]

For AGG-FNs whose function nodes are all simple aggregagash player’s
set of projected contributions has size at mogt) + 1|, as opposed tp/| in the
general case. This leads to a run time complexityd¢i|.7 | + n|v(a)[2|C@))),
which is better than the complexity of the general case ptonelheorem 3.4.5.
Applied to the Coffee Shop game, sin@?)| = O(n®) and all function nodes are
simple aggregators, our algorithm takegn|.<Z| 4-n*) time, which growdinearly
in |<7|.

79

Beyond Contribution Independence

What about the case where not all function nodes are cotitibindependent—is
there anything we can do besides converting the AGG-FN istaduced AGG-0?
It turns out that by reducing the problem of computing exeeécitility to a Bayesian
network inference problem, we can still efficiently compatgected utilities for
certain additional classes of AGG-FNs.

Bayesian networks compactly represent probability digtibns exhibiting con-
ditional independence structure (see, e.g., [Pearl, 1R88sell and Norvig, 2003]).
A Bayesian network is a DAG in which nodes represent randamahigs and edges
represent direct probabilistic dependence. Each oseassociated with a condi-
tional probability distribution (CPD) specifying the piadtility of each realization
of random variableX conditional on the realizations of its parent random vaesb

A key step in our approach for computing expected utility B@-FNs is com-
puting the probability distribution over configurations(&#)|a(®)). If we treat
each noden’s configurationc(m) as a random variable, then the distribution over
configurations can be interpreted as the joint probabilisgrithution over the set
of random variablegc(m)}mey (). Given an AGG-FN, a playerand an action
g € Aj, we can construct ainduced Bayesian netwomé’g:

e The nodes of%gj consist of (i) one node for each elementugf); (ii) one
node for each neighbor of a function node belongingta); and (iii) one
node for each neighbor of a function node added in the pre\dtep, and so
on until no more function nodes are added. Each of these modesresents
the random variable(m). We further introduce another kind of node: (iv)
nodesoy, ..., 0, representing each player's mixed strategy. The domain of
each random variablg; is A.

e The edges o;f%ijq are constructed by keeping all edges that go into the func-
tion nodes that are included ##, ignoring edges that go into action nodes.
Furthermore for each playgr, we create an edge from; to each ofj’s
actionsa;j € Aj.

e The conditional probability distribution (CPD) at each ¢tion nodep is
just the deterministic functiori. The CPD at each action nodé is a de-
terministic function that returns the number of its pardotsserve that these

80

are all mixed strategy nodes) that take the vallie Mixed strategy nodes
have no incoming edges; their (unconditional) probabilitstributions are
the mixed strategies of the corresponding players, exceptdyeri, whose

nodeg; takes the deterministic valwsg.

It is straightforward to verify thai%’f,jh is a DAG, and that the joint distribution
on random variablegc(m) ;e (q) is exactly the distribution over configurations
Pr(c@)|(a;,0'®))). This joint distribution can then be computed using a stethda
algorithm such as clique tree propagation or variable eltidon. The running
times of such algorithms are worst-case exponential; hewdar Bayesian net-
works with bounded tree-width, their running times are poiwial.

Further speedups are possible at nodes in the induced Bayesiwork that
correspond to action nodes and contribution-independentdtibn nodes. The de-
terministic CPDs at such nodes can be formulated using extsnt contributions
from each player’s strategy. This is an exampleadsal independencgructure in
Bayesian networks studied by Heckerman and Breese [199&laang and Poole
[1996], who proposed different methods for exploiting sstiucture to speed up
Bayesian network inference. Such methods share the commuariying idea of
decomposing the CPDs into independent contributions, mikimtuitively similar
to our approach in Algorithm §.

3.4.3 Computing Expected Payoff with AGG-FNAs

Due to the linearity of expectation, the expected utilityi gflaying an actiorg
with an additive utility function with coefficient®Am)mey (a) IS

Vi(a)="S AnElc(m)|a,o], (3.4.12)

mev(a)
whereE[c(m)|a;, 0_i] is the expected value ofm) given the strategy profilés;, 0_;).
Thus we can compute these expected values for saehy(g;), then sum them

up as in Equation (3.4.11) to get the expected utility. mifis an action node,
then E[c(m)|a;, 0_i] is the expected number of players that chagewhich is

6This approach of reducing expected utility computation &y&sian network inference is fur-
ther developed in Chapters 5 and 6, for Temporal Action-&i@pmes and Bayesian Action-Graph
Games respectively.

81

Yien 0i(M). The more interesting case is whemis a function node. Recall that
c(m) = f™(cM) wherec™ is the configuration over the neighborsrof We can
write the expected value afm) as

Elcma,o-i]= Y f"(c™)Prc™a,0). (3.4.12)

c(m ec(m

This has the same form as Equation (3.4.5) for the expecikst NQ (0-i), except
that we havef™ instead ofu®. Thus our results for the computation of Equation
(3.4.5) also apply here. That is, if the neighborsnofare action nodes and/or
contribution-independent function nodes, th&ie(m)|a;, o_i] can be computed in
polynomial time.

Theorem 3.4.6.Suppose Tis represented as an additive utility function in a given
AGG-FNA. If each of the neighbors dfis either (i) an action node, or (ii) a func-
tion node whose neighbors are action nodes and/or conidghtindependent func-
tion nodes, then the expected utility(\¢_;) can be computed in time polynomial
in the size of the representation. Furthermore, if the igrdes of the neighbors
of a are bounded by a constant, and the sizes of rang&dP)| for all p € &
are bounded by a polynomial in h¢Z| and |£?|, then the expected utility can be
computed in time polynomial in /| and|.2?|.

It is straightforward to verify that our AGG-FNA represeimas of polyma-
trix games, congestion games, player-specific congestomeg and the game in
Example 3.3.4 all satisfy the conditions of Theorem 3.4.6.

3.5 Computing Sample Equilibria with AGGs

In this section we consider some theoretical and practiggpliGations of our ex-
pected utility algorithm. In Section 3.5.1 we analyze thenptexity of finding a

samples-Nash equilibrium in an AGG and show that it is PPAD-compléteSec-

tion 3.5.2 we extend our expected utility algorithm to thenpaitation of payoff

Jacobians, which is a key step in several algorithms for caimg £-Nash equilib-

ria, including the Govindan-Wilson algorithm. In Sectios.3 we show that it can
also speed up the simplicial subdivision algorithm, andéat®n 3.5.4 we show
that it can be used to find a correlated equilibrium in polyraime.

82

3.5.1 Complexity of Finding a Nash Equilibrium

In this section we consider the complexity of finding a Nashildarium of an
AGG. As discussed in Section 2.2.1, since a Nash equilibfuma game of more
that two players may require irrational numbers in the pbdliges, for practical
computation it is necessary to consider approximationsashequilibria. Here we
consider the frequently-used notiongNash equilibrium as defined in Definition
2.2.3. Recall from Section 2.2 that for any game representéts NASH problem
is defined to be the problem of finding arNash equilibrium of a game encoded
in that representation, for sormeegiven as part of the input. Also recall from
Section 2.2.1 that the NASH problem feplayer normal-form games with> 2 is
complete for the complexity class PPAD, which is containedliP but not known
to be in P. Turning to compact representations, recall fr@atiSn 2.2.2 and in
particular Theorem 2.2.4 that the complexity of computirgezted utility plays
a vital role in the complexity of finding ag-Nash equilibrium. By leveraging
Algorithm 1, we are able to apply Theorem 2.2.4 to AGGs.

Corollary 3.5.1. The complexity of NASH for AG@s is PPAD-complete.

Remark. It may not be clear why this would be surprising or encourggindeed,

the PPAD-hardness part of the claim is neither. HoweverP&D-membership
part of the claim is a positive result. Specifically, it ingdithat the problem of
finding a Nash equilibrium in an AGG-0 can be reduced to tloblem of finding

a Nash equilibrium in a two-player normal-form game withes@olynomial in

the size of the AGG-0. This is in contrast to the normal foepresentation of
the original game, which can be exponentially larger thanAG-0. In other
words, if we instead try to solve for a Nash equilibrium usthg normal form

representation of the original game, we would face a PPARDgete problem with
an input exponentially larger than the AGG-0 represenitati

Proof sketch.The first condition of Theorem 2.2.4—polynomial type—issiad
by all AGG variants, since action sets are representedagthpliVWe first show that
the problem belongs to PPAD, by constructing a circuit teatputes expected util-
ity and satisfies the second condition of Theorem 2/2Rkcall that our expected
utility algorithm consists of Equation (3.4.4), then Algbm 1, and finally Equa-

83

tion (3.4.5). Equations (3.4.4) and (3.4.5) can be stréoghvardly translated into
arithmetic circuits using addition and multiplication re®d Algorithm 1 involves
for loops that cannot be directly translated to an arithongticuit, but we observe
that we can unroll the for loops and still end up with a polyi@mumber of op-
erations. The resulting circuit resembles a lattice witlevels; at thek-th level
there arqclﬁa‘)| addition nodes. Each addition node corresponds to a coafigar
¢®) e C* | and calculate®k[c®'] as in iteratiork of Algorithm 1. Also there are
|Af<a“)| multiplication nodes for eacqia"), in order to carry out the multiplications
in iterationk of Algorithm 1.

To show PPAD-hardness, we observe that an arbitrary gralppne can be
encoded as an AGG-0 without loss of compactness (see 8&tfidl). Thus the
problem of finding a Nash equilibrium in a graphical game candduced to the
problem of finding a Nash equilibrium in an AGG-0. Since fimgla Nash equilib-
rium in a graphical game is known to be PPAD-hard, finding ahNagiilibrium in
an AGG-0 is PPAD-hard. O

For AGG-FNs that satisfy the conditions for Theorem 3.4.5A@G-FNAs
that satisfy Theorem 3.4.6, similar arguments apply, andcare prove PPAD-
completeness for those subclasses of games if we make thenedde assump-
tion that the operatox used to define the CI function nodes can be implemented
as an arithmetic circuit of polynomial length that satisties second condition of
Theorem 2.2.4.

3.5.2 Computing a Nash Equilibrium: The Govindan-Wilson
Algorithm

Now we move from the theoretical to the practical. The PPARdhess result of
Corollary 3.5.1 implies that a polynomial-time algorithwr Nash equilibrium is
unlikely to exist, and indeed known algorithms for identity sample Nash equi-
libria have worst-case exponential running times. Newdegs, we will show that
our dynamic programming algorithm for expected utility danused to achieve
exponential speedups in such algorithms, as well as anithigofor computing a

"Observe that the second condition in Theorem 2.2.4 impiasthe expected utility algorithm
must take polynomial time; however, some polynomial aljpons (e.g., those that rely on division)
do not satisfy this condition.

84

sample correlated equilibrium. Specifically, we usklack-boxapproach as dis-
cussed in Section 2.2.2.

First we consider Govindan and Wilson’s [2003] global Newtoethod, a
state-of-the-art method for finding mixed-strategy Nashildaia in multi-player
games. Recall from Sections 2.2.1 and 2.3 that a bottlerfetie @lgorithm is the
computation of payoff Jacobians, and the Gametracer packewyides a black-
box implementation of the global Newton method that allows to directly plug
in representation-specific subroutines for this task.

The payoff Jacobian is defined to be the Jacobian of the fumdti: ~ —
R Al whose(i, a;)-th component is the expected utilitfy (0_;). The corre-
sponding Jacobian atis a(3;|Ai|) x (3 |Ai|) matrix with entries

dVi‘(Ufi) _ i =
#(a,) =WVa 4, (0) (3.5.1)
= > u(a,%(a,a,a)Pr(@o) (3.5.2)
acA

if i #1’, and zero otherwise. Here an overbar is shorthand for thecepb—{i,i’}
wherei # i’ are two players; e.gg = a_giy- The rows of the matrix are indexed
by i anda; while the columns are indexed byanda; . Given entryDVa';f/ai, (o), we
call g its primary action nodeanday its secondary action node

We note that efficient computation of the payoff Jacobiannipartant for
more than simply Govindan and Wilson’s global Newton meth&dr example,
recall from Section 2.2.1 that the iterated polymatrix appmnation (IPA) method
[Govindan and Wilson, 2004] has the same computationall@nolat its core.

Computing the Payoff Jacobian

Now we consider how the payoff Jacobian may be computed. tiEqués.5.2)
shows that thejvé’i;, (o) element of the Jacobian can be interpreted as the ex-
pected utility of agent when she takes actiom, agenti’ takes actiora;, and all
other agents use mixed strategies according.t8o a straightforward—and quite
effective—approach is to use our expected utility algonitte compute each entry
of the Jacobian.

However, the Jacobian matrix has certain extra structateatfows us to achieve

85

further speedup. For example, observe that some entrié® Jaticobian are iden-
tical. If two entries have the same primary action nodghen they are expected
payoffs on the same utility function®, and so have the same values if their in-
duced probability distributions ove&(®) are the same. We need to consider two

cases:

1. The two entries come from the same row of the Jacobian,laggnd's action
g;. There are two sub-cases to consider:

(a) The columns of the two entries belong to the same playeut differ-
ent actionsa; anda. If a%a") = a’ga"), i.e.,a; anda both project to the
same projected action ia’s projected action graphthen OVy'a =
Dv;’faﬁ. This implies that whea,, a] ¢ v(a), W;’faj = Dv;’faﬁ.

(b) The columns of the entries correspond to actions of iiffeplayers.
We observe that for all anda; such thab(aﬂ(aga‘)) —1,[Vyh, (@) =
Va“_(o,i). As a special case, Aﬁa") = {0}, i.e., agentj does not affect
i's payoff wheni playsa;, then for alla; € Aj, OVg'’, (T) =V (0-).

2. If g anda; correspond to the same action nagl€but owned by agents
andj respectively), thus sharing the same payoff functi6nthenDVai;,"aj =
V4 . Furthermore, if there exist ¢ A, a € A such thag]™ = a) (or
53(40) — 56(1,1?) for contribution-independent AGG-FNs), théivé'fa,j = Dv;ij,.

A consequence of 1(a) is that any Jacobian of an AGG has atyn®st.a (n—
1)(v(a)+1) distinct entries. For AGGs with bounded in-degree, th3(is8y; |Ail).

For each set of identical entries, we only need to do the aggadtility computa-

tion once. Even when two entries in the Jacobian are noticnive can exploit

the similarity of the projected strategy profiles (and thus similarity of the in-
duced distributions) between entries, reusing internedesults when computing
the induced distributions of different entries. Since cating the induced proba-
bility distributions is the bottleneck of our expected pfgbgorithm, this provides

significant speedup.

8For contribution-independent AGG-FNSs, the condition baeséé?*) = 66(1,?‘), i.e., aj and a’j
|

have the same projected contribution unger

86

First we observe that if we fix the row,a;) and the column’s playey, then
O is the same for all secondary actiomsc A;. We can compute the probability
distribution P(cn_lya;,ﬁ(a*')), then for alla; € A;j, we just need to apply the action
a; to get the induced probability distribution for the enﬂy;’faj.

Now suppose we fix the rowi,a). For two column playerg and j’, their
corresponding strategy profiles ;; j, ando_j; j, are very similar, in fact they are
identical inn— 3 of then— 2 components. For AGG-0s, we can exploit this similar-
ity by computing the distribution IPcn,1|a£ai“)), then for each # i, we “undo” j’s
mixed strategy to get the distribution induced dyj; ;,, by treating distributions
Pr(cn,1|a£ai“)) andoj as coefficients of polynomials and computing their quotient
using long division. (See Section 2.3.5 of [Jiang, 2006]donore detailed discus-
sion of interpreting distributions over configurations af/pomials.)

Finding equilibria of symmetric and k-symmetric games

Nash proved [1951] that all finite symmetric games have atleae symmetric
Nash equilibrium. The Govindan-Wilson algorithm can begaed to find symmet-
ric Nash equilibria in symmetric AGG-0s. The modified aigfun now operates in
the space of symmetric mixed strategy profiies= ¢ ('), and follows a path of
symmetric equilibria of perturbed symmetric games to a sginimequilibrium of
the unperturbed game. A key step of the algorithm is the céatipn of the Jaco-
bian of the functiotV : =, — R!“|, whosea-th entryVy (0,) is the expected utility
of one player choosing while the others play mixed strategy. This Jacobian at
o, is a|</| x |</| matrix whose entry at row and columro’ is n— 1 multiplied by
the expected utility of a player choosing act@nwhen another player is choosing
actiona’ and the rest of the players play mixed strategy Such an entry can be
efficiently computed using the techniques for symmetriceekgd utility computa-
tion discussed in Section 3.4.1, which are faster than queeed utility algorithm
for general AGGs. Techniques discussed in the currentsectn further be used
to speed up the computation of Jacobians in the symmetric taparticular, it is
straightforward to check that the Jacobian has at rfigst, (v(a)+ 1) = O(|E|)
identical entries, wherE is the set of edges of the action graph.

A straightforward corollary of Nash’s [1951] proof is thatyak-symmetric

87

AGG-0 has at least orlesymmetric Nash equilibrium. For each equivalence class
¢ of the players let! denote the set of symmetric strategy profiles Kpr and

let A’ denote the set of actions of a playeNp Relying on similar arguments as
above, we can adapt the Govindan-Wilson algorithm tokisgimmetric equilibria

in k-symmetric AGG-0s. The bottleneck is the computation efihcobian of the
functionV : 1,2 — R¥IA'l, whose(¢, a)-th entry is the utility of a player it
playing actiona, while the others play according to the gidesymmetric strategy
profile (al,...,0%). The entry at row, a and columr?’, a’ of the Jacobian matrix

is equal to(|Ny| — 1,) multiplied by the expected utility of a player My choos-

ing actiona, when another player iN; is choosing actiom’ and the others play
according to the givek-symmetric strategy profile. Such expected utilities can be
efficiently computed using the techniques discussed in@est4.1.

3.5.3 Computing a Nash Equilibrium: The Simplicial Subdivision
Algorithm

Another algorithm for computing a sample Nash equilibriswan der Laan, Tal-
man & van der Heyden’s [1987] simplicial subdivision algon. Recall from
Section 2.2.1 that one of the bottlenecks is the computatitabels of a given sub-
simplex in a simplicial subdivision &, which in turn depends on computation of
expected utilities under mixed strategy profiles. The GANMB&ckage [McKelvey
et al., 2006] provides an implementation of the simplicidddivision algorithm for
the normal form. We adapted this code into a black-box implatation that allows
one to plug in representation-specific subroutines for ebgueutility computation.
Combining this with an implementation of our AGG-based Aitfon 2 is then
sufficient for an exponential speedup compared to the nefonad-based imple-
mentation of the simplicial subdivision algorithm. An adt@ge of the black-box
implementation is that this is useful for other represeénat besides AGGs; e.g.,
in Chapter 6 we are able to use this for computing sample Bigas equilibria
for Bayesian Action-Graph Games.

88

3.5.4 Computing a Correlated Equilibrium

In Section 2.2.7 we gave an overview of the literature on tmaputation of a sam-
ple correlated equilibrium. In summary, Papadimitriou &wlghgarden [2008]
proposed a polynomial-time algorithm for computing a sawarrelated equilib-
rium given a game representation with polynomial type andlgnmmial-time
subroutine for computing expected utility under mixedtsigg profiles. Recently,
Stein et al. [2010] showed that Papadimitriou and Rougheygsdalgorithm can fail
to find an exact correlated equilibrium, and presented &tshigpdification of the
algorithm that efficiently computes ancorrelated equilibrium. (Arg-correlated
equilibrium is an approximation of the correlated equilibm solution concept,
wheree measures the extent to which the incentive constraintsdioelated equi-
librium are violated.) Incorporating this fix, we have thédwing.

Theorem 3.5.2([Papadimitriou and Roughgarden, 2008[) a game representa-
tion has polynomial type, and has a polynomial algorithmdomputing expected
utility, then ane-correlated equilibrium can be computed in time polynoninal
Iog% and the representation size.

In Chapter 7 we present a modified version of Papadimitricdi Raughgar-
den’s algorithm that is able to compute an exact correlatgdlibrium in polyno-
mial time.

Theorem 3.5.3(Restatement of Theorem 7.4.5; also [Jiang and Leyton-Brow
2011]). If a game representation has polynomial type, and has a potyal al-
gorithm for computing expected utility, then a correlatephidbrium can be com-
puted in time polynomial in the representation size.

The second condition in both theorems involve the compariabf expected
utility. As a direct corollary of Theorem 3.5.3 and Theorem.B, there exists
a polynomial algorithm for computing an exact correlatedildgfium given an
AGG-0.

Corollary 3.5.4. Given a game represented as an AG@Gan exact correlated
equilibrium can be computed in time polynomial in the sizéhefAGG®.

89

Similarly, for AGG-FNs and AGG-FNAs for which the expectetiity prob-
lem can be solved in polynomial time (see Theorems 3.4.5 ah@)3 correlated
equilibria can be computed in polynomial time.

3.6 Experiments

Although our theoretical results show that there are sicgmii benefits to working
with AGGs, they might leave the reader with two worries. fitlse reader might
be concerned that while AGGs offer asymptotic computatibaeaefits, they might
not be practically useful. Second, even if convinced abueiusefulness of AGGs,
the reader might want to know the size of problems that caadiddd by the com-
putational tools we have developed so far. We address bdtiesé worries in this
section, by reporting on the results of extensive compratiexperiments. Specif-
ically, we compare the performance of the AGG represemaiial our AGG-based
algorithms against normal-form-based solutions using(liighly optimized) Ga-
meTracer package [Blum et al., 2002]. As benchmarks, we A and normal-
form representations of instances of Coffee Shop gamesiidoket games, and
symmetric AGG-0s on random graphs. We compared the rapgetsm sizes of
AGG and normal-form representations, and compared theioqpeance resulting
from using these representations to compute expectety tlicompute Nash equi-
libria using the Govindan-Wilson algorithm, and to comphtesh equilibria using
the simplicial subdivision algorithm. Finally, we show h@ample equilibria of
these games can be visualized on action graphs.

3.6.1 Software Implementation and Experimental Setup
We implemented our algorithms in a freely-available sofeyaackage, in order to
make it easy for other researchers to use AGGs to model pnsldé interest. Our
software is capable of:

e reading in a description of an AGG;

e computing expected utility and Jacobian given mixed sisafeofile;

e computing Nash equilibria by adapting GameTracer’s [Blunale 2002]
implementation of Govindan and Wilson’s [2003] global Newtmethod;

90

and

e computing Nash equilibria by adapting GAMBIT’s [McKelveya., 2006]
implementation of the simplicial subdivision algorithnafvder Laan et al.,
1987].

We extended GAMUT [Nudelman et al., 2004], a suite of gam&imse generators,
by implementing generators of instances of AGGs includicg Cream Vendor
games (Example 3.2.5), Coffee Shop games (Example 3.2i)Market games
(Example 3.3.1) and symmetric AGG-0s on a random actioptgraith random
payoffs. Finally, with Damien Bargiacchi, we also develo@egraphical user in-
terface for creating and editing AGGs. More details on thesevell as software
implementations of other algorithms from this thesis avegiin Appendix A. All
of our software is freely available attp://agg.cs.ubc.ca.

When using Coffee Shop games in our experiments, we setfsagoidomly
in order to test on a wide set of utility functions. For theuzkzation of equilibria
in Section 3.6.7 we set the Coffee Shop game ultility funstittnbe

u”(c(ar), e(Py),c(Pg)) = 20— [e(a)]? — c(P;) —log(c(pg) +1),

where pj, is the function node representing the number of players sihgoad-
jacent locations ang, is the function node representing the number of players
choosing other locations.

When using Job Market games in our experiments, we set thity fuinctions
to be Ry

acla)y — _
U (C) B C(a)+2a/ev(a)—{a}0-1c(a/) Ka,
with R, set to 24,6,8,10 andK, set to 12,3,4,5 for the five levels from high
school to PhD.

When using Ice Cream Vendor games for the visualization ofliega in Sec-
tion 3.6.7 we set the utilities so that for a playethoosing actiortr, each vendor
choosing a locatiom’ € v(a) contributeswsw; utility to i. ws is -1 whena’ has
the same food type as, and 0.8 otherwisew,; is 1 whena’ anda correspond
to the same location, and 0.6 when they correspond to diff¢beit neighboring)

locations. In other words, there is a negative effect froaypts choosing the same

91

http://agg.cs.ubc.ca

food type, and a weaker positive effect from players chapaidifferent food type.
Furthermore, effects from neighboring locations are we#ken effects from the
same location.

All our experiments were performed using a computer clustesisting of 55
machines with dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2@BIRunning
Suse Linux 10.1.

3.6.2 Representation Size

First, we compared the representation sizes of AGG-FNslaidihduced normal
forms. For each game instance we counted the number of pajla#fs that needed
to be stored.

We first looked at 5 5 block Coffee Shop games, varying the number of play-
ers. Figure 3.9 (left) has a log-scale plot of the number gbffavalues in each
representation versus the number of players. The nornmmal fepresentation grew
exponentially with respect to the number of players, andlduibecame imprac-
tical. The size of the AGG representation grew polynomialigh respect ton.
As we can see from Figure 3.9 (right), even for a game instavitte 80 play-
ers, the AGG-FN representation stored only about 2 milliombers. In contrast,
the corresponding normal form representation would hadettatore 12 x 10M1°
numbers.

We then fixed the number of players at 4 and varied the numbacetifns; for
ease of comparison we fixed the number of columns at 5 and dagged the
number of rows. Recall from Section 3.2.2 that the represiemt size of Coffee
Shop games—expressed both as AGGs and in the normal formerdepnly on
the number of players and number of actions, but not on thpeshfthe region.
(Recall that the number of actionsBst 1, whereB is the total number of blocks.)
Figure 3.9 (left) shows a log-scale plot of the number of fflayalues versus the
number of actions, and Figure 3.9 (right) gives a plot fot pire AGG-FN rep-
resentation. The size of the AGG representation grew lipegith the number
of rows, whereas the size of the normal form representatrew dijke a higher-
order polynomial. For a Coffee Shop game with 4 players onGar B grid, the
AGG-FN representation stores only about 8000 numbers,amlsehe normal form

92

100000000 10000000

10000000 1000000
1000000 100000
100000 10000

10000
1000

100
10 ——AGG 10

—=—NF
1 —— 1
3 456 7 8 9 1011 12 13 14 15 16 6 14 22 30 38 46 54 62 70 78

1000
100

payoffs stored
payoffs stored

number of players number of players
1000000000 9000
AGG
100000000 | 8000
- —=—NF - 7000
g 10000000 @ 6000
8 1000000 ‘2 5000
£ 100000 g 4000
© 5 3000
z 10000 S
13 g 2000
1001 e 1000
100 0
16 26 36 46 56 66 76 91 121 151 181 211 241 271 301 331 361 391
number of actions number of actions

Figure 3.9: Representation sizes of coffee shop games. Top left55rid
with 3 to 16 players (log scale). Top right: AGG onlyx% grid with
up to 80 players (log scale). Bottom left: 4-playex 5 grid, r varying
from 3 to 15 (log scale). Bottom right: AGG only, up to 80 rows.

representation would have to stor® & 10! numbers.

We also tested on Job Market games from Example 3.3.1, whieh h3 ac-
tions. We varied the number of players from 3 to 24. The resaié similar, as
shown in Figure 3.11 (left). This is consistent with our ttegiwal observation that
the sizes of normal form representations grow exponewtialh while the sizes of
AGG representations grow polynomially im

3.6.3 Expected Utility Computation

We tested the performance of our dynamic programming dhgarfor computing
expected utilities in AGG-FNs against GameTracer’s noffoah-based algorithm
for computing expected utilities. For each game instan@eganerated 1000 ran-
dom strategy profiles with full support, and measured the QIfédr) time spent
computingV, (o_n) under these strategy profiles. Then we divided this measure-
ment by 1000 to obtain the average CPU time.

We first looked at Coffee Shop games of different sizes. Walftke size
of blocks at 5x 5 and varied the number of players. Figure 3.10 shows plots of
the results. For very small games the normal-form-baseakithgn is faster due

93

to its smaller bookkeeping overhead; as the number of pdageows larger, our
AGG-based algorithm’s running time grows polynomially,ilehthe normal-form-

based algorithm scales exponentially. For more than fivgepéa we were not able
to store the normal form representation in memory. Mearayltilr AGG-based
algorithm scaled to much larger numbers of players, avegagbout a second to
compute an expected utility for an 80-player Coffee Shopagam

Next, we fixed the number of players at 4 and the number of coduat 5,
and varied the number of rows. Our algorithm’s running timewgroughly lin-
early with the number of rows, while the normal-form-baskpgbathm grew like a
higher-order polynomial. This was consistent with our tietioal observation that
our algorithm take®(n|.<7| + n*) time for this class of games while normal-form-
based algorithms tak®(|.<7|"~1) time.

We also considered strategy profiles having partial supp@hile ensuring that
each player’s support included at least one action, we geggbistrategy profiles
with each action included in the support with probability.0GameTracer took
about 60% of its full-support running times to compute expéailtilities for the
Coffee Shop game instances mentioned above, while our A@®8ebalgorithm
required about 20% of its full-support running times.

We also tested on Job Market games, varying the numbers pémgla The
results are shown in Figure 3.11 (right). The normal-forasdx implementation
ran out of memory for more than 6 players, while the AGG-bassrlementation
averaged about a quarter of a second to compute expectid intih 24-player
game.

3.6.4 Computing Payoff Jacobians

We ran similar experiments to investigate the computatigragoff Jacobians. As
discussed in Section 3.5.2, the entries of a Jacobian casrimeifated as expected
payoffs, so a Jacobian can be computed by doing an expegteff pamputation

for each of its entries. In Section 3.5.2 we discussed metti@at exploit the struc-
ture of the Jacobian to further speed up the computation. éFeser’'s normal-
form-based implementation also exploits the structureheflacobian by reusing
partial results of expected payoff computations. When amng our AGG-based

94

1 1

0.1 _ 01
= ©
- 0.01
ﬂJ
g £ 001 |
s 0.001 | s
= =]
a R & 0001
O 0.0001 ——AGG o
—=—NF
0.00001 0.0001
3 4 5 6 7 8 9 10 11 12 13 14 15 16 6 14 22 30 38 4 54 62 70 78
number of players number of players
01 0.0007
——AGG 0.0006
0.01 NF . 0.0005
= 0
- "o 0.0004 4
o @
0.001
E £ 00003
s]
g oo /_/,._.—-v—c————‘" 2 00002
(5} Y 0.0001
0.00001 0
16 26 36 46 56 66 76 91 121 151 181 211 241 271 301 331 361 391
number of actions number of actions

Figure 3.10: Running times for payoff computation in the Coffee Shop game
Top left: 5x 5 grid with 3 to 16 players. Top right: AGG only,>65
grid with up to 80 players. Bottom left: 4-playeix 5 grid, r varying
from 3 to 15. Bottom right: AGG only, up to 80 rows.

100000000 1
10000000
1000000 . 0.1
O
© looooo o 0.01
S £
s 10000 £
4 1000 S oo
5 S
S 100 CAGG 0.0001 AGG
©
o 10 —a—NF —=—NF
1 7 0.00001
9 12 15 21 2 4 6 8 10 12 14 16 18 20 22 24
number of players number of players

Figure 3.11: Job Market games, varying numbers of players. Left: compar-
ing representation sizes. Right: running times for cormuutLO00
expected utilities.

Jacobian algorithm (as described in Section 3.5.2) to GaateTs implementa-
tion, we observed results very similar to those for commgutpected payoffs:
our implementation scaled polynomially mwhile GameTracer scaled exponen-
tially in n. We instead focus on the question of how much speedup theodseth
in Section 3.5.2 provided, by comparing our algorithm in ti&ec3.5.2 against
the algorithm that computes expected payoffs (using our A@&ed algorithm de-
scribed in Section 3.4) for each of the Jacobian’s entriestasted on Coffee Shop
games on a & 5 grid with 3 to 10 players, as well as Coffee Shop games with 4

95

players, 5 columns and varying numbers of rows. For eachnist of the game
we randomly generated 100 strategy profiles with partiapsttp For each of these
game instances, our algorithm as described in Section @&szZonsistently about
50 times faster than computing expected payoffs for eacthe@flacobian’s en-
tries. This confirms that the methods discussed in Sectm® Brovide significant

speedup for computing payoff Jacobians.

3.6.5 Finding a Nash Equilibrium Using Govindan-Wilson

Now we show experimentally that the speedup we achieveddimpating Jaco-
bians using the AGG representation led to a speedup in thea@awWilson algo-
rithm. We compared two versions of the Govindan-Wilson atbm: one is the
implementation in GameTracer, where the Jacobian computa based on the
normal-form representation; the other is identical to trem®Tracer implemen-
tation, except that the Jacobians are computed using oarithlgy for the AGG
representation. Both techniques compute the Jacobiactlyexas a result, given
an initial perturbation to the original game, these two iempéntations follow the
same path and return exactly the same Nash equilibrium.

Again, we tested the two algorithms on Coffee Shop games ging sizes:
first we fixed the sizes of blocks at-44 and varied the number of players; then
we fixed the number of players at 4 and number of columns at 4vandd the
number of rows. For each game instance, we randomly gedet&ténitial per-
turbation vectors, and for each initial perturbation we tta& two versions of the
Govindan-Wilson algorithm. Although the algorithm canrsgimes) find more
than one equilibrium, we stopped both versions of the dlgariafter one equilib-
rium was found. Since the running time of the Govindan-Wilatgorithm is very
sensitive to the initial perturbation, for each game insgatie running times with
different initial perturbations had large variance. Tottohfor this, for each ini-
tial perturbation we looked at tiratio of running times between the normal-form
implementation and the AGG implementation (i.e., a ratieaggr than 1 means
the AGG implementation ran more quickly than the normal famplementation).
We present the results in Figure 3.12 (left). We see thatasiite of the games
grew (either in the number of players or in the number of adfipthe speedup of

96

the AGG implementation over that of the normal-form impletagion increased.
The normal-form implementation ran out of memory for ganmstances with more
than 5 players, preventing us from reporting ratios albove5. Thus, we ran the
AGG-based implementation alone on game instances witerdamgmbers of play-
ers, giving the algorithm a one-day cutoff time. As shownhwylog-scale boxplot
of CPU times in Figure 3.12 (top right), for game instancethwip to 12 players,
the algorithm terminated within one day for most initial fpebations. A normal
form representation of such a game would have needed to%&€brel 0'° numbers.
Figure 3.12 (bottom right) shows a boxplot of the CPU timeastie AGG-based
implementation, varying the number of actions while fixihg humber of players
at 4. For game instances with up to 49 actions %al2 grid plus one action for not
entering the market), the algorithm terminated within aarho

We also tested on Job Market games with varying numbers gega The
results are shown in Figure 3.13. For the game instance wilhy&rs, the AGG-
based implementation was about 100 times faster than tmeatdorm-based im-
plementation. While the normal-form-based implementatian out of memory
for Job Market games with more than 6 players, the AGG-basgdkeimentation
was able to solve games with 16 players in an average of 24tesinu

3.6.6 Finding a Nash Equilibrium Using Simplicial Subdivison

As discussed in Section 3.5.3, we can speed up the nornmaHfased simplicial

subdivision algorithm by replacing the subroutine that pates expected utility
by our AGG-based algorithm. We have done so to GAMBIT’s immatation

of simplicial subdivision. As with the Govindan-Wilson algthm, from a given

starting point both the original version of simplicial silgion and our AGG ver-
sion follow a deterministic path to determine exactly themeaequilibrium. Thus,
all performance differences are due to the choice of reptagen. We compared
the performance of AGG-based simplicial subdivision agfairormal-form-based
simplicial subdivision on instances of Coffee Shop gamese&lsas instances of
randomly-generated symmetric AGG-0s on small world gsaplie always started
from the mixed strategy profile in which each player givesatguobability to each
of her actions.

97

100000f
10000
sl
s
1000 E Q Q
-Bpt
IJ.J.
Eal
10E|
s
3

N N
IR
-

[
(=]

CPU time in seconds

ratio of NF and AGG times
o &

|

1
1
L
4 5 6 7 8 9 10 11 12

3 4 5
number of players number of players
10000
T T
07 _ 0.
°§’6 E%E g 1000 o _'¢IQ
] - n * § -t : @ ﬁ E P
25 ' 8 100} T T Tl H
S E m i c 1 ' L 1
g4 s 5[] -
w £ +
Z3 . = 10 : ‘
5 = E ! i
o2 T © T
© 1
1t . =]
- En
0.1
13 17 21 25 29 33 37 41 45 49 13 17 21 25 29 33 37 41 45 49
number of actions number of actions

Figure 3.12: Govindan-Wilson algorithm; Coffee Shop game. Top row 4}
grid, varying number of players. Bottom row: 4-playex 4 grid,
r varying from 3 to 12. For each row, the left figure shows rafio o
running times; the right figure shows logscale plot of CPUetnfior
the AGG-based implementation. The dashed horizontal hideates
the one day cutoff time.

We first considered instances of Coffee Shop games with 4, rbacdumns and
varying numbers of players. For each game size we generétéusthnces with
random payoffs. Figure 3.14 (left) gives a boxplot of theoratf running times
between the two implementations. The AGG-based implertientavas about 3
times faster for the 3-player instances and about 30 timserfdéor the 4-player
instances. We also tested on Coffee Shop games with 3 pla&esumns and
numbers of rows varying from 4 to 7, again generating 10 ircsta with random
payoffs at each size. Figure 3.14 (right) gives a boxplothef tatio of running
times. As expected, the AGG-based implementation wasrfastg the gap in
performance widened as games grew.

We then investigated symmetric AGG-0s on randomly geedratnall world

98

S
B R B
A O ® O N b
S o o & o o

ratio of NF and AGG time:
N
(=]

o

—_—

3

5
number of players

CPU time in seconds

10000

1000

100

10

[

0.1

3456 7 8 910111213141516
number of players

Figure 3.13: Govindan-Wilson algorithm; Job Market games, varying num-
bers of players. Left: ratios of running times. Right: logiscplot of
CPU times for the AGG-based implementation.

1%} [}
Q [}
£25 E45
5 5 - -
2 20 g 4 '
2 2 -
5 535 T
: o= -
o 10 o
5 g 25 —
T s T =

== 2 —_

3 4 13 16 19 22

number of players number of actions

Figure 3.14: Ratios of running times of simplicial subdivision algoritk on
Coffee Shop games. Left: 44 grid with 3 to 4 players. Right: 3-
playerr x 3 grid, r varying from 4 to 7.

graphs with random payoffs. The small world graphs were igeed using GAMUT’s
implementation with parameteks= 1 andp = 0.5. For each game size we gener-
ated 10 instances. We first fixed the number of action nodearad Haried the num-
ber of players. Results are shown in Figure 3.15 (top row)il&\there was large
variance in the absolute running times across differenaites, the ratios of run-
ning times between normal-form-based and AGG-based imgréations showed a
clear increasing trend as the number of players increadselndrmal-form-based
implementation ran out of memory for instances with morethplayers. Mean-
while, we ran the AGG-based implementation on larger ircgarwith a one-day
cutoff time. As shown by the boxplot, the AGG-based impletation solved most

99

87 —_ 00000+ v =
g 1
56 » 10000 +
% °]
5s . g 1000 -
(2] + 1
84 : s 1000 . =
< . ?E) : 1 '
—_— +
EE oL e
5 é 2] 4 +
E 2 0 E‘) 1 _ Q _
: H
p=] 0.1
Bl ==
3 4 5 3 4 5 6 7 8
number of players number of players
$ 40 T +
g 10000 -
£ a! P e
2 i 3 1000 T i 7
‘c 30 E < + N : o i :
s Bs g e PN
© $ o0fr L[] Co
= c ' 1
220 &= = Vs
'g 1 g 10 : 1 :
< [=] = | 1 !
L (= E 1 i 1 1 +
z 10 &= S ' N
5 & .
2 =7 o1l T
S - I
4 5 6 7 8 9 101112 13 14 15 16 4 5 6 7 8 91011121314 1516
number of actions number of actions

Figure 3.15: Simplicial subdivision algorithm; symmetric AGG-0s on &ln
world graphs. Top row: 5 actions, varying number of play&sttom
row: 4 players, varying number of actions. The left figuresvshatios
of running times; the right figures show logscale plots of Giptés for
the AGG-based implementation. The dashed horizontal tideates
the one day cutoff time.

instances with up to 8 players within 24 hours. We then fixedrihimber of play-
ers at 4 and varied the number of action nodes from 4 to 16. [Reme shown
in Figure 3.15 (bottom row). Again, while the actual runniiimges on different
instances varied substantially, the ratios of running sirsleowed a clear increas-
ing trend as the number of actions increased. The AGG-basptinentation
was able to solve a 16-action instance in an average of abmini&es, while the
normal-form-based implementation averaged about 2 hours.

3.6.7 Visualizing Equilibria on the Action Graph

Besides facilitating representation and computation,aitt@n graph can also be
used to visualize strategy profiles in a natural way. A sgateofileo (e.g., a Nash

100

Figure 3.16: Visualization of a Nash equilibrium of a 16-player Coffeeofh
game on a 4« 4 grid. The function nodes and the edges of the action
graph are not shown. The action node at the bottom corresgonmbt
entering the market.

equilibrium) can be visualized on the action graph by digpigthe expected num-
bers of players that choose each of the actions. We call stighietheexpected
configurationundero. This can be easily computed given for each action node
a, we sum the probabilities of playing, i.e. E[c(a)] = Yien 0i(a) wherea;(a)
is 0 whena ¢ A;. When the strategy profile consists of pure strategies ehdtris
simply the corresponding configuration.

The expected configuration often has natural interpretatid-or example in
Coffee Shop games and other scenarios where actions comcegplocation choices,
an expected configuration can be seen as a density map deg@ipected player
locations. We illustrate using a 16-player Coffee Shop gama 4x 4 grid. We
ran the (AGG-based) Govindan-Wilson algorithm, finding asiNaquilibrium in
77 seconds. The expected configuration of this (pure stratsgiilibrium is visu-
alized in Figure 3.16.

We also examined a Job Market game with 20 players. A nornmal fepre-
sentation of this game would have needed to stotexd0'3* numbers. We ran the
AGG-based Govindan-Wilson algorithm, finding a Nash efdiim in 860 sec-

101

J

)
<)

)

\—
<>
<

IS

()
93
] ;9@
> (=)

5

—

020
020,

®-@-
g /< 23
7 7
i] \
0J0°0°0
J :

T

1.90447

.9099@0@
_' 9.’9‘99@0@
@-0--@-

Figure 3.17: Visualization of a Nash equilibrium of a Job Market game with
20 players. Left: expected configuration of the equilibriuiRight:
two mixed equilibrium strategies.

onds. The expected configuration of this equilibrium is alged in Figure 3.17

(left). Note that the equilibrium expected configurationsamie of the nodes are
non-integer values, as a result of mixed strategies by sdrtie @layers. We also

visualize two players’ mixed equilibrium strategies in g 3.17 (right).

Finally, we examined an Ice Cream Vendor game (Example Bvidth 4 lo-
cations, 6 ice cream vendors, 6 strawberry vendors, and #sidessvendors. The
Govindan-Wilson algorithm found an equilibrium in 9 secen@he expected con-
figuration of this (pure strategy) equilibrium is visualizim Figure 3.18. Observe
that the west side is relatively denser due to the west-sddars. The locations at
the east and west ends were chosen relatively more ofterthtbamiddle locations,
because the ends have fewer neighbors and thus experissamlapetition.

3.7 Conclusions

We proposed action-graph games (AGGSs), a fully expressimeegepresentation
that can compactly express utility functions with struetauch as context-specific
independence and anonymity. We also extended the basic A@@sentation by

102

O
9
(h

Figure 3.18: Visualization of a Nash equilibrium of an Ice Cream Vendor
game.

introducing function nodes and additive utility functioadlowing us to compactly
represent a wider range of structured utility functions. SWewed that AGGs
can efficiently represent games from many previously stud@mpact classes in-
cluding graphical games, symmetric games, anonymous gamescongestion
games. We presented a polynomial-time algorithm for comgugxpected util-
ities in AGG-0s and contribution-independent AGG-FNs.r Bpmmetric andk-
symmetric AGG-0s, we gave more efficient, specialized rilgms for computing
expected utilities under symmetric akesymmetric strategy profiles respectively.
We also showed how to use these algorithms to achieve expanspeedups of
existing methods for computing a sample Nash equilibriumd arsample corre-
lated equilibrium. We showed experimentally that using AGBows us to model
and analyze dramatically larger games than can be addredtbetthie normal-form
representation.

In several later chapters of this thesis we present ourteftorextend and gen-
eralize our AGG framework. In Chapter 4 we consider the mobbf computing
PSNE. In Chapter 6 we propose Bayesian action-graph ganf€sGB) for rep-
resenting Bayesian games, and in Chapter 5 we propose tehgmtion-graph
games (TAGGS) for representing imperfect-informationayic games.

103

Chapter 4

Computing Pure-strategy Nash
Equilibria in Action-Graph
Games

4.1 Introduction

In this chapter, we analyze the problem of computing puretesgy Nash equilibria
(PSNE) in AGGs. Recall from Section 2.2.6 that PSNEs do neayd exist in
a game. We focus on the problems of deciding if a PSNE exiats,0é finding
a PSNE, and later extend our analysis to the problem of canmgpatPSNE with
optimal social welfare. The existence problem for AGGs iswn to be NP-
complete, even for symmetric AGG-0s with bounded in-degreOur goal in this
chapter is to identify classes of AGGs for which this problertractable. We pro-
pose a dynamic programming approach and show that if the A@&3symmetric
and the action graph has bounded treewidth, our algorithi@rménes the exis-
tence of pure equilibria in polynomial time. We then extend approach beyond
symmetric AGG-0s.

1This chapter is based on joint work with Kevin Leyton-Brow@ur earlier publication [Jiang
and Leyton-Brown, 2007a] was restricted to the case of symen&GG-0s, and furthermore the
proposed algorithm contained an error. In the current erapé describe the corrected algorithm
for symmetric AGGs, and furthermore extend the algorithroeidain classes of asymmetric AGGs.

104

We give a brief overview of our approach, and contrast it veitime of the
related literature mentioned in Section 2.2.6. Recall fl@afinition 2.2.5 that a
PSNE is a pure-strategy profile satisfying certain incentienstraints. For sym-
metric AGGs, we can cast the problem in terms of configuratiamd constraints
on configurations. With the graphical structure of AGGs, tra idea is to con-
struct global solutions (i.e., configurations correspogdio PSNE) frompartial
solutions which are configurations over a subset of action nodedhgatiscertain
local constraints on the corresponding subgraph of theragtiaph. One difficulty
when combining partial solutions from subgraphs is thatnebnsistency For
the PSNE problem on graphical games, Gottlob et al. [2008]Raskalakis and
Papadimitriou [2006] showed that an effective techniqued&aling with inconsis-
tency is tree decomposition (and the related concept ofringeedecomposition).
Roughly, a tree decomposition [Robertson and Seymour,]x8&6graph consists
of a family of overlapping subsets of vertices of the grapid atree structure with
these subsets as nodes, satisfying certain propertiesttsaichlgorithms for trees
can be adapted to work on the tree decompaosition, with rgntime exponen-
tial only in the tree decomposition’s width (which measuttes size of the largest
subset). Thdreewidthof a graph is defined to be the width of the best tree de-
composition for that graph. As a result, many NP-hard proklen graphs can be
solved in polynomial time for graphs with bounded treewigitee e.g., the recent
survey by Bodlaender [2007]). For graphical games on badrticewidth graphs,
it is sufficient to combine partial solutions from the leat@$he root of the tree de-
composition while maintaining consistency across adjasebsets, resulting in a
polynomial-time algorithm for PSNE [Daskalakis and Papdttiou, 2006]. How-
ever, whereas in graphical games the incentive constreamde defined locally
at each neighborhood, for AGGs we face an additional difffgcblecause an agent
could profitably deviate from playing an action in one parthaf action graph to an-
other. That s, the incentive constraints for PSNE in an A@fnot be entirely cap-
tured by local constraints on subgraphs of the action gragimplified version of
this difficulty was successfully dealt with in leong et alO{55]'s polynomial-time
algorithm for finding PSNE irsingleton congestion gameshich correspond to
symmetric AGGs with only self edges. Their dynamic-progmang algorithm is
able to check against such deviations without having tedtoe exponential-sized

105

set of partial solutions, by maintainirsgfficient statisticgspecifically, bounds on
utilities) that summarize the partial solutions compactBecall fromChapteB3
that AGGs unify these existing representations; it turristieat our algorithm for
AGGs also generalizes the existing algorithms for graptgemes and singleton
congestion games. Specifically, we defmestricted gamess AGGs played on
subgraphs, equilibria of which satisfy the local incentbamstraints; we then use
tree-decomposition techniques to divide the action grapinsubgraphs, allowing
us construct equilibria of the game from equilibria of rieséd games while main-
taining consistency; and we use sufficient statistics ésmponding to the concept
of characteristics [e.g., Bodlaender, 2007]) to checkregjaieviations across par-
tial solutions. Compared to the case of singleton congesfames, the edges (i.e.,
utility dependence) between action nodes in AGGs compictte design of the
sufficient static. Nevertheless we are able to overcomeghtmical challenge by
further exploiting properties of tree decompositions.

4.2 Preliminaries

421 AGGs

We refer readers to Chapter 3 for definitions of AGG-0s, swytnim AGG-0s and
k-symmetric AGG-0s. Recall that is the maximum in-degree of the action graph.
For an AGG-0I = (N, A, G, u), let||l'|| denote the number of utility values the
representation stores. Recall from Proposition 3.2.6 tthiatnumber is less or
equal to|;z%|%, with equality holding when the AGG-0 is symmetric. Let
7 be the set of distinct utilities of the gare

Whereas in Chapter 3 we only need to consider configuratiessicted to
the neighborhood of some action node, in this chapter weng#id to talk about
configurations over arbitrary sets of action nodes. For digomtionc and a set
of actionsX C <7, letc[X] denote the restriction afoverX, i.e. c[X] = (c[d])aex,
wherecla] is the number of players choosing actian Let ¢ [X] denote the set
of restricted configurations ovet. Given an action grapks = («/,E) and a
set of actionsX C «7, let Gx be the action graph restricted to the action nodes
X. Formally, Gx = (X,{(a,a’) € E|a,a’ € X}). For a set of actionX C .«7,

106

definev(X) = {a € &/ \ X|3x € X such thata,x) € E}: the set of actions not
in X that are neighbors of some actionX1 Also defineX = &7 \ X to be the
complement oK. Thenv(X) = {x € X|Ja € &/ \ X such thatx,a) € E}, the set
of actions inX that are neighbors of some action notdn Definet(X) = {x €
X|3a € &7\ X such thatx,a) € E or (a,X) € E}. Given a configuratior[X], let

#C[X] = 3 yex X

4.2.2 Complexity of Computing PSNE

Consider the problem determining whether a PSNE exists inemAGG-0. Re-

call from Section 2.2.6 that the obvious algorithm of chagkevery possible action
profile runs in linear time in the normal form representatibthe game. However,
since AGGs can be exponentially more compact than the ndomal the running

time of this algorithm is worst-case exponential in the sizthe AGG. Indeed, the
PSNE problem becomes NP-complete when the input is an AGG-0

Proposition 4.2.1. The problem of determining whether a pure Nash equilibrium
exists in an AG@ is NP-complete.

Proof Sketch.lt is straightforward to see that the problem is in NP, beeagigen
a pure strategy profile it takes polynomial time to verify Wiex that profile is
a Nash equilibrium. NP-hardness follows from the fact that graphical game
can be transformed (in polynomial time) to an equivalent AGGaving the same
space complexity, and the fact that the problem of detenyittie existence of pure
equilibrium in graphical games is NP-hard [Daskalakis aagaeimitriou, 2006,
Gottlob et al., 2005]. O

Perhaps more interestingly, the problem remains hard dvwee restrict the
games to be symmetric, in which case we cannot leveragarexigsults about
graphical games. The following theorem was proved indepeihy by Vincent
Conitzer (personal communication) and Daskalakis et aD$2.

Theorem 4.2.2(Conitzer [pers. comm., 2004], Daskalakis et al. [2009]e prob-
lem of determining whether a pure Nash equilibrium exists aymmetric AGG is
NP-complete, even when the in-degree of the action graphnsat 3.

107

4.3 Computing PSNE in AGGs with Bounded Number of
Action Nodes

Now we look at classes of AGGs in whidlk? |, the number of action nodes, is
bounded by some constant. We show that in this case, thegpnadfl finding pure
equilibria can be solved in polynomial time. While this isexywrestricted class of
AGGs, we will use these results as building blocks for ourashgitc programming
approach for solving more complex AGGs.

We first look at symmetric AGGs. We restate the following wkeibwn prop-
erty of symmetric games [e.g., Brandt et al., 2009] in thglmage of AGGs:

Lemma 4.3.1. Supposé is a symmetric AGG. If a and’ induce the same config-
uration, then a is a PSNE &f iff a’ is a PSNE of .

This is because the configuration determines the utiliies, since in a sym-
metric AGG any player can choose any actiomeit) the configuration determines
whether the incentive constraints for PSNE are satisfiede it this argument
requires the symmetry property; in particular, the lemméonger holds for asym-
metric AGGs.

Lemma 4.3.1 allows us to consider only the configurationgeat$ of all the
pure strategy profiles. We say a configuratide a PSNE of if its corresponding
pure strategy profiles are PSNE. The following straightemdviemma (a special-
ization of known facts about symmetric games [e.g., Brahdt.e2009]) gives the
incentive constraints for PSNE in terms of configurations.

Lemma 4.3.2. A configuration ¢is a PSNE of a symmetric game iff for alla’ €
<, if c*la] > 0,
u?(c*) >u? (cy_q) (4.3.1)

where ¢, _, . is the resulting configuration when one agent playingn c* deviates
to a’. Formally, for all xe &,

c'x—-1 ifx=a
ChoaX=4¢ cX+1 ifx=a’
c'[x] otherwise

108

Given a configuratior, we can check whether it is a pure equilibrium in poly-
nomial time.

Theorem 4.3.3. The problem of determining whether a pure Nash equilibrium
exists in a symmetric AGG with bounded | is in P.

Proof. A polynomial algorithm is to check all configurations. Sineé| is bounded,

the number of configuratior‘(é‘m{_'f) = O(nlI=1) is polynomial. O

This can easily be extended kesymmetric AGGs.

Definition 4.3.4. Supposd is a k-symmetric AGG in which the players are par-
titioned into equivalence classédls, ..., Ny} with the corresponding distinct ac-
tion sets{<r1,...,27¥}. Then given a pure strategy profile a, its corresponding
k-configurationis a tuple(c;)1<¢<k Where ¢ is the configuration over7! induced

by the players in N In other words, for alla € ¢, ¢;[a] = |[{i € N¢|aj = a}|.

Just as configurations capture all relevant informatioruapare strategy pro-
files in symmetric gamegk-configurations capture all relevant information about
pure strategy profiles ik-symmetric games. Thus we can determine the existence
of pure equilibrium by checking ak-configurations. Wherk is bounded by a
constant, there are polynomial numbeikefonfigurations.

Lemma 4.3.5. The problem of determining whether a pure Nash equilibrixiste
in a k-symmetric AGG with bounded/| and bounded k is in P.

Proof. A polynomial algorithm is to check ak-configurations. Sinceés/| is
bounded, for eache {1,...,k} the number of distinat, is ('N'l‘;;"{‘l_l) = O(|Nj|l"1-1y.
Therefore the number of distinktconfigurations i©O(n (1= which is polyno-
mial whenk is bounded. For eack-configuration, checking whether it forms a
Nash equilibrium takes polynomial time. Therefore the atgm runs in polyno-

mial time. O

Now consider the full class of AGGs with bounded’|. Interestingly, our
problem remains easy to solve.

Theorem 4.3.6. The problem of determining whether a pure Nash equilibrium
exists in an arbitrary AGG with bounded?| is in P.

109

Proof. Any AGGT is k-symmetric by definition, wherkis the number of distinct
action sets. Sincé; C &/ for all i, the number of distinct nonempty action sets is
at most 27| — 2. This is bounded, sinde7| is bounded by a constant. Thlss
k-symmetric with bounde#l, and Lemma 4.3.5 applies. O

4.4 Computing PSNE in Symmetric AGGs

We now consider classes of AGGs in whigti| is not bounded. We first focus on
symmetric AGG-0s. Since in this case all players have theesaction sets, we
can identify a symmetric AGG-0 by the tuple,G = (<7, E),u). Whereas enumer-
ating the configurations works well for AGGs with bounded|, this approach is
less effective in the general case with unboungedt in a symmetric AGG-0, the
number of configurations over is (”lt?'ﬁ;l
when.# is bounded.

Our approach is to use dynamic programming to construct P&Nfe game
from PSNE of games restricted to parts of the action grapis dpproach belongs

), which is superpolynomial ifi["||

to a large family of tree-decomposition-based dynamic gagning algorithms
for problems on graphs. In particular, in this section wepadhae standard con-
cepts ofpartial solutionsandcharacteristicde.g., Bodlaender, 1997] to the PSNE
problem in AGGs.

4.4.1 Restricted Games and Partial Solutions

We first introduce the concept ofrestricted gamen R C o7, which intuitively is
the game played by a subset of players when we “restrict” tiodine subgrapleg,
i.e., require them to choose their actions frBOf course, the utility functions of
this restricted game are not defined until we specify a cordigan onv(R).

Definition 4.4.1. Given a symmetric AG®-, a set of actions R .o, a config-
uration dv(R)] and i < n, we define theestricted gamé (n',R,c[v(R)]) to be
a symmetric AGG with’mplayers and with G as the action graph. Each action
a € R has the utility function Y, (g), which is the same as”uas defined i
except that the configuration of nodes outside R is assigpetViR)]. Formally,

(0 ReV(R)) = (M, Gr, (W) ger)-

110

Figure 4.1: The road game with
m = 8 and the action graph of Figure 4.2: Restricted game on
its AGG representation. the rightmost 6 actions.

Example 4.4.2. Suppose each of n agents is interested in opening a busaness,
can choose to locate in any block along either side of a roddmjth m. Multiple
agents can choose the same block. Agent i's payoff depentiseamumber of
agents who chose the same block as he did, as well as the munftagents who
chose each of the adjacent blocks of land. This game can beamtin represented
as a symmetric AGG, whose action graph is illustrated in Fegi1. To specify a
restricted game on the rightmost 6 action nodes RT6,T7, T8, B6,B7,B8} of the
road game of Figure 4.1, we need to specify the number of ayeR as well as
the configuration ovev(R) = {T5,B5}. This is illustrated in Figure 4.2, with R
enclosed by the shaded rectangle ar{&R) in green.

Lemma 4.3.1 tells us that we only need to consider configamatinstead of
strategy profiles. Likewise, for a restricted game on thgsythX C o7, we only
need to consider restricted configuratiafs]. The following lemma is straightfor-
ward.

Lemma 4.4.3.1f c* is a pure equilibrium of", then ¢[X] is a pure equilibrium of
the restricted gameé (#c*[X], X, c*[v(X)]).

We want to use equilibria of restricted games as buildinghddo construct
equilibria of the entire game. Of course, a restricted gam¥ a <7 is not well-
defined until we specifye[v(X)]. Thus we define partial solutionas a config-
uration onX U v(X) which describes a restricted game ¥nas well as a pure
equilibrium of it.

Definition 4.4.4. A partial solution on XC ¢/ is a configuration XU v(X)] such
that dX] is a pure equilibrium of the restricted game#c[X], X, c[v(X)]).

111

Figure 4.3: A partial solution on the rightmost 6 actions describes th#ig-
uration over these 8 actions.

For the restricted game in Figure 4.2, the correspondingapaiolution on
R={T6,T7,T8,B6,B7,B8} is a configuration oveRU v(R), illustrated in Figure
4.3 as green nodes.

We say a partial solution[X U v(X)] can beextendedf there exists a configu-
rationc* such that* is a PSNE of” andc* [XU v(X)] = c[XU v(X)].

4.4.2 Combining Partial Solutions

In order to combine partial solutions to form a partial sionton a larger subgraph,
we need to make sure that the result is a valid restrictetegirgrofile. We say
two partial solutions’[X] andc”[Y] areconsistenif there exists a configuration
of the AGG-0 such that[X] = ¢/[X] andc[Y] = ¢[Y]. The following lemma shows
that it is simple to check whethefX] andc/[Y] are consistent.

Lemma 4.4.5.Given XY C &7, ¢[X] is consistent with¢Y] iff

1. foralla e XNY, da] =c[a], and

2. Let A =#c[X] +#C'[Y\ X], then 1 < n. Furthermore, if XUY = &/ then
n=n.

We omit the straightforward proof. For two configuratiariX], ¢'[Y] that are
consistent with each other, we deficfX] U c/[Y] to be the (unique) configuration
on X UY that is consistent with bot&{X] andc’[Y].

However, if we simply combine two consistent partial sauos that describe
equilibria of restricted games on two disjoint s&tsy € o7, the result would not

112

necessarily induce an equilibrium of the restricted gam¥ orY. This is because
an agent who was playing an actionXnmight profitably deviate by playing an
action inY, and vice versa.

We could deal with this problem by keeping track of all pureigiria of each
restricted game, and determine case-by-case whether twibeg can be com-
bined (by checking whether agents could profitably deviedenfone restricted
game to the other). But as we combine the restricted gamesrio larger re-
stricted games and eventually the unrestricted game omtiire ection graplG,
the number of equilibria we would have to store could growoegntially.

4.4.3 Dynamic Programming via Characteristics

Perhaps we don’t need to keep track of all partial solutioimsagine we had a
function ch that summarized them, i.e. it mapped each padlation to acharac-
teristicfrom a finite sets’ which is smaller than the set of partial solutions. For this
characteristic function to be useful, it need todmpiilibrium-preserving defined

as follows.

Definition 4.4.6. For X C 7, a functionch() that maps partial solutions to their
characteristics isequilibrium-preservingf for all pairs of partial solutions ¢X]
and ¢[X], if ch(c[X]) = ch(c'[X]) then(c[X] can be extendgd= (c'[X] can be extended

Thus an equilibrium-preserving characteristic functibf)énduces a partition
of the set of partial solutions into equivalence classekpétial solutions with the
same characteristic behave the same way, so we only needdinleothe set of all
distinct characteristics. Fot C o7, we defin€éx C % to be the set of characteris-
tics of partial solutions oX. Formally, x = {ch(c[XUVv(X)]) | c[XUV(X)]

is a partial solution orX}.

Given such a function ch, a dynamic-programming algoritbmdetermining

the existence of PSNE &f has the following high-level structure:

1. Construct?” = {X,...,Xm} such thatJ;j<mXj = /.

2. For eachX; € 27, computesy,, the set of characteristics of partial solutions
onX;.
3. While| 27| > 2:

113

(a) TakeX,Y € 2. Remove them froni?".
(b) Computegxy from 6% and%.
(c) AddXuY to 2.

4. Now 2" has only one membety. Return TRUE iff€,, is not empty.

Since a patrtial solution ony is by definition a pure equilibrium of, there
exists a pure equilibrium df if and only if €, is not empty. For this algorithm to
run in polynomial time, the function ¢hmust satisfy the following properties:

Property 1: At all times during the algorithm, for alk € .27, the size ofé is
polynomial. This is necessary since all restricted styatwofiles could po-
tentially be partial solutions, and $6« could potentially be the set of all
possible characteristics fof.

Property 2: For each of the initiaK;, ¢x; can be computed in polynomial time.

Property 3: %xuy can be computed froix and%y in polynomial time.

One algorithm having the above structure is leong et al. 3P8lgorithm
for computing PSNE in singleton congestion games (corredipg to symmetric
AGG-0s with only self-edges). Given such an AGG-0, theatgm starts by parti-
tioning <7 into sets each containing one action, and combines them antdtnary
order. Consider two restricted ganfésandl’” on two disjoint sets of action nodes
X andY respectively. Observe that in this case, to check consigteetween two
equilibria of I’ andl™” respectively, it is sufficient to check the numbers of play-
ers inl" andlr'”. Given a restricted gamé on X C & and an equilibriunc* of
", define theworst current utility WCU(c*,T'’) to be the utility of the worst-off
player inl’, or « if " has O players. Define tHeest entrance utilifBEU(c*, ")
to be the best payoff a player currently playing an actiorsidetof X can get by
playing an action inX, assuming the current players (i play c¢*. If I’ already
has alln players, BEUc*,[") = —o. Since all players in a symmetric game are
identical, if any player can profitably deviate outldf then the worst-off player
(with utility WCU(c*,I'")) can profitably deviate out df’; similarly if an agent
can profitably deviate to any action ir, then she can achieve utility BEtS,).
Therefore, to check whether agents could profitably deviat@ " currently in

114

equilibriumc to " in equilibriumc”, we just need to check whether WG T™")

is greater than BE(¢”,). Thus WCUC/,I") and BEUC/,I'") can be used as suf-
ficient statistics for checking existence of profitable déens out of and into the
restricted gamé’, and #[X] for checking consistency. The resulting character-
istics are equilibrium-preserving, and require less spphan keeping track of the
partial solutions orX because WCU and BEU are utility values and thus there are
at most||'||2 possible pairs.

We adapt leong et al. [2005]'s characteristic function toegal symmetric
AGGs. First of all, we now needv(X)] in order to specify restricted games and
partial solutions orX. As a result, to check consistency between a partial solutio
on X and partial solutions on other parts of the graph, we needdp krack of the
number of players irX, the configuration ovev(X), and the configuration over
v(X).

Furthermore, in general action graphs, we may haveXatsc </ such that
v(X)NY # 0. In such cases deviating from an actionvifX) NY to a restricted
gamel’ on X changes the configuration ar{X), which in turn affects the utility
functions off”’. In other words, the best utility a player originally plagian action
a € X can get by deviating intb’ on X with current configuratior* is a quantity
that depends on (1) whetheris in v(X) and (2) if so,a itself. As a result, simply
using BEUc*,I") and WCUc*,T") is no longer sufficient for checking profitable
deviations.

We thus need more sophisticated sufficient statistics fecking deviations in
this case. One approach is to extend our definition of BEU’) by making it
vector-valued, specifying the best utilities when the diérg player is an outside
player and when the player is playing each of the actions(k). The length of
the resulting vector is thuys (X)| + 1. Furthermore we could extend W@, I)
by making it a vector consisting of the worst utility frox\ v(X) and from each
of the actions irv(X). Although it is intuitive, it turns out that this approactelds
a polynomial-time algorithm only in the case of symmetric@@®s with bounded
treewidth and bounded in-degree.

Instead, in this chapter we describe a different approaatytalds a polynomial-
time algorithm for bounded-treewidth symmetric AGG-0sig eliminating the sep-
arate requirement on in-degree. First, we redefine REU’) in terms of devia-

115

tions from players outside of U v(X).

Definition 4.4.7. Given a restricted gam&’ on X C <« and an equilibrium ¢
of I, the best entrance utilityBEU(c*,I"’) is the best payoff anutside playe a
player currently playing an action outside of(Xv(X)) can get by playing an
action in X, assuming the current players li play ¢". If there are 0 outside
players, BEUc*,[") = —oo.

In order to check deviations into and outXfwe partitionX into P andX \ P,
and check the corresponding restricted games separatetywillspecify P in
Section 4.4.4; for now we only require thdtD P D 7(X). Recall thatr(X) are
the set of nodes X with outgoing edges to and/or incoming edges from nodes
outsideX. Intuitively, P contains all nodes iiX that we cannot apply BEU and
WCU to. This impliesv(X\ P) N X =0 andv(X)N (X \P) = 0. Thus we can use
WCU and BEU for restricted games oh\ P as sufficient statistics for checking
deviations betweeiX \ P and nodes outsidX. The remaining task is to check
deviations betweeR and nodes outsid¥. We do this by explicitly keeping track
of configurations orfQ O PU v(P). We will exactly specifyQ in Section 4.4.4. In
other words, we keep track of the partial solutiondoMNote in particular that this
provides enough information to specify the correspondegjricted games oR.
Finally, since configurations ovet\ P will not be referred to by partial solutions
on anyY C .« that is disjoint fromX, in order to maintain consistency it is sufficient
to keep track of the number of players playingXnand the configuration over
PUV(X), which is a subset o).

Taking these together, we have the following characterfstiction.

Lemma 4.4.8. Given XC <7, P C X such that P> 7(X), and Q2 PUV(P), con-

sider the characteristic function gly that maps a partial solution[X U v(X)] to
cheo(c[X UV(X)]) = (c[Q], #c[X], WCU(c[X'],I"), BEU(c[X'],T")),

where " = T (#c[X'],X’,c[v(X")]) and X = X\ P. Then chq is equilibrium-

preserving.

Proof. Suppose we have two partial solutiog]X U v(X)] andc/[X U v(X)] such
that chho(c[X U v(X)]) = cheg(c'[X U V(X)]). FurthermorecX U v(X)] can be

116

extended, i.e., there exists a PShIEof the game such that [X U v(X)] = c[X U
v(X)]. We need to show that[X Uv(X)] can be extended. SinceX Uv(X)] and

c[X U v(X)] are consistent, and sincfX U v(X)] andc’[X U v(X)] have the same
characteristic (in particular, the same configuratiorw¢X) U v(X) and the same
number of players iX), thereforec*[X U v(X)] andc/[X U v(X)] are consistent.
Consider the configuratiod* = c*[X U v(X)]uc [X U v(X)]. We claim thatt’* is

a PSNE of the game (which directly implies tltdX U v(X)] can be extended). To
show this, we observe that sincgX U v(X)] andc/[X U v(X)] are already partial
solutions onX and X respectively (and are consistent with each other), we only
need to make sure there are no profitable deviations between WWe partitiorX

into P andX’ = X\ P. Since there were no profitable deviations between partial
solutionsc[PU v(P)] andc* [X U v(X)], and sincee[PU v (P)] = ¢'[PUV(P)], there

are no profitable deviations between partial solutidfRU v(P)] andc* [XU v(X)].
Suppose there is a profitable deviation friffrunder partial solutio’[X' U v(X')]

to X under partial solutiore*[X U v(X)]. Then there is a profitable deviation from
the worst-off player inX’ underc'[X’ U v(X’)]. Since her utility is equal to that of
the worst-off player inX’ underc[X’ U v(X’)], there must be a profitable deviation
from the partial solutiore[X’ U v(X')] to c¢*[X U v(X)], a contradiction. A similar
argument shows that there is no profitable deviation flormderc*[X U v(X)] to

X’ underc’ [X"Uv(X")]. O

We denote b%f’Q the set of characteristics ohunder the characteristic func-
tion chpg. For the restricted game in Example 4.4.2, we canfuse{T6,B6} and
Q=PUv(P)={T5,T6,T7,B5,B6,B7}. These are illustrated in Figure 4.4.

The following lemma shows how sets of characteristics fram subsetsX’
and X” of o7 (with characteristic functions ghy and ch o respectively) can
be combined together. Here we require tkatand X” have a limited amount of
overlap; specifically, we require that N X” C P’UP”. Intuitively, the combina-
tion of subsets with such overlap is manageable becauseqTaw calculate the
total number of players iX’ U X” from the characteristics because we know the
configuration of (and thus the number of playersXhj X”; and (2) since the con-
figuration of X’ N X" is already “in equilibrium” with both sides, it is sufficieta
check deviations fronX” \ X’ to X"\ X" and vice versa. We do this by partitioning

117

Figure 4.4: Characteristic function & for the rightmost 6 actions witR =
{T6,B6} andQ = {T5,T6,T7,B5,B6,B7}.

the former intoX” \ P” andP” \ X', and the latter intoX’\ P and P’"\ X”, then
checking the resulting set of deviations using informapoovided by the charac-
teristics.

Lemma 4.4.9. Suppose that X°,Q,X’,P',Q', X" ,P”,Q" are subsets of# such
thatT(X) CPC X, T(X) CP C X/, 1(X") CP" C X", Q2 PUV(P), Q DP'U

v(P), Q" 2 P"Uv(P"), X'nX" CPUP”, and X UX" = X. For all ¢[Q] € C[Q],
integer B< n, and W, Ue € %, the tuple(c[Q], B,Uc, Ue) € %3 2 if and only if there
exist ¢[Q'], ¢’[Q"], B, B”, and U, U/, U/, and I such that

[Q.B,UgUg) € 6,2,

/[QH], B//,Ué/,Ué/) c %)E’/’/@Q"'

. ¢[Q']is consistent with'§Q"],

- dQ] = c”[Q] where ¢’ = c[QTuc"[Q"],

. B=B'+B"—c”"[X'nX"], and if X= < then B=n,

(¢
(¢

U>Uland Y > U

. UL > BEU(C'[P”\ X'],T"), WCUC [P’ \ X"],I") > U/, U! > BEU[C[P'\
X","), WCU("[P"\ X'],I'") > Ui wherel" =T (#'[P'\ X"], P\ X", c [v(P"\
X)) andl” =T (#[P"\ X'], P"\ X', c"[v(P"\ X")]),

8. P’UP"] is an equilibrium of" (#c[P’ UP"], P UP”, ¢’ [v(P'UP")],

9. U=min{U,, U, WCU(c"”[Z],Tz)} and U= max{U{, UL, BEU(C”[Z],T 2)},

where Z= (PP UP”)\ P andlz =T (#c"(Z],Z,c"[v(Z))).

N~ o o0~ W N P

118

Proof Sketch.= (“only if”) part: Supposec|X U v(X)] is a partial solution on
X with characteristic(c[Q],B,U¢,Ue). Then letc [X U v(X')] = c[X" U v(X')].
It is straightforward to see that[X'] is an equilibrium of the restricted game
F(#c [X'],X’,c[v(X")]). Thereforec' [X"Uv(X')] is a partial solution orX’. Sim-
ilarly, let ¢’[X" Uv(X")] = c[X"Uv(X")], and the same argument applies. Then
it is straightforward to verify that the characteristicscX’ U v(X’)] andc”[X" U
v(X")] satisfy the above conditions.

< (“if") part: Supposec' [X'Uv(X")] andc”[X" Uv(X")] are partial solutions
with characteristicc'[Q'],B’,U.,US) and (¢”[Q"],B”,UZ,UY) respectively, and
there exist[QJ, B,U¢,Ue such that conditions 3 to 9 are satisfied. Then conditions
3 and 5 together with Lemma 4.4.5 imply tféX’ U v(X")] andc”[X” U v(X")]
are consistent. Let=c'[X'Uv(X")]uc’[X”Uv(X")]. By a similar argument as in
the proof of Lemma 4.4.8, conditions 6 to 8 ensure that thesena profitable de-
viations between the partial solutiod$X’ U v(X’)] andc”[X"” Uv(X")], and there-
fore c[X] is an equilibrium of the restricted gami¢B, X, c[v(X)]). LetY = X\ P.
ThenX’\ P/, X"\ P” andZ partitionsY. By the definition of worst current utility,
WCU(c[Y],T (#c[Y],Y,c[v(Y)])) is the minimum of U, UY , WCU(c” [Z],T z) }, which
are the worst current utilities oK’ \ P, X"\ P” and Z respectively. Therefore
WCU(c[Y],T (#c[Y],Y,c[v(Y)])) = Uc. Similarly BEU(c[X],T (B, X,c[v(X)])) =
Ue. Thereforec[X U v(X)] is a partial solution with characteristic[Q], B,Uc,Ue).

U

Lemma 4.4.9 implies that it takes polynomial time to checknib character-
istics (¢[Q],B,U,UY) € €52 and(¢"[Q],B", U/, UY) € 65,2 are consistent
and if there are no profitable deviations between them, asultib construct a char-
acteristic in%)f’Q for their combined partial solutions. Thus if we iterate og#
pairs of characteristics itf;, © and%},'? respectively, we can construgf’? in
time polynomial in the sizes df;,/’q and%;','@”.

Let us now consider the size &k 2 for an arbitraryX C 7. Recall that the
WCU and BEU are utility values and thus each has at nast< ||I'|| distinct
values. Also #[X] € {0,...,n} by definition. So the number of distinct charac-
teristics can be much smaller than the number of correspgnofirtial solutions
c[XUv(X)] when|Q| <« [XUV(X)|. However, sinc& D v(X) and|v(X)| is |X|.#

119

OC(@xHD e @>_<\
(E)=([D)=(C)(F)(e) BROSOSGEC,

Figure 4.5: An action graphG. Figure 4.6: The primal graphG'.

| Rs={D.E} | Re={C.D} | Re={B.C} |- Re={CF} | - R={F.G} |

Figure 4.7: Tree decomposition aind(G)
X1={ABC}

‘ Xs={C,D,E} H Xs={B.C,D.E,F} H Xo={ABCDF} H X4={B.C,DF.G} H Xe={C,F.G} ‘

Figure 4.8: Tree decomposition of primal grapgl, satisfy-
ing the conditions of Lemma 4.4.11.

in the worst case, the number of possible configurations Queisuperpolynomial

in [|F]| in the worst case. Sincg ? could potentially include every distinct tu-
ple (c[Q],B,U¢,Ue), the size OFK;’Q is superpolynomial in the worst case. Indeed,
Theorem 4.2.2 showed that we will not find a poly-time aldoritfor general sym-
metric AGGs unless B- NP. Nevertheless, we next show that if the action graph
G has bounded treewidth, we can combine the restricted ganseway such that
the number of configuration€|[Q]| (and thus|<€>f’Q\) remains polynomial in|"||
asX grows.

4.4.4 Algorithm for Symmetric AGGs with Bounded Treewidth

We first introduce some notation. Given an action gréaphk- (<, E), define
€ (G) to be the hypergrapl«7, &) with & = {{a} Uv(a)|a € «/}. In other
words, for each actiom € <7, there is a hyperedge containimgand its neigh-
bors. Duplicate hyperedges are removed. Gétbe theprimal graph of the
hypergraphs#(G). G’ is a undirected graph on the same set of vertices, and
there is an edge between two nodes if they are in some hypeledg’ (G).
G = («,{{u,v}|3h € & such thau,v € h}). Thus for eachor € <, a and its
neighbors inG form a clique inG'. In the Bayes net literatur€’ is also known

120

as themoral graphof G. For example, Figure 4.5 shows the action gr&pbf
a symmetric AGG. Its hypergrapk?’(G) has the same set of vertices and the hy-
peredge§ A, B}, {A,B,C}, {D,E}, {C,D,E}, {F,G}, {C,F,G}, and{B,C,D,E}.
Figure 4.6 shows§’s primal graphG'.

The concept of tree decomposition and treewidth was inttediy Robertson
and Seymour [1986].

Definition 4.4.10. A tree decompositionf an undirected graph G= (V,E) is a
pair (27, T) with T = (I,F) a tree (where | and F are the nodes and edges of the
tree respectively), and” = {X|i € |1} a family of subsets of V, one for each node
of T, such that

L UiaX=V,
2. for all edges{v,w} € E there exists and | with v € X; and we X;, and

3. foralli, j,kel:if jis on the path fromito kin T, thenXi X, C X;.

The width of a tree decomposition imaxc| |X| — 1. Thetreewidthtw(G') of a
graph G is the minimum width over all tree decompositions af G

Condition 3 of the definition can be equivalently stated astitiowing: for all
veV,the sef{i € I|ve X} induces a subtree df.

Let the treewidthtw(I") of an AGGT be the treewidth otind(G), the undi-
rected version of its action grajh(excluding self-edges). Figure 4.7 shows a tree
decomposition({R|i €1}, T = (I,F)) of the undirected version of the action graph
G in Figure 4.5. In this casand(G) is a tree. The width of the tree decomposi-
tion is 1 since each tree node contains at most 2 verticeadG). This is a tree
decomposition of minimum width, since any tree decompasitnust have nodes
containing e.g., botA andB since{A,B} is an edge iund(G). In fact, it is known
in general that the treewidth of a connected tree is 1.

A tree decomposition ofind(G) provides a family of subset®R{,...,Rs in
Figure 4.7) of vertices that cover/, and if the width of the decomposition is
bounded by a constant that implies the size®adre bounded. We will be using
R, as theP’s in Lemmas 4.4.8 and 4.4.9. However, we also need to cotfisol
size ofQ 2 PUV(P) in those lemmas in order to control the running time of the

121

resulting dynamic programming algorithm. It turns out thatee decomposition
of the primal graph can be constructed that yields the apijateQ’s of Lemmas
4.4.8 and 4.4.9. Given a tree graph= (I,F) andJ C I, let T; be the subgraph of
T restricted tal.

Lemma 4.4.11. Given a symmetric AG@{ with treewidth w, there exists a tree
decomposition({X;|i € 1},T = (I,F)) of the primal graph G of width at most
(w+1)(# +1)—1, and{Rj|i € |} such that

1. UagR=¢,and RUV(R) C X foralli €1,

2. LetJcC I suchthat Jis a connected graph and connects to the rest of the tree
via only one edgégj, j'} € F with j € J. LetYy = UicyR. Thent(Y;) CR;.

Proof. By assumption there exists a tree decompositiomnof G) of width w. De-
note this decompositiof{Ri|i € I},T = (I,F)). ThenUiq R = /. LetX =

R UV(R) for alli € I. Daskalakis and Papadimitriou [2006] proved that the tesul
ing ({Xi|i €1},T) is a tree decomposition of the primal graphhaving width at
most(w+1)(.# +1)— 1. ThenR UV(R) C X.

Given J, j andY; as defined in the statement of the lemma, we claim that
1(Y;) € R;. To see this, consider eache 1(Y;). Then by definition there must
be ana’ € Y; such that{a,a’} is an edge irund(G). We note thafTj; is also
connected. Sinc¥; = (Ji;Ri, we haveY; C Uiena R =Yy and thusa’ € Yig-
Since{a,a’} is an edge iund(G), by condition 2 of Definition 4.4.10 there exists
i” € I such thatr, a’ € Ry. Furthermore such must be in \ J sincea’ ¢ Y;. Since
a is contained in som&,; with i € J, by condition 3 of Definition 4.4.1@ must
be contained in alR;» such that” is on the path fronitoi’ in T. Sincej is on this
path,a € R;. O

Since the undirected version of the action graph in Figubehds treewidth 1,
Lemma 4.4.11 guarantees a tree decomposition of the priraphgwith width at
most 7 satisfying the above conditions. Figure 4.8 showk auree decomposition
(with width 4) of the primal grapl&’ from Figure 4.6. Each nodec | of the tree
is labeled withX;.

Lemma 4.4.11 together with Lemma 4.4.8 imply that:

122

Corollary 4.4.12. Given any J, j and Y¥satisfying condition 2 of Lemma 4.4.11,
chg, x; is an equilibrium-preserving characteristic function on'Y

Also observe that for alle I, chg x; is trivially an equilibrium-preserving char-
acteristic function orR;.

Pick an arbitrary node € | to be the root off . We say nodg is a descendant
of nodei (equivalentlyi is an ancestor of) if i is on the path fronr to j. Define
Zi={veRj|j=iorjisadescendant &f. ThenZ, = <. Intuitively, when we
combine the restricted games associated with natal its descendants h, we
would get a restricted game @ For each nodec | with childrenqg,...,qgm €1,
for eachj <m, defineZ ; = R UZg, U...UZy. This implies that; m = Z;. Then
Corollary 4.4.12 implies that for ang ;, chg x is an equilibrium-preserving char-
acteristic function. We writesz, | = %ZFfj’N. For our tree decomposition in Figure
4.8, if we let node 1 be the roofthenZs = Rs, Zg = Rs, Z3 = RsURs = {C,D, E},
Z,=R4URs = {C,F,G}, =R, URsUR4URs URs = {B,C,D,E,F,G}, and
Z1 = /. Since node 2 has two childrep = 3 andgy = 4, thenZp 1 = R UZz =
{B,C,D,E} andZ,, =7,,UZs =27, = {B,C,D,E,F,G}.

We adapt our dynamic programming algorithm from the previsaction so
that{R;|i € |} is the initial family of subsets that coverg, and the order in which
the subsets are combined is guided by the tree decompodition the leaves to
the root.

1. For eachR;, compute%r. This can be done by enumerating all possible
configurationscX;] and keeping those that induce a pure equilibrium of the
restricted game OR;.

2. Initialize the set Don€& | to contain the leaves of the trde
3. Whiledi € | \ Done such thafi’ € 1|i’ is a child ofi} C Done:
(a) Letéz,:=%r
(b) Letql,’. ..,0m be the children of.
(c) Forj=1tom, computesz fromez, , and%zqj by applying Lemma
4.4.9.
(d) ¢z =%z,

123

(e) Addito Done.

4. Return TRUE iffé7, is nonempty.

For the tree decomposition in Figure 4.8 with node 1 beingdlog our algorithm
would start from the leaves 5 and 6, then comptig = ¢Z31 by combining
bR, and Gr,, COMpUtE?z, = ¢'Z41 by combining%r, and ¢r;, computesz,, =
%BcpE} Py combiningégr, and ¢z, then computetz, = ¢7z,, = €(gcpEF G
by combining%z,, andéz,, and finally comput&?z, by combining?r, andéz,.

Theorem 4.4.13.Deciding the existence of pure equilibrium in symmetric AGG
with bounded treewidth is in P.

Proof. Suppose the treewidth of the AGG is bounded by a constantThen a
tree decomposition aind(G) having width at mosiv can be constructed in time
exponential only inw, i.e., in polynomial time (see e.g. [Bodlaender, 1996, Islok
1994]). Then we can apply Lemma 4.4.11 to construct in patyiabtime the tree
decompositior({X;|i €1}, T = (I,F)) of the primal graptG’ and{Ri|i € |}

It is straightforward to check that our algorithm above eotly computes all
¢z,- Specifically, at step 3c, sin@ -, andZ,, correspond to disjoint subgraphs
of T connected by edgfi,q; } € F, we haveZ; j 1UZy C R. Therefore we can ap-
ply Lemma 4.4.9. Sincg&, = <7, the algorithm correctly determines the existence
of pure equilibrium inl".

The running time of the algorithm is polynomial in the sizetlod 67’s. The
size of each#y, is bounded byn||['||?|Z’[X%]|. Since the tree decomposition has
width at most(w+ 1)(.# +1) — 1, |£€[X]| < (”?Vf,ﬁ)l()}{gl)). The latter is the
number of ordered combinatorial compositionsnafto (w+ 1)(.# + 1) + 1 non-
negative integers. An equivalent way of counting this nunibas follows:

1. breakninto w+ 1 nonnegative integers, . ..,Xy.+1 such thalz}"’jllm =n.

2. then break each of the firatintegers into.# 4+ 1 nonnegative parts in the
same way, and the last ong,(1) into .# 4+ 2 nonnegative parts.

There are(“*w) different ways of carrying out step 1. Since each integer con

w
sidered in step 2 is at most there are at mos(t“}‘ﬁl) ways of breaking each

124

integer. Thereforé”?vflﬁ)lg;ﬁ;)) < (") (n-}{.{l)WJr

is polynomial in||I"||. Hence our algorithm runs in polynomial time. O

1 . . .
. Sincew is a constant, this

When the input is an AGG-0 encoding of a singleton congesgiame, i.e.,
a symmetric AGG-0 with only self-edges, the resultingd(G) has treewidth O
and by Theorem 4.4.13 the existence of PSNE can be deterrimnemlynomial
time. Of course, our result applies to a much larger classanfes. Road games
(Example 4.4.2) have treewidth 2 for all Thus by Theorem 4.4.13 the existence
of PSNE can be determined in polynomial time for these games.

Our approach can be straightforwardly extended to the ctatipn of related
solution concepts such as pure-strategiash equilibrium and strict equilibrium.
For example, for pure-strategyNash equilibrium, we define partial solutions such
that they induce-Nash equilibria of the corresponding restricted gamed use a
modified version of Lemma 4.4.9 where the conditions thatpamea best entrance
utilities and worst current utilities are relaxed bye.g.,U. > U/ is replaced by
Ul+e>UZ.

4.4.5 Finding PSNE

So far we have focused on the problem of deciding the existehPSNE. Our dy-
namic programming approach can also be used to find theskbequf they exist.

We first consider the problem of constructing a single PSNierAhe bottom-up
pass of the tree decomposition as discussed abo, ils not empty, we do a
top-down pass as follows:

1. Initialize DoneC | to be{r},

2. Pick an arbitrary(c[X;],B;,U{,Ug) € €7,

w

. Set%zr - {(C[Xr]aBl'aUCr7Uer)}'
4. While Done# I:

(a) Takei € Done such thafi’|i’ is a child ofi} N Done= 0
(b) Letqu,...,qm be the children of.
(C) €z = ¢z, will have a single elemerftX],B;,Ul,U}).

125

(d) Letéz, :=%r = {ch(c[X])}
(e) Foreach e mm—1,...,1:
. pick (c]X] By U U) € 62, and(cx], By, U' U) e
%z, such that they combine to form the single elemen¥pf
while satisfying the conditions of Lemma 4.4.9.

i sety, :={(c[Xq],Bq,Uc", Ue')} and7, ,:={(c[X],Bij 1,Uc’ 7,

iii. addq; to Done.

5. Now each%gr contains a single element @fX;]). Output configuration
Uiel C[Xl]

Since the bottom-up pass has established the caftegtstep 4(e)i can always
be carried out. Therefore the algorithm is correct, and bystime argument as in
the proof of Theorem 4.4.13 the algorithm runs in polynortirak. This proves:

Corollary 4.4.14. The problem of finding a PSNE is in P for symmetric AG£>-
with bounded treewidth.

A similar top-down pass would make sure that e@g}) contains exactly the
characteristics of extendable partial solutions. AltHotlge number of pure equi-
libria of an AGG could be exponential in the representatiae $I||, the resulting
set of¢7 ; along with the tree decomposition constitutesuacinct descriptiorof
the set of PSNE of the game, analogous to Daskalakis and irapax [2006]'s
construction of succinct descriptions of the set of PSNEaphbical games. Given
a symmetric AGG-0 with bounded treewidth, such a succiescdption can be
computed in polynomial time. The succinct description carubed e.g., to enu-
merate the set of all PSNE in time polynomial in the size ofiirgnd output, and
to check if there exists a PSNE with a specific configuratiareatin action nodes.

4.4.6 Computing Optimal PSNE

Recall from Chapter 2 that the social welfare is the sum ofptlagers’ utilities.
Given a configuratior in a symmetric AGG-@, the social welfare can be written
as

Wr(c) = 3 claju?(clv(a)]).

acy

126

U,

Our algorithm can be extended to compute the socially optSNE if one ex-
ists. The characteristics now also store the social wedltheorestricted games.
Specifically, we use the characteristic function

ch®P(cZ U V(Zij)]) = (chg x (C[Zij UV(Zij)]), W (c[Zi)

wherel” = T (#c[Z;j],Zij,c[v(Zj)]) is the restricted game afy; induced by the
partial solution. Leffzoiﬁ’t be the corresponding set of characteristics.

The way characteristics from two s&§ X" C .7 are combined is also slightly
different from Lemma 4.4.9. Once we have checked consigtand profitable
deviations as in Lemma 4.4.9, we now need to compute thelseeltare of the
resulting characteristic from the given characteristicX’candX”. Simply adding
the social welfare values would not be correct due to theiplessverlap ofX’ and
X", fortunately we know the configuration ov’ N X” and their neighbors (by
assumption of Lemma 4.4.9) so we are able to calculate theal sgelfare of the
overlap and subtract it from the sum.

Corollary 4.4.15. Suppose %= X'UX”, and X, X" ,P,P',P",Q,Q,Q" satisfy the
prerequisites of Lemma 4.4.9. For ally, B,U., Ue, W, we have c[Q], B,Uc,Ue, W) €
%" if and only if there existc [Q'], B',UZ, UL, W') € €5 and (¢/[Q],B”,U¢, UL, W") €
ey satisfying the conditions of Lemma 4.4.9, and

W_J :W/ +W” _Vw_m(c[xlmxll])

wherell~ = T (#[X' N X", X' N X" c[v(X' NX")]).

Using this characteristic function together with the bottop pass above, we
can compute the optimal social welfare achieved by a PSNindfexists. A top-
down pass then constructs such a PSNE. One issue with thisaagbpis that due to
the additional social welfare term in a characteristic,tbimber of characteristics
in each%fiﬁt can be greater thafez|. Fortunately, it is straightforward to show
that:

Lemma 4.4.16.Suppose partial solutiongX U v(X)] and ¢[X Uv(X)] induce the
same characteristic under 8 except that the former’s social welfare is less than

127

the latter’s. Then the former can be extended to a PSNE if ahditcthe latter can
be extended to a PSNE with greater social welfare.

This implies that whenever we have multiple characteBs’thﬁt that differ
only in their social welfare values, we can safely prune aalaput the one with
the greatest social welfare. The resultitt ﬁt has the same cardinality &5
therefore the algorithm runs in polynomial time.

i,j?

Corollary 4.4.17. Computing a maximum social welfare PSNE in symmetric ASG-
with bounded treewidth is in P.

4.5 Beyond symmetric AGGs

4.5.1 Algorithm for k-Symmetric AGG-0s

Our results for symmetric AGG-0s can be straightforwaei{ended ti&-symmetric
AGG-0s with bounded. Consider &-symmetric AGG-0I with player classes
Ni,...,Nk. As discussed in Section 4.3, it is sufficient to consklepnfigurations.
Define restricted gameé ((n})1</<k, X, (¢/[V¢(X)])1<i<k) to be thek-symmetric
AGG-0 played onGy, in which each player clasée {1...k} hasn, < |N/| —
c/[v(X)] players, and the utility function for eaal € X is u”|¢,(v(x)))1<icpr 1-€+»
the same as” of ' except that the configuration of nodes outsKiare given
by thek-configuration(c,(v(X)))1</<k. We define a partial solution oX to be
ak-configuration(c,[X U v(X)])1<¢<k such that(c,[X])1</<k is a PSNE of the re-
stricted gamé ((#c,[X])1<r<k, X, (C¢[Ve(X)])1<r<k)-

Similarly, we extend the characteristic functions of Sactt#.4 by replacing
each component of the characteristic withkitiple version.

Definition 4.5.1. Given a restricted gamE’ on X C <7 and a PSNEC})1<¢<k Of
', player class(’s worst current utilityWCU,((c))1</<k,’) is the utility of the
worst-off player from clasgin I, or « if [" has O players in clasé Player class
's best entrance utilitBEU,((c})1<¢<k, ') is the best payoff aoutside playe(a
player currently playing an action outside ofXv(X)) from class/ can get by
playing an action in X1 .7, assuming the current players it play (C))1<e<k. If
there are 0 outside players from clagsr X N .o7* = 0, BEU((C})1<<k, ") = —oo.

128

Lemma 4.5.2. Given a k-symmetric AG@T, X C o7, P C X such that P> 7(X),
and Q2 PUVv(P), consider the characteristic function k@ that maps a partial
solution (¢ [X U v(X)])1<¢<k to

(CK [Q]’#Cf [X],WCUg(C[X/], r/)7 BEUZ(C[X/L r/))1545k7

wherel” = T ((#c; [X'])1<o<k, X', (Co[V(X)])12¢<k) and X = X\ P. Then cby is
equilibrium-preserving.

Lemma 4.4.9 can be similarly extended to kagymmetric case. Therefore we
can use this characteristic function together with ourdsotup pass algorithm to
determine the existence of PSNEkrsymmetric AGG-0s, and use the top-down
algorithm to find a PSNE if one exists. Fioisymmetric AGG-0s with boundekl
and bounded treewidths, each of theomponents of cf]gu>Q 's output can take at
mostpoly(||l'||) values, and as a result the number of characteristics inpoiial
in [|F||. We thus have the following generalization of Theorem 84Qorollary
4.4.14 and Corollary 4.4.17.

Corollary 4.5.3. For k-symmetric AG@s with bounded k and bounded treewidths,
the problems of determining the existence of PSNE, of aarisig a PSNE, and
of finding maximum social welfare PSNE are all in P.

We observe that whek= 1, i.e., when the game is symmetric,‘é@jﬂdegen—
erates into chg we previously defined for the symmetric case, and this alyori
simplifies into our algorithm for symmetric AGG-0s.

4.5.2 General AGG®s and the Augmented Action Graph

We now consider the case of general AGG-0s. We note thatgardes can still be
viewed ask-symmetric (withk at mostn), but nowk may grow with the input size.
Our approach in Section 4.5.1 fersymmetric AGG-0s works well only whek

is bounded by a constant, since the number of characterigtider cb.Q grows
exponentially ink. Can this approach be extended to the case of general AGG-0s
We observe that in order to check deviations out of andXhtd?, we do not need

to keep track of information about player classes whos®madéts are either (1)
fully contained inX \ P, or (2) disjoint fromX \ P. In the former case, no player

129

of that class can deviate outsiae\ P; this is reflected in de as best entrance
utilities of —oo for that class in the restricted game ¥n\ P, but we also do not
need to keep track of the worst current utilities for the €l&imilarly, in the latter
case, no player of that class can deviate XtoP. To check deviations out of and
into P, we only need to keep track of information on player classkess action
sets intersed. In other words, it is sufficient to define a characteristiadiion in
terms of the player classes that are relevant to the curaeses of nodes. Formally,

Lemma 4.5.4. Consider a k-symmetric AGGF with player classeg, ... k cor-
responding to sets of players N. ., N and action sets7?,. .., &%, Given XC 7,
P C X such that P2 1(X), and Q2 PUV(P), let L(X,P) = {¢{|]1 < ¢ <k, ' C
(X\P), ‘N (X\P)#0}, and let KQ) = {¢|1 < ¢ <k, &' NQ # 0}. Consider
the characteristic function cﬁ}b that maps a partial solutioric,[X U v (X)])1<¢<k
to

((celQD)rek(q)> (Hoe X\ P seLx,p)» (WCW(C[X'],T")) reL (x,p)» (BEUL(CIX'],T"))L x,p)) »

wherel™ = I'((#c/[X)1<<k, X', (Ce[V(X")])12r<k) @nd X = X\ P. Then c, is
equilibrium-preserving.

Lemma 4.4.9 can be similarly extended. The number of cheniatits under
chg o is exponential inQJ, [K(Q)| and|L(X,P)|. Intuitively, as we combine these
characteristics to form characteristics on larger subdggdp (X, P)| will also grow,
unless we “finish off” certain player classes, i.e., playlass/ such thater* be-
come a subset of \ P. Can we divide the action graph and combine the restricted
games in a way that keepd|, |K(Q)| and|L(X,P)| small? A natural idea is to turn
to tree decompositions @, as we did in Section 4.4.4. However, [Daskalakis et al.,
2009] proved that the problem of determining the existerfd@3INE is NP-hard
even for AGGs with tree-width 1 and constant in-degree. eotwords, we cannot
hope for a polynomial-time algorithm for general AGGs witimstant treewidths,
unless P= NP. On the other hand, there exist classes of asymmetric Adbare
poly-time solvable, e.g. those corresponding to tree gcaphjames. This implies
that looking at the action graph alone is insufficient fomitifging such tractable
classes of AGGs. We have seen that information about thenestits of the AGG

130

is needed in order to define i,c@ Thus a natural idea is to define an object that
incorporates information about the action sets as well asattion graph of the
AGG.

Definition 4.5.5. Given an AGGA I' with player classeq, ..., k, define theaug-
mented action grapto be a directed graph

AG= (VT E") = (7 U{1,... kKLEU{(,a)|({a}Uv(a)) N’ +£0}).

Let.#* be the maximum in-degree of AG.

In other words, we add to the action gra@hnew vertices{1,...,k} corre-
sponding to the player classes, and an edge from each plags¥ to actiona if
a or any of its neighbors are in the action set of classituitively, the edges from
player class nodes to action nodes in the augmented actyph gnsure that in the
resulting tree decomposition, the set of tree nodes to waiplayer class is rele-
vant forms a connected subgraph of the tree. This is foredliz the following
result for augmented action graphs, which is analogous noh& 4.4.11 for action
graphs.

Lemma 4.5.6. Given a k-symmetric AG@-I' whose augmented action graph
AG has treewidth w, there exists a tree decompositipd UK;|X C 7, K; C
{1,...,k},i € 1},T = (1,F)) of AG’s primal graph AG of width at most(w +
(" +1)—1,and{R C «|i € 1} such that

1. UagR=«¢,and RUV(R) C X foralli €1,

2. LetJC I suchthat Jis a connected graph and connects to the rest of the tree
via only one edggj, j'} € F with j € J. Let§ = Uiy R. Thent(Y;) CR;,
K(Xj) € Kj, and L(Ys,Rj) S L.

Proof. The construction is very similar to that of Lemma 4.4.11.egia tree de-
composition({R ULi|R € «,L; C {1,...,k},i € 1},T = (1,F)) of AG, we build

2We note that our definition of augmented action graph is wiffefrom the augmented graph
of Daskalakis et al. [2009]. The computational problem thaskalakis et al. [2009] were trying
to solve (finding approximate mixed-strategy Nash equdibis different from the PSNE problem
considered in this chapter.

131

a tree decomposition AG' by adding to each tree node= | the neighboring
vertices ofR; (vertices inL; have no neighbors). Lemma 4.5 of [Daskalakis and Pa-
padimitriou, 2006] ensures that the result is a tree decsitipo of AG' with width
at most(w+ 1)(.#* + 1) — 1. The resulting tree decompositigiX; U Ki|X C
<K C{1,....k},i €1},T =(I,F)) will have X; = R UV(R;) as in the proof of
Lemma 4.4.11, an; = Liu {/|1 < ¢ <k, .'N(RUV(R)) # 0}. This implies
K(X) CK;foralliel.

By the same argument as in the proof of Lemma 4.4.11, we h&¥g C
R;. It remains to show that(Y;,R;) C Lj. Consider an arbitrary € L(Y3,R;).
This implies thatez’ N (Y5 \ Rj) # 0 and<’‘ N (Y;\ R;) # 0. But this implies that
there existar € (Y3 \R;) such that¢,a) € E*, and there exista’ € Y;\ R such
that (¢,a’) € E*. Since the tree nodes that contairmust be inJ\ {j}, and by
condition 2 of Definition 4.4.14¢,a) must be contained in some tree node, we
must have that € L; for somei € J\ {j}. Similarly we must havé < L; for some
i” € J\{j}. But by condition 3 of Definition 4.4.10 we must have L;, and
thereforeL (Y;,R;) C L;. O

Lemma 4.5.6 implies that we can apply the bottom-up passitigo using
the characteristic function Qh& for Z; j, and correctly determines the existence of
PSNE. If a PSNE exists then a top-down pass constructs orteislansider the
running time of this approach. If we assume th& has bounded indegree and
bounded treewidth, this immediately implies ths{| andK; are bounded for all
i €1, and the number of characteristics are polynomiai and|.<7|. This in turn
implies that our algorithm runs in polynomial time in thissea

Proposition 4.5.7. For AGG-0s whose action graphs have bounded indegree and
bounded treewidth, the problems of determining the existef PSNE and of find-
ing a PSNE are in P.

One guestion is whether it is possible to show that the rua tinpolynomial in
the input size when the augmented action graph has bounekaitith, i.e., with-
out any requirement on the in-degree. However, this tursoole more difficult
than in the symmetric case. Specifically, in order to provdsuresult without any
requirement on the in-degree, we would need to compare ttiigme with (a lower

132

bound of) the input size. Whereas for symmetric AGGs we haeeteestimates
of the input size, for general AGGs we only proved upper bsundChapter 3.
The complexity of PSNE for AGG-0s with bounded-treewidtigmented action
graphs remains an open problem.

One interesting case is when the input is an AGG-0 encodiray kmunded-
treewidth graphical game. Recall that the PSNE problemuoh gjames is known
to be tractable [Daskalakis and Papadimitriou, 2006, Gotdt al., 2005]. We
show that our algorithm runs in polynomial time given AGGi+ficodings of such
games, thus providing another proof of this result.

Proposition 4.5.8. Determining the existence of PSNE in bounded-treewidtplgra
ical gamesisin P.

Proof. Recall from Chapter 3 that the size of the AGG-0 encodingapprtional
to that of the graphical game, Which@(jcn |A¢| [Tjevy(e) [A]]), Wherevg({) is
the set of neighboring players éfin the graphical game. The AGG h&s=n
player classes, each containing a single player. We denotette player class
corresponding to playere N. Suppose the underlying grapN, Eg) of the graph-
ical game has treewidtiv and maximum in-degreeZy. Then the corresponding
action graphG = («7,E) is given in Chapter 3 and the corresponding augmented
action grappAG= (& UN,EU{(¢,a)|¢ € N,a € A/}). Given a tree decomposi-
tion ({Lijli € 1}, T = (I,F)) of the graph(N, Eg) with width w, it is straightforward
to show that{Ri ULi[i € I'},T), whereR = U, , Ac for alli € 1, is a tree decom-
position of the augmented action graps. The width of this decomposition is
O(maxen |As|w).

Construct the tree decompositiofiX; UK;|i € 1}, T) for the primal graptAG'
according to Lemma 4.5.6. It is straightforward to verifyatth; = Li U vg(Li)
andX; = Usek, Ar. ThereforelK;| = O(w.7y), |Xi| = O(max.ck, |Ac|w.%), and the
width of the decomposition iI©(maxcn |A¢c|W.7).

Now consider the number of characteristics und%’)@h Since for eaclf € N
andJ C | we either haveA, C Y; or AyNY; = 0, this implies that (Y;,R;) = 0
forall j €1 andJ C I. Thus the only nontrivial component of the characterisic i
(ce[Xi])eek;- Since eaclf € K; corresponds to a single playét,[Xi]| = |A¢|. Thus
the number of possibléc,[Xi]) ek, iS [1rek, |A¢|, which is polynomial in the input

133

size sincgK;| = O(W.7y). Thus the number of characteristics is polynomiglfin|,
which implies that our algorithm runs in polynomial time. O

We see from the above proof that in this case the charaitedsyenerates
into (c¢[Xi])eek;, Which carries the same amount of information as the paptied
strategy profile of players iK;. This is exactly the same sufficient statistic used
by Daskalakis and Papadimitriou [2006]’s algorithm forgrecal games, and as a
result our algorithm simplifies to the equivalent of Daskaaand Papadimitriou
[2006]'s algorithm when given an AGG-0 encoding of a graghgame.

We also note that our algorithms for symmetric &slymmetric AGG-0s can
be seen as special cases of our augmented-action-grapti-dlgerithm. In partic-
ular, consider &-symmetric AGG-0 with action grapB, and supposand(G) has
a tree decompositiof{Ri[i € 1}, T = (I,F)). Then our algorithm fok-symmetric
AGG-0s corresponds to applying the augmented-actiophgbased algorithm to
the tree decompositiof R U {1,...,k}|i € I}, T) for AG, i.e., having alk player
classes in each of the tree nodes of the decomposition.

4.6 Conclusions and Open Problems

In this chapter we analyzed the problem of computing PSNEGGA. We pro-
posed a dynamic programming algorithm and showed that fonsstric AGG-0s
with bounded treewidth, our algorithm determines the exis¢ of PSNE in poly-
nomial time. We extended our approach to certain classesyofimetric AGG-0s,
and showed that our algorithm generalizes existing dyngumagramming approaches
for computing PSNE in graphical games and singleton coiayegames.

One question is whether our approach has captured all tbtalbte classes
of AGG-0s for the PSNE problem. The answer is no. For exajrqaasider an
asymmetric AGG-0 whose action graph has no inter-verteggegdnd only self
edges. This is the same as the singleton congestion ganukésdshy leong et al.
[2005] except that here the game is not symmetric. It is gittborward to see
that this game corresponds to a congestion game, and thugk BBMys exist.
Furthermore, by a similar argument as leong et al. [2005¢rgisuch a game a
PSNE can be found by iterated best response dynamics inqralghtime. On
the other hand, the augmented graph of such an AGG-0 migktlagye treewidth.

134

This example can be generalized: if the action graph comtaisetX of such
singleton nodes, and the action sets that intebseities not contain any node not in
X, then the subgraph of the singleton nodes does not affeeixibeence of PSNE,
i.e., a PSNE exists in the game if and only if a PSNE existsandistricted game on
the rest of the graph. We can even further generalize thissider a subgrap&x
such that (as above) the action sets that inted$elties not contain any node not in
X, and thatX has only incoming edges from the rest@fnd no out going edges
(i.e.,v(X) = 0), thenGx does not affect the existence of PSNE, and we can safely
delete the subgraph and solve the rest of the graph. Thiegsaman be repeated.
(This is analogous to, and indeed a generalization of, tee ohgraphical games
with sinks which was discussed in [Jiang and Safari, 2018p}e that for these
examples, a greedy approach is used instead of (or in addiijothe dynamic
programming approach used in this chapter. For the probfexistence of PSNE
in graphical games, Jiang and Safari [2010] was able to cetelgl characterize
the tractable classes of bounded-indegree graphs. An aopbiem is completely
characterizing the types of restrictions to the graphitaicture of AGG-0s that
make the PSNE problem tractable, perhaps by leveraging sbihe techniques
developed in [Jiang and Safari, 2010].

Another future direction is to extend our approach to AGGsFRecall that the
configuration on a function node is the value of a determafsihction of the con-
figuration of its neighbors. Thus given a symmetric AGG-RBIASNE correspond
to configurations over its action nodes and function nodeh that the configura-
tion over each function node is equal to the appropriatesyalnd the configuration
over action nodes satisfy the incentive and consistencgtints as before. As-
suming the deterministic functions for the function nodesexplicitly represented,
it is then relatively straightforward to extend our dynarprogramming approach
to work on the action graphs of symmetric AGG-FNs. An inténgsquestion is
whether this can be extended to efficiently deal with conpaepresented func-
tion nodes such as summation function nodes. Finally, asave keen in this
chapter, one faces additional technical challenges whegdeyond the symmet-
ric case. It would be interesting to see if our approachesudised in Section 4.5
can be extended to AGG-FNs.

135

Chapter 5

Temporal Action-Graph Games:
A New Representation for
Dynamic Games

5.1 Introduction

In this chapter weturn our focus to compact representations of dynamic games.
As mentioned in Section 2.1.2, the most influential compagrasentation for
imperfect-information dynamic games is multiagent inflceediagrams, or MAIDs
[Koller and Milch, 2003]. MAIDs are compact when playersility functions ex-
hibit independencies; such compactness can also be ledefag computational
benefit (see Section 2.2.4).

Consider the following example of a dynamic game.

Example 5.1.1. Twenty cars are approaching a tollbooth with three lanese Th
drivers must decide which lane to use. The cars arrive in feaves of five cars
each. In each wave, the drivers must pick lanes simultatgoaisd can see the
number of cars before them in each lane. A driver's utilitgrdases with the
number of cars that chose the same lane either before himtteatame time.

1This chapter is based on published joint work with Kevin loeyBrown and Avi Pfeffer [Jiang
et al., 2009].

136

A straightforward MAID representation of the game of Exaenpll.1 contains
very little structure; in particular, each player will haaautility node, whose par-
ents are all the decision nodes of the drivers before herhdsitimber of players
grow, the representation size of the utility functions grexponentially. Compu-
tation using such a representation would be highly inefiiicielowever, the game
really is highly structured: agents’ payoffs exhibit cottepecific independence
(utility depends only on the number of cars in the chosen)land agents’ payoffs
exhibit anonymity (utility depends on the numbers of othgergs taking given ac-
tions, not on these agents’ identities). The problem witlraghtforward MAID
representation of this game is that it does not captureraifttbese kinds of payoff
structure.

As we have seen in Chapter 2, a wider variety of compact gapresenta-
tions exist for simultaneous-move games. In particulareise of these game rep-
resentations (including congestion games and local effagtes) can compactly
represent anonymity and context-specific independenc® €8ctures. We saw
in Chapter 3 that AGGs unify these past representations tmpaotly representing
both anonymity and CSI while still retaining the ability &present any game. Fur-
thermore, structure in AGGs can be leveraged for compualtioenefit. However,
AGGs are unable to represent the game presented in Exaniplelecause they
cannot describe sequential moves or imperfect information

In this chapter we present a new representational framewadhkd Temporal
Action-Graph Games (TAGGSs) that allows us to capture tmd kif structure. Like
AGGs, TAGGs can represent anonymity and CSlI, but unlike A@®g can also
represent games with dynamics, imperfect information amcedainty. We first
define the representation of TAGGSs, and then show formally tieey define a
game using an induced Bayesian network (BN). We demonstrateTAGGs can
represent any MAID, but can also represent situations tigahard to capture nat-
urally as MAIDs. If the TAGG representation of a game corgaamonymity or
CSil, the induced BN will have special structure that can hmodted by inference
algorithms. We present an algorithm for computing expeuatéity of TAGGs that
exploits this structure. Our algorithm first transforms théuced BN to another
BN that represents the structure more explicitly, then agtes expected utility
using a specialized inference algorithm on the transforBildWe show that it

137

performs better than using a MAID in which the structure isnepresented explic-
itly, and better than using a standard BN inference algaritn the transformed
BN.

5.2 Representation

5.2.1 Temporal Action-Graph Games

At a high level, Temporal Action-Graph Games (TAGG=)tend the AGG repre-
sentation by introducing the conceptstiohe, uncertaintyandimperfect informa-
tion, while adapting the AGG concepts of action nodes and acy@tific utility
functions to the dynamic setting. We first give an informasatétion of these
concepts.

Temporal structure. A TAGG describes a dynamic game played over a series
of time steps 1..,T, on a set of action nodes’. At each time step a version of
a static AGG is played by a subset of agentsanand the action counts on the
action nodes are accumulated.

Chance variables. TAGGs model uncertainty viehance variablesLike random
variables in a BN, a chance variable is associated with afqsrents and a con-
ditional probability table (CPT). The parents may be actiodes or other chance
variables. Each chance variable is associated with amitestian time; once in-
stantiated, its value stays the same for the rest of the g@hmmce variables can be
thought of as a generalization of the (deterministic) fiorchodes in AGG-FNs.
Decisions. At each time step one or more agents move simultaneoushgsepted
by agent-specifidecisions TAGGs model imperfect information by allowing each
agent to condition his decision on observed values of a gevdaset of decisions,
chance variables, and the previous time step’s action sount

Action nodes. Each decision is a choice of one from a number of availabten
nodes As in AGGs, the same action may be available to more than ep
Action nodes provide a time-dependent tally: #wtion countfor each actiorA in
each time step is the number of time# has been chosen during the time period
1,....1.

138

Utility functions. There is autility function U associated with each actignat
each timer, which specifies the utility a player receives at timfer having chosen
action A. EachUj has a set of parents which must be action nodes or chance
variables. The utility of playing actioA depends only on what happens over these
parents. An agent who took actign(once) may receive utility at multiple times
(e.g., short-term cost and long-term benefit); this is amotiy associating a set of
payoff times with each decision. An agent’s overall utiigydefined as the sum of
the utilities received at all time steps.

Play of a TAGG can be summarized as follows:

1. Attime 0O, action counts are initialized to zero; chanceal@es with instan-
tiation time O are instantiated,

2. Ateachtimer € {1,...,T}:

(a) all agents with decisions atobserve the appropriate action counts,
chance variables, and decisions, if any.

(b) all decisions at are made simultaneously.

(c) action counts at are tallied.

(d) chance variables at tinreare instantiated.

(e) for each actiom, utility function U is evaluated, with this amount of

utility accruing to every agent who took actienat a decision whose
payoff times includer; the result is not revealed to any of the players.

3. Atthe end of the game, each agent receives the sum ofldj} atlocations
throughout the game.

Intuitively, the process can be seen as a sequence of sirealia-move AGGs
played over time. At each time stap the players that have a decision at time
participate in a simultaneous-move AGG on the set of actames, whose action
counts are initialized to be the countstat 1. Each actiorA’s utility function is
U4 andA's neighbors in the action graph correspond to the parerit of

2|f an agent plays actio for two decisions that have the same payoff timehen the agent
receives twice the value &f3.

139

We observe that decisions and chance variables in TAGGsararsto de-
cision nodes and chance nodes (respectively) in MAIDs, mxtleat here their
parents can be time-dependent action counts. Thus the aegabtify the time
steps that decisions and chance nodes in a TAGG are insgahtibut once in-
stantiated their values stay fixed. We also observe thairtieedependent nature
of action counts in TAGGs is similar to hodynamic Bayesian networks (DBNSs)
[Dean and Kanazawa, 1989, Murphy, 2002], a probabilistapbical model of
temporal domains, model their time-dependent random liaga Just as a DBN
can be unrolled into a BN; later on we will see that a TAGG cao &le unrolled
into a MAID.

Before formally defining TAGGs, we need to first define the emtof aconfig-
uration at timet over a set of action nodes, decisions and chance variabitesh w
is intuitively an instantiation at time of a corresponding set of variables.

Definition 5.2.1. Given a set of action nodeg’, a set of decisions, a set of
chance variables?’, and a set BC .o/ U 2" U 2, a configurationat timet over B,
denoted as §, is a|B|-tuple of values, one for each node in B. For each node®)
the corresponding element ifCdenoted as §b), must satisfy the following:

e ifb e o/, C'(b) is an integer in{0,...,|Z|} specifying the action count on
b at 7, i.e. the number of times action b has been chosen duringinie t
periodl,...,T.

e ifbe 2,C'(b) is an action inZ, specifying the action chosen at D.

e ifbe 27, C(b) is a value from the domain of the random variable, Digm
Let%Z be the set of all configurations atover B.

We now offer formal definitions of chance variables, decisiand utility func-
tions.

Definition 5.2.2. A chance variabl& is defined by:

1. a domain DoriX], which is a nonempty finite set;

2. aset of parents BPA], which consists of chance variables and/or actions;

140

3. aninstantiation time(iX), which specifies the time at which the action counts
in Pa[X] are instantiated;

4. a CPTPr(X|PaX]), which specifies the conditional probability distribution
of X given each configuration%fx].

We require that each chance variable’s instantiation tineenio earlier than its
parent chance variable’s instantiation times, i.e. if chanvariable X € Pa[X],
then {X’) <t(X).

Definition 5.2.3. A decisionD is defined by:

1. the player making the decision(Pl). A player may make multiple decisions;
the set of decisions belonging to a playas denoted by De¢§.

2. itsdecision time(D) € {1,...,T}. Each player has at most one decision at
each time step.

3. itsaction seDom[D], a nonempty set of actions.

4. the set ofpayoff timespt(D) C {1,...,T}. We assume that> t(D) for all
T € pt(D).

5. its observation seD[D]: a set of decisions, actions, and chance variables,
whose configuration at timé¢D) — 1 (i.e. Cfo([tgfl) is observed by D) prior
to making the decision. We require that if decisioni€an observation of D,
then {D’) < t(D). Furthermore if chance variable X is an observation of D,
then {X) < t(D).

Definition 5.2.4. Each action A at each timeis associated with onaetility func-

tion US. Each | is associated with a set of parents[Bga], which is a set of

actions and chance variables. We require that if chanceaimdei X € PalU/], then

t(X) < 1. Each utility function | is a mapping from the set of configurations
T

%Pa[u;] to a real value.

We can now formally define TAGGs.
Definition 5.2.5. A Temporal Action-Graph Game (TAGG) isatuge T, o/, 2, 2,%),

where;

141

. N={1,...,n} is a set ofplayers
. T is thedurationof the game.

27 is a set ofactions

AW ON P

. 2 is a set ofchance variablesLet¥ be the induced directed graph over
Z". We require that/ be a directed acyclic graph (DAG).

(621

. Z is the set ofdecisions We require that each decision D’s action set
DomD] C «.

6. % ={Ui:Ac o/, 1<t <T}isthe set ofutility functions

First, let us see how to represent Example 5.1.1 as a TAGGs#&ti¢ corre-
sponds to the cars. The duratidn= 4. We have one action node for each lane.
For each time, we have five decisions, each belonging to a car that arrivésa
7. The action set for each decision is the entire«get The payoff time for each
decision is the time the decision is made, i.e(Ppt= {t(D)}. Each decision has
all actions as observations. For eahndt, the utility U5 hasA as its only parent.
The representation size of each utility function is at mmgghe size of the entire
TAGG isO(|.<Z|Tn).

The TAGG representation is useful beyond compactly reptagge MAIDSs.
The representation can also be used to specify informatiantares that would be
difficult to represent in a MAID. For example, we can repreésgames in which
agents’ abilities to observe the decisions made by prevagests depend on what
actions these agents took.

Example 5.2.6. There are2T ice cream vendors, each of which must choose a lo-
cation along a beach. For every day from 1 to T, two of the vendimultaneously

set up their ice cream stands. Each vendor lives in one ofdatatibns. When a
vendor chooses an action, it knows the location of vendors st up stands in
previous days in the location where it lives or in one of thigghleoring locations.
The payoff to a vendor in a given day depends on how many v&sdbup stands

in the same location or in a neighboring location.

Example 5.2.6 can be represented as a TAGG, the key elemfentsiah are
as follows. There is an actiof for each location. Each playgrhas one decision

142

D;, whose observations include actions for the locafidimes in and neighboring
locations. The payoff time for each decisionTisand the utility functiodJ! has
A and its neighboring locations as parents.

Let us consider the size of a TAGG. It follows from Definitior2% that the
space bottlenecks of the representation are the CPPgMEX]) and the utility
functionsUg, which have polynomial sizes when the numbers of their garare
bounded by a constant.

Lemma5.2.7.Given TAGGN, T, &/, 27, 2, %), if maxkc 2~ |Pa[X]| andmax, 4 |PaU]|
are bounded by a constant, then the size of the TAGG is boundagolynomial
in maxxe 2 DomX|, | 27|, |2|, |% |, and T .

5.2.2 Strategies

In Section 2.2.4 we introduced the standard concepts of pured and behavior
strategies in dynamic games. We now apply these concepte twase of TAGGs.
We start withpure strategieswhere at each decisidd, an action is chosen deter-
ministically as a function of observed information, i.de tconfiguratiorcg[[gfl.

A mixed strategyof a playeri is a probability distribution over pure strategies of
i. Recall that since there can be an exponential number ofgitagegies in a dy-
namic game, a mixed strategy is generally an exponengalisobject. We thus
restrict our attention tbehavior strategiesn which the action choices at different

decisions are randomized independently.

Definition 5.2.8. A behavior strategy at decision D is a functio® : %g[gifl —
¢ (Dom[D]), where¢ (Dom[D]) is the set of probability distributions over DéD.
A behavior strategy for player i, denoted, is a tuple consisting of a behavior
strategy for each of her decisions. A behavior strategy lerafi= (0,...,0n)

consists of a behavior strategy for all i.

An agent hagperfect recallwhen she never forgets her action choices and ob-
servations at earlier decisions. The TAGG representatmss dhot enforce per-
fect recall; TAGGs can represent perfect recall games dsawelon-perfect-recall
games. A technical issue on representing perfect recalegaam TAGGs is the
following: in order to preserve the perfect-recall propest the resulting TAGG,

143

each decisiorD of playeri should observe all ofs earlier decisions and obser-
vations. However, recall that if an actidxis in the observation set of one
earlier decisions at tim# < t(D), it means that the action count at titie- 1 was
observed. Directly including\ in O[D] would instead imply that the action count
of Aattimet(D) — 1 is observed by, in which case the information structure of
the TAGG is different from the original game and is thus natighful representa-
tion. Instead, we model the situation by creating a detdstiinchance variable
X}l‘l with instantiation time’ — 1; its only parent isA and its value is the action
count ofA at timet’ — 1. We then include(}f1 in O[D]. Itis straightforward to see
that XX‘l carries the information equivalent to observing the actioant ofA at
timet’ — 1, and the resulting TAGG provides a correct representatiohe perfect
recall game.

5.2.3 Expected Utility

Now we use the language of Bayesian networks to formally defimagent’s ex-
pected utility in a TAGG given a behavior strategy pro@ileSpecifically, we define
aninduced BNthat formally describes how the TAGG is played out. Given a be
havioral strategy profile, decisions, chance variablesuitides can naturally be
understood as random variables. On the other hand, actiontsare time depen-
dent. Thus, we have a separate action count variable foraaidn at each time
step.

Definition 5.2.9. Let A€ </ be an action and € {1,...,T} be a time point. A
denotes thection count variableepresenting the number of times A was chosen
from time 1 to timea. Let A be the variable which is 0 with probability 1.

We would like to define expected utility for each player, whis the sum of
expected utilities of the player’s decisions. On the otlard) the utility functions
in TAGGs are action specific. To bridge the gap, we create resistn-payoff
variables in the induced BN that represent the utilitiesexfisions received at each
of their payoff time points.

Definition 5.2.10. Given a TAGG and a behavior strategy profge theinduced
BN is defined over the followingariables for each decision D= 2 there is a

144

behavior strategy variable which by abuse of notation wdlstiso denote by D;
for each chance variable X 2" there is a variable which we shall also denote by
X; there is a variable Afor each action Ac </ and time steg € {1,...,T}; for
each utility function |{ for actions Ac .7 and time points € {1,..., T}, there is

a utility variable also denoted by for each decision D and each tinte= pt(D),
there is a decision-payoff variablgu

We define thactual parent®f each variable V, denoted AR4, as follows:
The actual parents of a behavior strategy variable D are théables correspond-
ing to OD], with each action Ae O[D] replaced by }Q(D)_l. The actual par-
ents of an action count variableAare all behavior strategy variables D whose
decision time D) < t and Ac Dom[D]. The actual parents of a chance vari-
able X are the variables corresponding to[Ra with each action A€ PaX]
replaced by {%X). The actual parents of a utility variable Uare the variables
corresponding to Pals], with each action Ae PalUj] replaced by A where
{A4,...,Ar} = DomD].

The CPDs of chance variables are the CPDs of the correspgnthiance vari-
ables in the TAGG. The CPD of each behavior strategy variBbie the behavior
strategyo®. The CPD of each utility variable Mis a deterministic function defined
by the corresponding utility function U The CPD of each action count variable
Al is a deterministic function that counts the number of deasin AP&A] that are
assigned value A. The CPD of each decision-payoff variagles @ multiplexer,
i.e. a deterministic function that selects the value of iifityi variable parent ac-
cording to the choice of its decision parent. For examplehdf value of D is &
then the value ofgiis the value of | .

Theorem 5.2.11.Given a TAGG, let# be the directed graph over the variables
of the induced BN in which there is an edge fromd/\; iff V4 is an actual parent
of V. Then.7 is acyclic.

This follows from the definition of TAGGs and the way we set bp actual
parents in Definition 5.2.10.

By Theorem 5.2.11, the induced BN defines a joint probahiliggribution over
its variables, which we denote IB?. Giveno, denote byE? V] the expected value
of variableV in the induced BN. We are now ready to define the expectedyuitili

145

utility varia; g @

decision-payoff variable

Figure 5.1: Induced BN of the TAGG of Example 5.1.1, with 2 time steps,
3 lanes, and 3 players per time step. Squares representidresaat-
egy variables, circles represent action count variablesnaonds rep-
resent utility variables and shaded diamonds represeigidegayoff
variables. To avoid cluttering the graph, we only show tytdariables
at time step 2 and a decision-payoff variable for one of thasitans.

players under behavior strategy profiles.

Definition 5.2.12. The expected utility to playerunder behavior strategy profile
0 is EU?({) = 3 pcDecsy 2 reptp) E7[Up)-

Figure 5.1 shows an induced BN of a TAGG based on Example @withlsix
cars and three lanes. Note that although we use squareséseapbehavior strat-
egy variables, they are random variables and not actuasidasi as in influence
diagrams.

5.2.4 The Induced MAID of a TAGG

Given a TAGG we can construct a MAID that describes the sammegaNe use
a similar construction as the induced Bayesian Networkwhilt two differences.
First, instead of behavior strategy variables with CPDggassl by, we have
decision nodes in the MAID. Second, each decision-payofhie uj, becomes a
utility node for player pID) in the MAID. The resulting MAID describes the same
game as the TAGG, because it offers agents the same steateglgheir expected
utilities are defined by the same BN. We call this théuced MAIDof the TAGG.

146

5.2.5 Expressiveness

It is natural to ask about thexpressivenessf TAGGs: what games can we repre-
sent? It turns out that TAGGs are able to compactly represeNAIDs.

Lemma 5.2.13. Any MAID can be represented as a TAGG with the same space
complexity.

Proof. Recall that a MAID consists of a set of decisions, a set of chawdes and
a set of utility nodes. Given a MAID, we construct a TAGG in fbbowing way:

e For each decisio®’ of the MAID and each valud’ € Dom[D’], create an
unique actiomy in the TAGG.

e Decisions and chance nodes of the MAID can be directly copied to the
TAGG.

e Utility nodes in MAIDs are player-specific: each utility n@@s associated
with some player. Utility nodes in TAGGs are action spech\e can encode
MAID utility nodes as TAGG utility nodes as follows: Given aAD utility
nodeU’ associated with playeyr, create a dummy decisiddy, belonging to
player j, whose action set contains exactly one actdgn We then encode
the utility function forU’ in the MAID as the utility associated with action
Ay in the TAGG.

¢ One difference between MAIDs and TAGGs is that in MAIDs dextis can
be parents of chance and utility nodes; in TAGGs only chamaciables and
actions can be parents of chance and utility nodes. NevestheMAID
chance nodes and utility nodes can be encoded in TAGGs bgaiagleach
decision parenb’ by the corresponding set of actions in Di@f.

e Decisions and chance nodes of MAIDs are not associated imith points.
Nevertheless, since the MAID is a directed acyclic graph,cae assign
decision times to decisions and instantiation times to cbamriables that
are consistent with the topological order of the MAID. Thegiitimes of
each decision is assigned to be the singl€tdh, i.e. at the end of the game.

O

147

As a result, TAGGs can represent any extensive form gameseptable as a
MAID. These include all perfect recall games, and the sudsctd imperfect recall
games where each information set does not involve multiple steps.

Now consider the converse problem of reducing TAGGs to MAIlRghis case,
since the induced MAID of a TAGG is payoff equivalent to the@®, it trivially
follows that any TAGG can be represented by a MAID. Howevie induced
MAID has a large in-degree, and can thus be exponentialjefaihan the TAGG.
For example, in the games of Examples 5.1.1 and 5.2.6, theédMAIDs have
max in-degrees that are equal to the number of decisionghwiriplies that the
sizes of the MAIDs grow exponentially with the number of démns, whereas the
sizes of the TAGGs for the same games grow linearly in the murnbdecisions.
This is not surprising, since TAGGs can exploit more kindsswiicture in the
game (CSI, anonymity) compared to a straightforward MAIpPresentation. In
Section 5.3.1 we show that the induced MAID can be transfdrinto a MAID
that explicitly represents the underlying structure. Tlee ©f the transformed
MAID is polynomial in the size of the TAGG.

The TAGG representation is also a true generalization of AG&nce any
AGG-0 can be straightforwardly represented as a TAGG Witk 1. Function
nodes in AGG-FNs and AGG-FNAs can be modeled as chance nattea deter-
ministic CPT, thus AGG-FNs and AGG-FNAs can also be repiteseas TAGGS
with T = 1.

5.3 Computing Expected Utility

In this section, we consider the task of computing expectéilyuEU ?[j] to a
player j given a mixed strategy profile. As mentioned in Section 2.2.4, compu-
tation of EU is an essential step in many game-theoretic cbatipns for dynamic
games, such as finding a best response given other playeategst profile, check-
ing whether a strategy profile is a Nash equilibrium, and isdaralgorithms such
as fictitious play and iterated best response. In SectionwB.discuss extending
our methods in this section to a subtask in the Govidan-\Wikgorithm for com-
puting Nash equilibria.

One benefit of formally defining EU in terms of BNs is that now groblem of

148

computing EU can be naturally cast as a BN inference prob{@mChapter 3 we
discussed such a reduction in the context of AGGs.) By D&im.2.12, EY|j]

is the sum of a polynomial number of terms of the foEfiluj]. We thus focus
on computing one suck?[uj]. This can be computed by applying a standard BN
inference algorithm on the induced BN. In fact, BN infereme¢he standard ap-
proach for computing expected utility in MAIDs [Koller andilgh, 2003]. Thus
the above approach for TAGGs is computationally equivalerihe standard ap-
proach for a natural MAID representation of the same gamehitsection, we
show that the induced BNs of TAGGs have special structurectma be exploited

to speed up computation, and present an algorithm that iexphis structure.

5.3.1 Exploiting Causal Independence

The standard BN inference approach for computing EU doesahket advantage
of some kinds of TAGG structure. In particular, recall thathe induced network,
each action count variabl&"’s parents are all previous decisions that h&¥en
their action sets, implying large in-degrees for actionaldes. Considering for ex-
ample the clique-tree algorithm, this means large cligeessiwhich is problematic
because running time scales exponentially in the largegielsize of the clique
tree. However, the CPDs of these action count variablestaretsred counting
functions. Such structure is an instancecatisal independende BNs [Hecker-
man and Breese, 1996]. It also corresponds to anonymitgtsteifor static game
representations like symmetric games and AGGs.

We can exploit this structure to speed up computation of eegeutility in
TAGGs. Our approach is a specialization of Heckerman anddgr's [1996] method
for exploiting causal independence in BNs. At a high levedckerman and Breese’s
method transforms the original BN by creating new nodesréqaesent intermedi-
ate results, and re-wiring some of the arcs, resulting ingaivalent BN with small
in-degree. They then apply conventional inference algorit on the new BN. For
example, given an action count varialdig with parents{D;...D,}, create a node
M; for eachi € {1...¢— 1}, representing the count induced By ...D;. Then,
instead of havind ... D, as parents of, its parents becomB, andM,_,, and
eachM;'s parents ar®; andM;_1. The resulting graph would have in-degree at

149

Figure 5.2: The transformed BN of the tollbooth game from Figure 5.1 with
3 lanes and 3 cars per time step.

most 2 forA; and theM’s.

In our induced BN, the action count variablas at earlier time steps < 7
already represent some of these intermediate counts, so nat deed to duplicate
them. Formally, we modify the original BN in the following wafor each action
count variableA[, first remove the edges from its current parents. Instéadow
has two parents: the action count varial&[ﬁeTl and a new nodla/l;'\k representing
the contribution of decisions at timeto the count ofA.. If there is more than one
decision at timer that hasAy in its action set, we create intermediate variables as
in Heckerman and Breese'’s method. We call the resulting BNr#éimsformed BN
of the TAGG. Figure 5.2 shows the transformed BN of the tatbogame whose
induced BN was given in Figure 5.1.

We can then use standard algorithms to compute probabil?lﬂe%) on the
transformed BN. For classes of BNs with bounded treewidtiese probabilities
(and thusE[u5]) can be computed in polynomial time.

5.3.2 Exploiting Temporal Structure

In practice, the standard inference approaches use hesitisfind an elimination
ordering. This might not be optimal for our BNs. We presenglgorithm based on
the idea of eliminating variables in the temporal order. therrest of the section,
we fix D and a timet’ € pt(D) and consider the computation Bf [uj].

We first group the variables of the induced network by timpsteariables at
time 1 include decisions at, action count variabled!, chance variableX with
instantiation timer, intermediate nodes between decisions and action coumts at

150

and utility variabledJ£. As we are only concerned abdaf [u] for at’ € pt(D),
we can safely discard the variables after tithes well as utility variables before
t’. It is straightforward to verify that the actual parents afigbles at tima are
either atr or beforert.

We say a network satisfies tMarkov propertyif the actual parents of variables
at timert are either at or at7 — 1. Parts of the induced BN (e.g. the action count
variables) already satisfy the Markov property, but in gah¢éhe network does
not satisfy the property. Exceptions include chance végighrents and decision
parents from more than one time step ago.

Given an induced BN, we can transform it into an equivalehwoek satisfying
the Markov property. If a variabl®; att; is a parent of variabl&, at t,, with
t, —t1 > 1, then for eachy, < T <t we create a dummy variab\§" belonging to
time 1 so that we copy the value 9§ tovltz‘l. We then delete the edge frovi to
V, and add an edge from? ! to \V,.

The Markov property is computationally desirable becausgables in time
T d-separate past variables from future variables. A sttfghiard approach to
exploiting the Markov property is the following: asgoes from 1 td’, compute
the joint distribution over variables atusing the joint distribution over variables
att—1.

In fact, we can do better by adapting tinéerface algorithmDarwiche, 2001]
for dynamic Bayesian networks to our settthdpefine theinterfacel to be the
set of variables in time that have children in time + 1. | d-separatepastfrom
future, wherepastis all variables befora and non-interface variables n and
futureis all variables after.

In an induced BN|J® consists of: action count variables at timg chance
variablesX at timet that have children ifuture decisions at that are observed
by future decisions; decisioD which is a parent off),, and dummy variables
created by the transform.

We define the set ddffective variablesit timet, denoted by', as the subset

SWhereas in DBNs the set of variables for each time step res@same, for our setting this is
no longer the case. It turns out that the interface algoritambe adapted to work on our transformed
BNs. Also, the transformed BNs of TAGGs have more structhiam tDBNSs, particularly within the
same time step, which we exploit for further computatiomeexiup.

151

of IT that are ancestors of,. For timet’, we letV' = {uf}. Intuitively, at each
time stept we only need to keep track of the distributi®V?’), which acts as a
sufficient statistic as we go forward in time. For eachwe calculateP(VT) by
conditioning on instantiations &f(V'~1). The interface algorithm for TAGGs can
be summarized as the following:

1. compute distributioP(V°)
2. fort=1tot’

(a) for each instantiation of 71, vj?*l, compute the distribution ovef’:

P(VIvrt=vit)

(b) PV =5, P(VIVIl=v)P (VT 1=V)

3. sinceV! = {u}, we now haveP(ul;)
4. return the expected vallgup]

We can further improve on this, in particular on the subtakkamputing
P(VT|VT~1). We observe that there is also a temporal order among vesiabl
each timer: first the decisions and intermediate variables, then macount vari-
ables, and finally chance variables. Partitddh into four subsets consisting of
action count variabled, chance variableX?, behavior strategy variabl&’ and
dummy copy variable€?. ThenP(VT|V'~1) can be factored into

P(CTVTHP(DT, ATV HP(XT|AT, VT).

This allows us to first focus on decisions and action couniatséas to compute
P(DT,AT|V™1) and then carry out inference on the chance variables.
CalculatingP(D?,AT|VT~1) involves eliminating all behavior strategy variables
not in DT as well as the intermediate variables. Note that conditiarev ™1, all
decisions at tima are independent. This allows us to efficiently eliminate-var
ables along the chains of intermediate variables. Let tlgsias at timer be
{D],...,Dj}. LetMT be the set of intermediate variables corresponding toractio
count variables irA". LetM[be the subset dfl’ that summarizes the contribu-
tion of Di,...,Df. We eliminate variables in the ordBf,D},M5, D, M%, ... M/,
except for decisions iD’. The tables in the variable elimination algorithm need

152

to keep track of at mogD’|+ |AT| variables. Thus the complexity of computing
P(D?,AT|VT1) for an instantiation o/ 7~ is exponential only inD7| + |AT|.

ComputingP(XT|AT,VT~1) for each instantiation oA”, V'~ involves elimi-
nating the chance variables notX{. Any standard inference algorithm can be
applied here. The complexity is exponential in the treefwiol the induced BN
restricted on all chance variables at timavhich we denote b{'.

Putting everything together, the bottleneck of our aldgnitis constructing the
tables for the joint distributions ov’, as well as doing inference @& .

Theorem 5.3.1. Given a TAGG and behavior strategy profde if for all T, both

|[VT| and the treewidth of Gare bounded by a constant, then for any player j the
expected utility EY[j] can be computed in time polynomial in the size of the TAGG
representation and the size of

Our algorithm is especially effective for induced netwotkat are close to
having the Markov property, in which case we only add a smathiber of dummy
copy variables to/". If only a constant number of dummy copy variables are
added, the time complexity of computing expected utilitgrttgrows linearly in
the duration of the game. On the other hand, for induced m&safar from having
the Markov property|V'| can grow linearly ag increases, implying that the time
complexity is exponential.

5.3.3 Exploiting Context-Specific Independence

TAGGs have action-specific utility functions, which allothem to express context-
specific payoff independence: which utility function is dsgepends on which
action is chosen at the decision. This is translated to gosfeecific independence
structure in the induced BN, specifically in the CPDujf. Conditioned on the
value ofD, uf, only depends on one of its utility variable parents.

There are several ways of exploiting such structure contipatly, including
conditioning on the value of the decisidh[Boutilier et al., 1996], or exploiting
the context-specific independence in a variable eliminadilgorithm [Poole and
Zhang, 2003]. One particularly simple approach that wooksrultiplexer utility
nodes is to decompose the utility into a sum of utilities ffefe 2000]. For each
utility node parentJy of up, there is a utility functionuy, , that depends ol

153

andD. If D =k, Uy is equal toUy. Otherwise,u is 0. It is easy to see
thatufy (Uj,...,Uf, D) = SR U ((Uf, D). We can then modify our algorithm to
compute eacHE[u}lk] instead ofE[ul]. This results in a reduction in the set of
effective variabled/|, which are now the variables atthat are ancestors of, .
Furthermore, wheneve¥| = V|, for somek, K, the distributions over them are
identical and thus can be reused. For static games repeesanTAGGs witlT =

1, our algorithm is equivalent to the polynomial-time exjeelcutility algorithm for
AGGs described in Chapter 3.

Applying our algorithm to tollbooth games of Example 5.1riddace cream
games of Example 5.2.6, we observe that for both c&esonsists of a subset
of action count variables at plus the decision whose utility we are computing.
Therefore the expected utilities of these games can be deahpn polynomial
time if |.<7| is bounded by a constant.

5.4 Computing Nash Equilibria

Since the induced MAID of a TAGG is payoff equivalent to the@®&, algorithms
for computing the Nash equilibria of MAIDs [Blum et al., 2Q0&oller and Milch,
2003, Milch and Koller, 2008] can be directly applied to aduned MAID to find
Nash equilibria of a TAGG. However, this approach does nplaixall TAGG
structure. We can do better by constructing a transformedMi& a manner sim-
ilar to the transformed BN, exploiting causal independemog CSI as in Sections
5.3.1and 5.3.3.

We can do better yet and exploit the temporal structure agites in Section
5.3.2, if we use a solution algorithm that requires companiabf probabilities
and expected utilities. Govindan and Wilson [2002] preseérdn algorithm for
computing equilibria in perfect-recall extensive-formngzs. Blum, Shelton and
Koller [2006] adapted this algorithm to MAIDs. A key step hetalgorithm is, for
each pair of playersand j, and one of’s utility nodes, computing the marginal
distribution ovel’s decisions and their parentss decisions and their parents, and
the utility node. Our algorithm in Section 5.3.2 can be ghtforwardly adapted to
compute this distribution. This approach is efficient ifle@tayer only has a small
number of decisions, as in the games in Examples 5.1.1 ardl 5.2

154

10000 10000 10000

1000
1000 - 1000 Y
= -

,-/. o -
-
-

- y g

//./'xr /1

S
8

B

s 3
CPU time (seconds)

CPU time (seconds)
2
CPU time (seconds)

3

12 3 4 5 6 7 8 91011 1213 14 123 456 7 8 910111213 1415 12 3 4 5 6 7 8 9 10 11 12 13 14 15
T, duration of the TAGG cars per time step T, duration of the TAGG

Figure 5.3: Running times for expected utility computation. Triangktal
points represent Approach 1 (induced BN), diamonds repte&pe-
proach 2 (transformed BN), squares represent Approachdpdgped
algorithm).

However, we did not implement these algorithms for TAGGsdose of a lack
of publicly-available implementations for these algarith In particular, whereas
Gametracer [Blum et al., 2002] provided an implementatib@avindan and Wil-
son’s [2003] global Newton method for normal form games,idt kot provide
an implementation of Govindan and Wilson’s [2002] algaritfor extensive-form
games.

5.5 Experiments

We have implemented our algorithm for computing expectéityun TAGGs, and
run experiments on the efficiency and scalability of our athm. We compared
three approaches for computing expected utility given a GAG

Approach 1 applying the standard clique tree algorithm (as implentbtethe
Bayes Net Toolbox [Murphy, 2007]) on the induced BN;
Approach 2 applying the same clique tree algorithm on the transformid B

Approach 3 our proposed algorithm in Section 5.3.

All approaches were implemented in MATLAB. All our experinte were per-
formed using a computer cluster consisting of machines dithl Intel Xeon
3.2GHz CPUs, 2MB cache and 2GB RAM.

We ran experiments on tollbooth game instances of varyingssi For each
game instance we measured the CPU times for computing ecpattity of 100

155

random behavior strategy profiles. Figure 5.3 (left) shdvesresults in log scale
for toll booth games with 3 lanes and 5 cars per time step, thidlduration varying

from 1 to 15. Approach 1 ran out of memory for games with moaath time step.
Approach 2 was more scalable; but ran out of memory for ganithsmore than 5

time steps. Approach 3 was the most scalable. On smallemioss it was faster
than the other two approaches by an order of magnitude, atid itot run out of

memory as we increased the size of the TAGGs to at least 20stieps. For the
toll booth game with 14 time steps it took 1279 seconds, whEdpproximately

the time Approach 2 took for the game instance with 5 timesstelpigure 5.3

(middle) shows the results in log scale for tollbooth gamitk &time steps and 3
lanes, varying the number of cars per time step from 1 to 2(prégch 1 ran out
of memory for games with more than 3 cars per time step; Ambr@ran out of

memory for games with more than 6 cars per time step; and &ggroach 3 was
the most scalable.

We also ran experiments on the ice cream games of Exampt 5igure 5.3
(right) shows the results in log scale for ice cream gamehk witocations, two
vendors per time step, and durations varying from 1 to 15.hidmee locations for
each vendor were generated randomly. Approaches 1 and 2irahmemory for
games with more than 3 and 4 time steps, respectively. Appr8afinished for
games with 15 time steps in about the same time as Approacbkdo games
with 4 time steps.

5.6 Conclusions

TAGGs are a novel graphical representation of imperfefttrination extensive-
form games. They are an extension of simultaneous-move AG®&® dynamic
setting; and can be thought of as a sequence of AGGs playedlotime steps,
with action counts accumulating as time progresses. Thisgss can be formally
described by the induced BN. For situations with anonymitZ8I structure, the
TAGG representation can be exponentially more compactdhdirect MAID rep-
resentation. We presented an algorithm for computing drdadtility for TAGGs
that exploits its anonymity, CSI as well as temporal strieetuWe showed both
theoretically and empirically that our approach is sigaifitty more efficient than

156

the standard approach on a direct MAID representation ofdinee game.

Another interesting solution concept is extensive-formreated equilibrium
[von Stengel and Forges, 2008]. EFCE was defined for peréeatH extensive-
form games, but the concept can be applied to other repetsed of perfect-
recall dynamic games. One interesting direction is to atfyang and Von Sten-
gel's [2008] polynomial-time algorithm for computing salmfiFCE to compact
representations like MAIDs and TAGGs.

As mentioned in Section 2.2.4, dynamic games with perfezlkrdave nice
properties including the existence of Nash equilibria ihdor strategies. Fur-
thermore, most of existing algorithmic approaches for dyicagames assume per-
fect recall. However, strategies in perfect-recall gamas lse computationally
expensive to represent and reason about. For example irfecipearcall TAGG,
since each decision of a player has to condition on all ptevabecisions and ob-
servations of the player, the representation size of a lehatrategy grows ex-
ponentially in the number of previous decisions of that ptayRepresentations
like MAIDs and TAGGs can compactly express the utility fuons, but this expo-
nential blow-up of the strategy space is an inherent prgmdmerfect recall. This
blow-up already arises for two-player zero-sum games ssigloker. Perfect recall
is thus also problematic as a realistic model of rationadiiyce real-life agents do
not have unlimited amount of memory. In light of this, an neing direction is
to explore imperfect-recall models, and solution concepts algorithms for such
models. In single-agent settings, there has been reseanmehaxing perfect recall
using limited memory influence diagrams (LIMIDs) [NilssamdeLauritzen, 2000].
However, for multi-agent imperfect recall games, exiseeat Nash equilibria in
behavior strategies is not guaranteed. There has been ssgach on classes of
imperfect recall games in which such equilibria do exist.e@pproach is based
on “forgetting” certain “payoff-irrelevant” informatiofrom certain classes of per-
fect recall games, and showing that the resulting impertecall game has a Nash
equilibrium in behavior strategies that is also a Nash éaquilm of the original
perfect recall game. Such equilibria are called Markov &&rEquilibria (MPE)
[e.g., Fudenberg and Tirole, 1991]. Milch and Koller [2008)k such an approach
for MAIDs, in which case forgetting information correspentb deleting certain
edges into decision nodes. However, even if Nash equilibrieehavior strategies

157

exist in the resulting imperfect-recall game, there is eunily no general-purpose
algorithm for finding such equilibria. For the zero-sum gaofigpoker, Waugh
et al. [2009] considered the approach of formulating imgerfecall models where
players forget certain information. The reduction in gyt space allowed them
to solve larger instances (corresponding to finer abstragtio the game of poker)
than previously possible. They solved the resulting ingmrfecall game using
counterfactual regret minimizatiom heuristic algorithm without theoretical guar-
antees but appeared to empirically converge to approxie@idibria. Although
unlike the MPE case, the transformation is not lossless &.Hash equilibrium of
the imperfect-recall game is no longer a Nash equilibriunthef original game),
they showed empirically that agents using the resultingtexjies performed well.
There have also been research on weaker solution concegtdviRE that allow
players to ignore more information, such as Mean Field Hayiuim [e.g., Adlakha
et al., 2010, lyer et al., 2011].

Another approach is to consider restricted settings thatitastronger theo-
retical and practical properties. For instance, in Chaftee consider Bayesian
games, which (recall from Section 2.1.3) can be formulatediymamic games;
however they have specific structure that makes them cotigmadly friendlier
than arbitrary dynamic games. In particular, these gameasthbave the problem
of exponential blow-up of strategy space. We are able taégeetechniques from
simultaneous-move games for representing and computitigBeaiyesian games.

158

Chapter 6

Bayesian Action-Graph Games

6.1 Introduction

In this chapter weconsider static games of incomplete information (or Bayresi
games) [Harsanyi, 1967], in which (recall from Section 2)Jlayers are uncer-
tain about the underlying game. Bayesian games have foung applications in
economics, including most notably auction theory and meichadesign.

Our interest is in computing with Bayesian games, and pdatity in identify-
ing sample Bayes-Nash equilibrium. We surveyed the retditarature in Chapter
2, specifically Sections 2.1.3 and 2.2.3. To summarizegthsr two key obstacles
to performing such computations efficiently. The first isresggntational: recall
that the straightforward tabular representation of Baregiame utility functions
(the Bayesian Normal Form) requires space exponentialemtimber of players.
The second obstacle is the lack of existing algorithms feniiflying sample Bayes-
Nash equilibrium for arbitrary Bayesian games. Recall #3ayesian game can be
interpreted as an equivalent complete-information gaméinduced normal form”
or “agent form” interpretations. Thus one approach is terpitet a Bayesian game
as a complete-information game, enabling the use of egistiash-equilibrium-
finding algorithms. However, generating the normal formregpntations under
both of these complete-information interpretations calseexponential blowup
in representation size, even when the Bayesian game hasnm[ylayers.

IThis chapter is based on joint work with Kevin Leyton-Brov2®10].

159

In this chapter we propose Bayesian Action-Graph Games B#(a com-
pact representation for Bayesian games. BAGGs can refirad@trary Bayesian
games, and furthermore can compactly express Bayesiansgaitiecommonly
encountered types of structure. The type profile distrisuis represented as a
Bayesian network, which can exploit conditional indepemegestructure among
the types. BAGGs represent utility functions in a way simitathe AGG repre-
sentation, and like AGGs, are able to exploit anonymity astba-specific utility
independencies. Furthermore, BAGGs can compactly expagssian games ex-
hibiting type-specific independenceach player’s utility function can have differ-
ent kinds of structure depending on her instantiated typepkbvide an algorithm
for computing expected utility in BAGGs, a key step in margoaithms for game-
theoretic solution concepts. As in Chapter 5, our approatérprets expected
utility computation as a probabilistic inference problem aninduced Bayesian
Network In particular, our algorithm runs in polynomial time foretlimportant
case of independent type distributions.

To compute Bayes-Nash equilibria for BAGGs, we consideragent form
interpretation of the BAGG. Howson and Rosenthal [1974sttbthat the agent
form of an arbitrary two-player Bayesian game is a polymagame, which can
be represented compactly (thus avoiding the aforemerttibievup) and solved
using a variant of the Lemke-Howson algorithm. However,rigalayer BAGGs
the corresponding agent forms do not correspond to polyxgdames or any other
known representation, and the Lemke-Howson algorithm aidomapplied. Never-
theless, we are able to generalize Howson and Rosenthalsagh to propose an
algorithm for finding sample Bayes-Nash equilibria for &idrly BAGGs. Specifi-
cally, we show that BAGGs can act as a general compact repiedism of the agent
form; in particular, computational tasks on the agent foen be done efficiently
by leveraging our expected utility algorithm for BAGGs. Vileh apply black-box
approaches for Nash equilibria in complete-informatiomga discussed in Sec-
tions 2.2.2 and 3.4, specifically the simplicial subdivisadgorithm [van der Laan
et al., 1987] and Govindan and Wilson’s [2003] global Newtogthod. We show
empirically that our approach outperforms the existingrapphes of solving for
Nash on the induced normal form or on the normal form reptasien of the agent
form.

160

Bayesian games can be interpreted as dynamic games withad imove by
Nature; thus, also related is the literature on representafor dynamic games,
including MAIDs and TAGGs. Compared to these representatior dynamic
games, BAGGs focus explicitly on structure common to Bayegjames; in par-
ticular, only BAGGs can efficiently express type-specifiditytstructure. Also,
by representing utility functions and type distributions separate components,
BAGGs can be more versatile. For example, one future doeatiade possible
by this separation is to model Bayesian games without contypndistributions.
Another future direction is to answer computational questithat do not depend
on the type distribution, such as computing ex-post eqialibFurthermore, we
will see that BAGGs enjoy nicer computational propertiesntlarbitrary dynamic
games. For example, BAGGs can be solved by adapting Goviaddiwilson’s
global Newton method [2003] (see Section 2.2.1) for stadimes; this is generally
more practical than their related Nash equilibrium aldpmnit[2002] that directly
works on dynamic games: while both approaches avoid therexyial blowup of
transforming to the induced normal form, the global Newtcethod for dynamic
games has to solve an additional quadratic program at eaglokthe homotopy.

A limitation of BAGGs is that it requires the types to be deter. There has
been some research on heuristic methods for finding Baysk-Hquilibria for
Bayesian games with continuous types, including Reevesygltinan [2004]'s
work on iterated best response for certain classes of augéimes and Rabinovich
et al. [2009]'s work on fictitious play. Developing generahgpact representations
and efficient algorithms for Bayes-Nash equilibria for sgelmes remain interest-
ing open problems.

6.2 Preliminaries

The standard definition of a Bayesian gafMe{A }ien,©,P,{Ui }ien) IS given in
Definition 2.1.3. The standard concepts of pure strasegmixed strategyo;, ex-
pected utility for Bayesian games, and Bayes-Nash equifibare introduced in
Section 2.2.3. Recall from Section 2.1.3 that the spacéebettks of representing
a Bayesian game are the type distribution and the utilitction. Representing
them as tables, the Bayesian normal form require$]i_,(|©i] x |Ai]) + L1 ||

161

numbers to specify.

We say a Bayesian game hiadependent type distributiofifplayers’ types are
drawn independently, i.e. the type-profile distributi®(®) is a product distribu-
tion: P(8) =1; P(&). In this case the distributioR can be represented compactly
usingy; |©;| numbers.

Given a permutation of players: N — N and an action profila= (ay,...,an),
let 2™ = (apy),- .-, ann)). Similarly let 6™ = (By1), ..., 6yn)). We say the type
distributionP is symmetric if|©;| = |©;| for all i, j € N, and if for all permutations
m:N— N, P(6) =P(67). We say a Bayesian game r®gsnmetric utility functions
if |Ai| =|Aj| and|©;| = |O;| for all i, j € N, and if for all permutationst: N — N,
we haveu;(a, 8) = ur;) (@, 8™) for alli € N. A Bayesian game is symmetric if its
type distribution and utility functions are symmetric. Tindity functions of such
a game range over at md&; || A (”‘éﬁﬂﬂ?‘) unique utility values.

A Bayesian game exhibitsonditional utility independenci each player’s
utility depends on the action profileand her own typé}, but does not depend on
the other players’ types. Then the utility function of eadfypri ranges over at
most|A||©;| unique utility values.

6.2.1 Complete-information interpretations

Harsanyi [Harsanyi, 1967] showed that any Bayesian gaméeanterpreted as
one of two complete-information games, the Nash equilibfieach of which cor-
respond to Bayes-Nash equilibria of the Bayesian game.

A Bayesian game can be converted toiftduced normal formwhich is a
complete-information game with the same seh@layers, in which each player’s
set of actions is her set of pure strategies in the BayesiaregeéEach player's
utility under an action profile is defined to be equal to theygts expected utility
under the corresponding pure strategy profile in the Bayasaane.

Alternatively, a Bayesian game can be transformed taggsnt formp where
each type of each player in the Bayesian game is turned intoptayer in a
complete-information game. Formally, given a Bayesian @@ {A;}icn, O, P,
{u}ien), we define its agent form as the complete-information gaiNe
{Aj’ej}(jiej)eﬂ,{ﬂjigj}(jiej)eﬂ), whereN consists ofy jen |©j] players, one for ev-

162

ery type of every player of the Bayesian game. We index thgeptaby the tuple
(j,6;) wherej € N and 8; € ©;. For each playe(j,6;) € N of the agent form
game, her action Sé‘(j.gj) is Aj, the action set of in the Bayesian game. The
set of action profiles is theA = [7; g, Aj ;). The utility function of player(j, 6;)

is Uj g, : A— R. Forallde A, Uj g (d) is equal to the expected utility of playgr

of the Bayesian game given tyigk, under the pure strategy profigg, where for

alli and all@, S'(6) = &; g). Observe that there is a one-to-one correspondence
between action profiles in the agent form and pure stratefid®e Bayesian game.

A similar correspondence exists for mixed strategy prafikech mixed strategy
profile o of the Bayesian game corresponds to a mixed strate@y the agent
form, with &; g (&) = 0i(a6) for all i, 6, 4. Itis straightforward to verify that
Ui g(0)=u(ol|6)foralli, 8. This implies a correspondence between Bayes Nash
equilibria of a Bayesian game and Nash equilibria of its agmm.

Proposition 6.2.1. g is a Bayes-Nash equilibrium of a Bayesian game if and only
if & is a Nash equilibrium of its agent form.

6.3 Bayesian Action-Graph Games

In this section we introduce Bayesian Action-Graph Game&¥38s), a compact
representation of Bayesian games. First consider repiegethe type distribu-
tions. Specifically, the type distributioR is specified by a Bayesian network
(BN) containing at leash random variables corresponding to thelayers’ types
64,...,6,. For example, when the types are independently distribakeshP can
be specified by the simple BN withvariablesf;, ..., 6, and no edges.

Now consider representing the utility functions. Our aptois to adapt con-
cepts from the AGG representation (see Chapter 3) to thedgaygame setting.
At a high level, a BAGG is a Bayesian game onaation graph a directed graph
on a set ofaction nodes«/. To play the game, each playgrgiven her typeg;,
simultaneously chooses an action node fromtipe-action set A, C /. Each
action node thus corresponds to an action choice that itabl@ito one or more
of the players. Once the players have made their choices;teon counts tallied
for each action node € <7, which is the number of agents that have chogen
A player’s utility depends only on the action node she choskthe action counts

163

on the neighbors of the chosen node. We observe that the nff@iredce between
the AGG and BAGG representations is that whereas in an AGG glayer’s set

of available actions is specified by her action set, in a BAG&have type-action
sets, meaning each player’s set of available actions caendepn her instantiated
type.

We now turn to a formal description of BAGGs’ utility functiaepresentation.
Central to our model is thaction graph? An action graph G= («,E) is a di-
rected graph wherg/ is the set of action nodes, aidis a set of directed edges,
with self edges allowed. We say is aneighborof a if there is an edge from’
toa,i.e., if (a’,a) € E. Let theneighborhoodof a, denotedv(a), be the set of
neighbors ofx.

For each player and each instantiation of her tyk € ©;, hertype-action
set Ag C 7 is the set of possible action choicesiafiven 6. These subsets are
unrestricted: different type-action sets may (partialycompletely) overlap. De-
fine playeri’s total action setto be A’ = Jgco Aig. We denote byA = [7; A’
the set ofaction profiles and bya € A an action profile. Observe that the action
profile a provides sufficient information about the type profile to béao deter-
mine the outcome of the game; there is no need to additioraltpde the realized
type distribution. We note that for different typés 6/ € ©;, A g andA; g may
have different sizes; i.ei.,may have different numbers of available action choices
depending on her realized type.

A configuration ds a vector of.</| non-negative integers, specifying for each
action node the numbers of players choosing that actionc(let be the element
of ¢ corresponding to the actiam. Let% : A+— C be the function that maps from
an action profile to the corresponding configuratienFormally, ifc = %' (a) then
c(a)=|{ieN:g=a}|forall a € «. DefineC={c:3Jac Asuch that =%(a)}.
In other wordsC is the set of all possible configurations in the BAGG. Observe
that the concept of configurations in BAGGs is related to twecept of configu-
rations in AGGs in the following wayC in a BAGG is isomorphic to the set of
configurations in an AGG-0 with the same action gr&ph (<7, E) but with action
sets corresponding to total action sets of the BAGG, Aes A

2The definition of action graph coincides with the correspogdoncept in AGGs. We repeat
the definition here in order to give a complete descriptioBAGGS.

164

We can also define a configuration over a subset of nodes. tinydar, we will
be interested in configurations over a node’s neighborh@agen a configuration
c € C and a nodax € o7, let theconfiguration over the neighborhoaaf o, de-
notedc®), be the restriction of to v(a), i.e.,c') = (c(a’)) grcy(a). Similarly, let
C(@) denote the set of configurations ovgi) in which at least one player plays
a. Let %@ : A C@ pe the function that maps from an action profile to the
corresponding configuration ove(a).

Definition 6.3.1. A Bayesian action-graph game (BAGG) is a tufi\e ©, P,

{Ai 6 tien.aeo;s G, {U” }aer) Where N is the set of agent®, = []; ©; is the set of
type profiles; P is the type distribution, represented as ge3&n network; fg C
</ is the type-action set of i giveh; G = (<7, E) is the action graph; and for each
a € <, the utility function is @ : C(@) — R.

As in the case of AGGs, shared actions in a BAGG capture thegamonymity
structure. Furthermore, the (lack of) edges between nodéiaction graph of a
BAGG expresseaction- and type-specific independenciésitilities of the game:
depending on playéts chosen action node (which also encodes information about
her type), her utility depends on configurations over ddférsets of nodes.

Lemma 6.3.2. An arbitrary Bayesian game given in Bayesian normal formlzan
encoded as a BAGG storing the same number of utility values.

Proof. Given an arbitrary Bayesian garti, {A }icn, ©, P, {ui }ien) represented in
Bayesian normal form, we construct the BAGIS, ©, P, {A[4 }ien6co;; G,
{u%}4e.r) as follows. The Bayesian normal form’s tabular representatf type
profile distributionP can be straightforwardly represented as a BN, e.g. by cre-
ating a random variable representifgas the only parent of the random vari-
ables@,...,6,. To represent utility functions, we create an action gr@phith
i|Gi||Ai] action nodes; in other words, all type-action stg are disjoint. Each
actiong; € A; of the Bayesian normal form correspond3®3| action nodes in the
BAGG, one for each type instantiatidh. For each playerand each typ#&, € ©;,
each action node € A{79| has incoming edges from all action nodes from type-
action setsA’wj forall j #1i, 6; € ©j, i.e. all action nodes of the other players. For
each action node € Ai/,e. corresponding t@; € A;, the utility functionu® is de-
fined as follows: given configuratiozi®) we can infer the action profilg ; € A’

165

of the BAGG, which then tells us the correspondeg and 6_; of the Bayesian
normal form, which gives us the utility; (a, 6). The number of utility values stored
in this BAGG is the same as the Bayesian normal form. O

Bayesian games with symmetric utility functions exhibibaymity structure,
which can be expressed in BAGGs by sharing action nodes. ifitjpdlg, we la-
bel each®; as{1,...,T}, so that each € {1,...,T} corresponds to a class of
equivalent types. Then for eatke {1,...,T}, we haveAj; = Aj; for all i, j € N,
i.e. type-action sets for equivalent types are identicgjuife 6.1 shows the action
graph for a symmetric Bayesian game with two types and twiorzEper type.

Figure 6.1: Action graph for a symmetric Bayesian game witlplayers, 2
types, 2 actions per type.

6.3.1 BAGGs with Function Nodes

In this section we extend the basic BAGG representation trgdncingfunction
nodesto the action graph, as we did for AGG-FNs in Chapter 3. Fonctiodes
allow us to exploit a much wider variety of utility structgren BAGGs.

In this extended representatidrihe action graplG'’s vertices consist of both
the set of action nodes” and the set of function node¥. We require that no
function nodep € &2 can be in any player’s action set. Each function npde &
is associated with a functiof? : C(P) — R. We extenct by definingc(p) to be the
result of applyingf P to the configuration ovep’s neighbors,fP(c(P)). Intuitively,
c(p) can be used to describe intermediate parameters that playiities depend

3The definitions of function nodes and contribution-indefeet function nodes coincides with
the corresponding concepts in AGGs. We repeat them herefopleteness.

166

on. To ensure that the BAGG is meaningful, the graph resttitb nodes in??
is required to be a directed acyclic graph. As before, fohesxtion nodea we
define a utility functioru® : C(@) — R.

Of particular computational interest is the subclassooftribution-independent
function nodes A function nodep in a BAGG is contribution-independenif
v(p) C 7, there exists a commutative and associative opergt@and for each
a € v(p) an integemw,, such that given an action profige= (ay,...,an), ¢(p) =
*icN:aev(p) Wa - A BAGG is contribution-independent if all its function neslare
contribution-independent. Intuitively, if function noges contribution-independent,
each player’s strategy affeatép) independently.

A very useful kind of contribution-independent functiondes aresimple ag-
gregator function nodesvhich set« to the summation operatar and the weights
to 1. Such a function nodp simply counts the number of players that chose any
action inv(p).

Let us consider the size of a BAGG representation. The reptason size of
the Bayesian network fdP is exponential only in the in-degree of the BN. The
utility functions storey . |C(?)| values. Recall tha€ and thusC(®) correspond
to configurations in an related AGG. We can thus apply the samadysis for the
representation size of AGGs in Chapter 3. As in Chapter 3natibns of this
size generally depend on what types of function nodes ahadad. We state only
the following (relatively straightforward) result sinagethis chapter we are mostly
concerned with BAGGs with simple aggregator function nodes

Theorem 6.3.3. Consider BAGGs whose only function nodes, if any, are simple
aggregator function nodes. If the in-degrees of the actiodes as well as the in-
degrees of the Bayesian networks for P are bounded by a cungten the sizes

of the BAGGs are bounded by a polynomial ing,|, | 22|, 3;i|0;| and the sizes of
domains of variables in the BN.

The proof is by a direct application of Corollary 3.2.11. Jiheorem shows
a nice property of simple aggregator function nodes: remtasion size does not
grow exponentially in the in-degrees of these function soddne next example (an
extension of Example 3.2.7) illustrates the usefulnessmle aggregator function
nodes, including for expressing conditional utility inéeplence.

167

Example 6.3.4(Coffee Shop game)Consider a symmetric Bayesian game involv-
ing n players; each player plans to open a new coffee shop avantbwn area, but
has to decide on the location. The downtown area is represeny a rx k grid.
Each player can choose to open a shop located within any dB thek blocks or
decide not to enter the market. Each player has one of T typpsesenting her
private information about her cost of opening a coffee shBfayers’ types are
independently distributed. Conditioned on player i chogssome location, her
utility depends on: (a) her own type; (b) the number of playibat chose the same
block; (c) the number of players that chose any of the sulomblocks; and (d)
the number of players that chose any other location.

The Bayesian normal form representation of this game hangiZB + 1)]".
The game can be expressed as a BAGG as follows. Since the gayminetric,
we label the types a§l,...,T}. </ contains one actio® corresponding to not
entering andrl B other action nodes, with each location corresponding td afse
T action nodes, each representing the choice of that lochtyoa player with a
different type. For eache {1,...,T}, the type-action se#s; = A;¢ foralli, j € N
and each consists of the acti@randB actions corresponding to locations for tyipe
For each locatiofix,y) we create three function nodgs, representing the number
of players choosing this Iocatiomn’Xy representing the number of players choosing
any surrounding blocks, armj(’y representing the number of players choosing any
other block. Each of these function nodes is a simple aggedanction node,
whose neighbors are action nodes corresponding to the @jmteolocations (for
all types). Each action node for locatigr y) has three neighborgyy, p;y, and
p’X’y. Figure 6.2 shows the action graph for the game Wita 2 on an 1x k grid.
Since the BAGG action graph has maximum in-degree 3, by Emed.3.3 the
representation size is polynomialmnB andT.

6.4 Computing a Bayes-Nash Equilibrium

In this section we consider the problem of finding a sampleeBayash equilib-
rium given a BAGG. Our overall approach is to interpret they@&aan game as
a complete-information game, and then to apply existingrittyms for finding

Nash equilibria of complete-information games. We consid® state-of-the-art

168

Figure 6.2: BAGG representation for a Coffee Shop game with 2 types per
player on an X k grid.

Nash equilibrium algorithms, van der Laan et al's simpliGgabdivision [1987]
and Govindan and Wilson’s global Newton method [2003].

Recall from Section 6.2.1 that a Bayesian game can be transtbinto its
induced normal form or its agent form. In the induced nornoairf, each player
i has\Ai]‘e“ actions (corresponding to her pure strategies of the Bagagame).
Solving such a game would be infeasible for laj@g; just to represent an Nash
equilibrium requires space exponential®|.

A more promising approach is to consider the agent form. Nwéwe can
straightforwardly adapt the agent-form transformatiosadéed in Section 6.2.1
to the setting of BAGGs: now the action set of playie) of the agent form corre-
sponds to the type-action 3&tg of the BAGG. The resulting complete-information
game has iy |©i| players andA; g | actions for each playe(i, 6); a Nash equi-
librium can be represented using jUsty g |Ai g | NnUMbers. However, the normal
form representation of the agent form has sjzey [9j[1 g |Ai.a |, Which grows
exponentially imn and|©;|. Applying the Nash equilibrium algorithms to this nor-
mal form would be infeasible for large games. Fortunatelg do not have to
explicitly represent the agent form as a normal form gamestebd, we treat a
BAGG as a compact representation of its agent form, and @arrany required
computation on the agent form by operating directly on theé5&A Recall from

169

Section 2.2.1 that a key computational task required by biatbh equilibrium al-
gorithms in their inner loops is the computation of expeaéiity of the agent
form. Recall from Section 6.2.1 that for 4l 6) the expected utility;g (&) of
the agent form is equal to the expected utilityo |6) of the Bayesian game. Thus
in the remainder of this section we focus on the problem ofmating expected
utility in BAGGs.

6.4.1 Computing Expected Utility in BAGGs

Recall from Section 2.2.3 that® 2 is the mixed strategy profile that is identical
to o except that playsa given 6. The main quantity we are interested in is
u(c®—38), playeri’s expected utility giverg, under the strategy profilg®—a.
Note that the expected utility;(o|6) can then be computed as the suifu|6) =
Sa Ui(0%7%|6)ai(al6).

One approach is to directly apply Equation (2.2.2), whick {®_;| x |A|)
terms in the summation. For games represented in Bayesitamhform, this al-
gorithm runs in time polynomial in the representation sid@ce BAGGs can be
exponentially more compact than their equivalent Bayes@mal form represen-
tations, this algorithm runs in exponential time for BAGGs.

In this section we present a more efficient algorithm that@tpBAGG struc-
ture. We first formulate the expected utility problem as adgn network infer-
ence problem. Given a BAGG and a mixed strategy praffle’@, we construct
theinduced Bayesian network (IBM} follows.

We start with the BN representing the type distribut®nwhich includes (at
least) the random variabled, ..., 68,. The conditional probability distributions
(CPDs) for the network are unchanged. We add the followimgloen variables:
one strategy variablp for each playel; one action count variable for each action
nodea € <7, representing its action count, denotgd); one function variable for
each function node € &, representing its configuration value, denotéeg); and
one utility variableU @ for each action node. We then add the following edges:
an edge fron®; to D; for each playej; for each playejj and eacto € AY, an edge
from Dj to c(a); for each function variable(p), all incoming edges corresponding
to those in the action graph; and for eachr € o7, for each action or function node

170

me v(a) in G, an edge front(m) toU? in the IBN.

The CPDs of the newly added random variables are defined las/$ol Each
strategy variabl®; has domaimA?, and given its parenf;, its CPD chooses an
action fromAjU according to the mixed strateg;f'%“. In other words, ifj # i then
Pr(Dj = a;|6) is equal tooj(a;|6;) for all aj € Aj g, and O for allaj € A7\ A g;;
and if j =i we have P(D; = &|6;) = 1. For each action node, the parents of
its action-count variable(a) are strategy variables that hawein their domains.
The CPD is a deterministic function that returns the numlbés @arents that take
valuea; i.e., it calculates the action count af For each function variable(p),
its CPD is the deterministic functiof®. The CPD for each utility variable is a
deterministic function specified hy.

Remark 6.4.1. Observe that our construction of IBN here is similar to the-co
struction of induced BN from a TAGG in Chapter 5. One diffeeeis that in a
BAGG, type affects utility indirectly through type-actisets, resulting in a differ-
ent construction of CPDs at the strategy variablesfdm the TAGG case. Also,
each strategy variable in a BAGG has in-degree 1, whereas preréect-recall
TAGG the in-degree of a decision of player i grows linearlytie number of i's
previous decisions.

It is straightforward to verify that the IBN is a directed alig graph (DAG)
and thus represents a valid joint distribution. Furtheemdhe expected utility
u (o) is exactly the expected value of the variabl& conditioned on the
instantiated typé.

Lemma6.4.2.Foralli e N, all 6 € ©; and all 3 € A g, we have (o®7%6) =
E[U%|6)].

Standard BN inference methods could be used to comp{dé|6]. How-
ever, such standard algorithms do not take advantage ofsteuthat is inherent in
BAGGs. In particular, recall that in the induced networlGleaction count variable
c(a)’s parents are all strategy variables that have their domains, implying large
in-degrees for action count variables. As in the TAGG case,GPDs of action
count variables exhibitausal independencand we can apply a version of Heck-
erman and Breese’s method [Heckerman and Breese, 199@jnsfdrm the IBN

171

into an equivalent BN small in-degree. Given an action caaniablec(a) with
parents (say)D;...Dp}, for eachi € {1...n—1} we create a nodel, ;, represent-
ing the count induced b1 ...D;. Then, instead of havinB; ...Dy as parents of
c(a), its parents becomi, andMg 1, and eachM, ;’s parents ar®; andMg 1.
The resulting graph has in-degree at most 2cfar) and theMg i’s. The CPDs of
function variables corresponding to contribution-indegent function nodes also
exhibit causal independence, and thus we can use a sinadl@farmation to re-
duce their in-degree to 2. We call the resulting Bayesiawowkt thetransformed
Bayesian network (TBNf the BAGG.

As in Chapter 5, it is straightforward to verify that the repentation size of the
TBN is polynomial in the size of the BAGG. We can then use stathdnference
algorithms to comput&[U?|8] on the TBN. For classes of BNs with bounded
treewidths, this can be computed in polynomial time. Sireedraph structure
(and thus the treewidth) of the TBN does not depend on théeglrarofile (but,
rather, only on the BAGG itself), we have the following resul

Theorem 6.4.3.For BAGGs whose TBNs have bounded treewidths, expectigy util
can be computed in time polynomial injry|, | 2’| and |5 ; ©;].

Bayesian games with independent type distributions arengoitant class of
games and have many applications, such as independeatepvi@lue auctions.
When contribution-independent BAGGs have independerg diptributions, ex-
pected utility can be efficiently computed.

Theorem 6.4.4. For contribution-independent BAGGs with independent tyise
tributions, expected utility can be computed in time poigia in the size of the
BAGG.

Note that this result is stronger than that of Theorem 6utiich only guaran-
tees efficient computation when TBNs have constant trebwidt

Proof. We reduce the problem of computing expected utilityy®~% |6 for BAGGs
with independent type distributions to the problem of cotimguexpected utility
for AGGs.

Given a BAGG(N,G,{u?},c.), we consider the AGG specified by(N,
{A}ien, G, {U% }ge.r), i.€., an AGG with the same set of players, the same action

172

graph and the same utility functions, but with action setsesponding to total
action sets of the BAGG. The representation size of the AG&proportional to
the size of the BAGG. Furthermore, since the BAGG is contitiuindependent,
all function nodes in the AGG are contribution-independent.

Giveni, 6 ando®—3 for each playelj # i we can calculate PD;) by sum-
ming out8;: Pr(D; = aj) = 3¢, 0j(aj|6;). Observe that this distribution of the
strategy variabl®; can be interpreted as a (complete-information) mixedesgsat
ajf of the AGGTI’s player j. Similarly for playeri, the distribution R{D;|6) can
be interpreted as a mixed strategyfor ''s playeri. Furthermore these distribu-
tions are independent, so they induce the same distribotien configurations of
the BAGG as the distribution over configurations of the AG@duced by the
mixed-strategy profile’ = (o7,...,0,).

Therefore the expected utility; (c%—~%|8) for the BAGG is equal to the ex-
pected utility ofi in the AGGT under the mixed strategy profile’. Expected
utility for contribution-independent AGGs can be computeg@olynomial time by
running the algorithm described in Section 3.4.2. O

An alternative approach for proving Theorem 6.4.4 is to wamkthe TBN of
the BAGG, which can be shown to have treewidth as mast)|. Although|v(g)|
is not necessarily a constant, meaning that Theorem 8 céendirectly applied,
it can be shown that a variable elimination algorithm needstdre at mosjC®)|
numbers in each of its tables, which is polynomial in the sizéhe BAGG. These
two proof approaches can be thought of as two interpretatibthe same expected
utility algorithm.

6.5 Experiments

We have implemented our approach for computing a Bayes-d@shbrium given
a BAGG by applying Nash equilibrium algorithms on the agenirf of the BAGG.
We adapted two algorithms, GAMBIT's [McKelvey et al., 2006jplementation
of simplicial subdivision and GameTracer’s [Blum et al.02pimplementation of
Govindan and Wilson’s global Newton method, by replaciniisda expected util-
ity computations of the complete-information game withresponding expected
utility computations of the BAGG. Recall from Section 3.&thve have adapted

173

100000 BAGG.AE 100000

10000 ~m-NF-AF 10000
INF
1000 1000

3B - :
3 10 - 3 10 1
= . = .
E 0.1 GE, 0.1
; 3 4 5 S 7 S 6 8 10 12 14 16 18 20
S number of players S number of locations
Figure 6.3: GW, varying players. Figure 6.4: GW, varying locations.
10000 100000
1000 I 10000
3 100 3 1000
& 1 & 10
= = ——BAGG-
= 0.1 | = 1 e
g 0.01 é 0.1 —m—-NF-AF
ey 2 3 a 5 6 7 8 ey 2 3 a 5 6 7 8
S types per player S number of players
Figure 6.5: GW, varying types. Figure 6.6: Simplicial subdivision.

GAMBIT'’s implementation of simplicial subdivision to a ldk-box implementa-
tion, and that Gametracer’s implementation is alreadykslanx, thus further adap-
tation of the algorithms to the BAGG case was relativelyigtrdiorward to imple-
ment once we have the expected utility subroutine. We raeraxents that tested
the performance of our approach (denoted by BAGG-AF) agaivis approaches
that compute a Bayes-Nash equilibrium for arbitrary Bagegiames. The first (de
noted INF) computes a Nash equilibrium on the induced noforai; the second
(denoted NF-AF) computes a Nash equilibrium on the normah fieepresentation
of the agent form. Both were implemented using the originaimal-form-based
implementations of simplicial subdivision and global Newtmethod. We thus
studied six concrete algorithms, two for each game reptaten.

We tested these algorithms on instances of the Coffee Shgpsiza game
described in Example 6.3.4. We created games of differessdby varying the
number of players, the number of types per player and the aumiblocations.
For each size we generated 10 game instances with randogerirgayoffs, and
measured the running (CPU) times. Each run was cut off a@drdurs if it had
not yet finished. All our experiments were performed usingomputer cluster
consisting of 55 machines with dual Intel Xeon 3.2GHz CPWB2Xache and
2GB RAM, running Suse Linux 11.1.

We first tested the three approaches based on the GovindaoANGW) algo-

174

rithm. Figure 6.3 shows running time results for Coffee Shames witm players,
2 types per player on a2 3 grid, with n varying from 3 to 7. Figure 6.4 shows
running time results for Coffee Shop games with 3 playergp2s per player on a
2 x x grid, with x varying from 3 to 10. Figure 6.5 shows results for Coffee Shop
games with 3 playerg, types per player on a4 3 grid, with T varying from 2 to 8.
The data points represent the median running time of 10 gastarices, with the
error bars indicating the maximum and minimum running timf& results show
that our BAGG-based approach (BAGG-AF) significantly odipened the two
normal-form-based approaches (INF and NF-AF). Furtheemas we increased
the dimensions of the games the normal-form based appreagciekly ran out of
memory (hence the missing data points), whereas BAGG-NRatid

We also did experiments on BAGG-AF and NF-AF running the dicrgd sub-
division algorithm. Figure 6.6 shows running time resutis €offee Shop games
with n players, 2 types per player on & B grid, withn varying from 3 to 7. Again,
BAGG-AF significantly outperformed NF-AF, and NF-AF ran aitmemory for
game instances with more than 4 players.

175

Chapter 7

Polynomial-time Computation of
Exact Correlated Equilibrium in
Compact Games

7.1 Introduction

So far we have focused on the AGG representation and its s@ten For the
remaining two technical chapters (this chapter and Chafteve switch our at-
tention to algorithms that work for a wide class of compagptesentations includ-
ing AGGs. Specifically, we consider problems regarding edated equilibrium
(CE) [Aumann, 1974, 1987]. In this chapter we consider thable@m of com-
puting a sample correlated equilibrium. In Section 2.2.7gaee an overview of
literature on this problem; in order to motivate our resuitshis chapter we first
take a more in-depth look at some of the relevant papers. Ehipsoid Against
Hope” algorithm [Papadimitriou, 2005, Papadimitriou anclBhgarden, 2008] is
a polynomial-time method for identifying (a polynomiaksirepresentation of) a
CE, given a game representation satisfying two propenielynomial type and the
polynomial expectation propertyhich requires access to a polynomial-time algo-
rithm that computes the expected utility of any player uralgy mixed-strategy
profile. Recall that most existing compact game representatliscussed in Sec-

176

tion 2.1.1 (including graphical games, symmetric gamesgestion games, poly-
matrix games and action-graph games) satisfy these piegpertAt a high level,
the Ellipsoid Against Hope algorithm works by solving aneasible dual LPD)
using the ellipsoid method (exploiting the existence of pasation oracle), and

arguing that the LP¥') formed by the generated cutting planes must also be in-

feasible. Solving the dual of this latter LP (which has paolyral size) yields a
CE, which is represented as a mixture of the product digtabs generated by
the separation oracle. The Ellipsoid Against Hope algorith an instance of the
black-box approach: it calls the expected utility subnogitas part of its separation
oracle computation, but does not access the internal sletaihe representation.

7.1.1 Recent Uncertainty About the Complexity of Exact CE

In a recent paper, Stein, Parrilo and Ozdaglar [2010] raisedinterrelated con-
cerns about the Ellipsoid Against Hope algorithm. Firstytidentified a symmet-
ric 3-player, 2-action game with ratioraltilities on which the algorithm can fail
to compute an exact CE. Indeed, they showed that the samiepralises on this
game for a whole class of related algorithms. Specificdlignialgorithm (a) out-
puts a rational solution, (b) outputs a convex combinatioproduct distributions,
and (c) outputs a convex combination of symmetric produstridiutions when the
game is symmetric, then that algorithm fails to find an exdétdd their game,
because the only CE of their game that satisfies propertjemn¢b(c) has irrational
probabilities. This implies that any algorithm for exadioaal CE must violate (b)
or (c).

Second, Stein, Parrilo and Ozdaglar also showed that tiggnarianalysis by
Papadimitriou and Roughgarden [2008] incorrectly handéstain numerical pre-
cision issues, which we now briefly describe. Recall thatraolithe ellipsoid
method requires as inputs an initial bounding ball with uad® and a volume
boundv such that the algorithm stops when the ellipsoid’s volumamsller than
v. To correctly certify the (in)feasibility of an LP using tledlipsoid method R
andv need to be set to appropriate values, which depend on themmaaxiencod-
ing size of a constraint in the LP. However (as pointed out agadimitriou and

IThroughout this chapter, by “rational” we mean rational bens (ratios of integers) rather than
rationality of players.

177

Roughgarden [2008]), each cut returned by the separateieois a convex com-
bination of the constraints of the original dual LIP)(and thus may require more
bits to represent than any of the constraintsDiy; @s a result, the infeasibility of
the LP O') formed by these cuts is not guaranteed. Papadimitriou angfyar-
den [2008] proposed a method to overcome this difficulty,3iein et al. showed
that this method is insufficient for finding an exact CE. Fa thlated problem of
finding an approximate correlated equilibriugtCE), Stein et al. gave a slightly
modified version of the Ellipsoid Against Hope algorithmtthans in time poly-
nomial in Iog% and the game representation sizé=or problems that can have
necessarily irrational solutions, it is typical to considach approximations as ef-
ficient; however, the computation of a sample CE is not suctoblem, as there
always exists a rational CE in a game with rational utiliteace CE are defined by
linear constraints. It remains an open problem to determinether the Ellipsoid
Against Hope algorithm can be modified to compute an exatigna correlated
equilibrium3

7.1.2 Our Results

In this chapter, we use an alternate approach—completégstpping the issues
just discussed—to derive a polynomial-time algorithm fomputing an exact (and
rational) correlated equilibrium given a game represamathat has polynomial
type and satisfies the polynomial expectation property.ciiipally, our approach
is based on the observation that if we use a separation dffaclthe same dual
LP formulation proposed by Papadimitriou and Roughgar®808§]) that gen-
erates cuts corresponding to pure-strategy profiles édsté Papadimitriou and
Roughgarden’s separation oracle that generates nonhtpraaluct distributions),
then these cuts are actual constraints in the dual LP, asegpo convex combi-
nations of constraints. As a result we no longer encountgentimerical accuracy
issues that prevented the previous approaches from findimgt eorrelated equi-
libria. Both the resulting algorithm and its analysis arsoatonsiderably simpler

2An e-CE is defined to be a distribution that violates the CE ingentonstraints by at most

3In a recent addendum to their original paper, Papadimitioti Roughgarden [2010] acknowl-
edged the flaw in the original algorithm. We note also thainS¢eal. subsequently withdrew their
paper from arXiv. It is our belief that their results are ntheless correct; we discuss them here
because they help to motivate our alternate approach.

178

than the original: standard techniques from the theory efethpsoid method are
sufficient to show that our algorithm computes an exact CBEguai polynomial
number of oracle queries.

The key issue is the identification of pure-strategy-prafilés. It is relatively
straightforward to show that such cuts always exist: sihegproduct distribution
generated by the Ellipsoid Against Hope algorithm ensunesnonnegativity of
a certain expected value, then by a simple application optbbabilistic method
there must exist a pure-strategy profile that also ensueeadhnegativity of that
expected value. The key is to go beyond this nonconstrugtivef of existence
to alsocomputepure-strategy-profile cuts in polynomial time. We show how t
do this by applying the method of conditional probabilitjesdds and Selfridge,
1973, Raghavan, 1988, Spencer, 1994], an approach fordieraring probabilis-
tic proofs of existence. At a high level, our new separatioacke begins with
the product distribution generated by Papadimitriou andgRgarden’s separation
oracle, then sequentially fixes a pure strategy for eachepleya way that guar-
antees that the corresponding conditional expectatioangilie choices so far re-
mains nonnegative. Since our separation oracle goes thaaghrs sequentially,
the cuts generated can be asymmetric even for symmetricgyanmeed, we can
confirm (see Section 7.4.2) that it makes such asymmetr& @utStein, Parrilo
and Ozdaglar’s symmetric game—thus violating their caoodi{c)—because our
algorithm always identifies a rational CE. As with the Elbjis Against Hope al-
gorithm and Stein et al.’s modified algorithm, our algoritieralso a black-box
algorithm that calls the expected utility subroutine.

Another effect of our use of pure-strategy-profile cuts ist tthe correlated
equilibria generated by our algorithm are guaranteed te palynomial-sized sup-
ports; i.e., they are mixtures over a polynomial number aokpsirategy profiles.
Correlated equilibria with polynomial-sized supports kn@wn to exist in every
game (e.g., [Germano and Lugosi, 2007]); intuitively teiseécause CE are defined
by a polynomial number of linear constraints, so a basidlsolution of the lin-
ear feasibility program would have a polynomial number ai4zero entries. Such
small-support correlated equilibria are more naturaltsmhg than the mixtures of
product distributions produced by the Ellipsoid Againstpdalgorithm: because
of their simpler form they require fewer bits to represerd &awer random bits to

179

sample from; furthermore, verifying whether a given polynal-support distribu-
tion is a CE only requires evaluating the utilities of a paymial number of pure
strategy profiles, whereas verifying whether a mixture ofijpict distributions is a
CE would require evaluating expected utilities under pmdilistributions, which
is generally more expensive. No tractable algorithm hagigusly been proposed
for identifying such a CE, thus our algorithm is the first altfon that computes
in polynomial time a CE with polynomial support given a coroparepresented
game. In fact, we show that any CE computed by our algorithmesponds to a
basic feasible solution of the linear feasibility programattdefines CE, and is thus
an extreme point of the set of CE of the game.

Since Papadimitriou and Roughgarden [2008] proposed tlies&ld Against
Hope algorithm for computing a CE, researchers have prapalgmrithms for re-
lated problems that used a similar approach (which we calBifipsoid Against
Hope approach): first solving an infeasible LP using thepgtlid method with
some separation oracle, then arguing that the LP formeddgultting planes is
also infeasible, and finally solving the dual of the lattelypomial-sized LP. For
example, Hart and Mansour [2010] considered the settingevlach player ini-
tially knows only her own utility function, and proposed ammmunication proce-
dure that finds a CE with polynomial communication complexising a straight-
forward adaptation of the Ellipsoid Against Hope algorithduang and Von Sten-
gel [2008] proposed a polynomial-time algorithm for conipgta extensive-form
correlated equilibrium (EFCE) [von Stengel and Forges 8208 solution concept
for extensive-form games, by applying the Ellipsoid Agaidepe approach to the
LP formulation of EFCE. For both algorithms, the separaticercle outputs a mix-
ture of the original constraints, and hence the flaws of thipdelid Against Hope
algorithm pointed out by Stein et al. [2010] also apply. Wevgkhat our techniques
can be adapted to these two algorithms, yielding in bothscasact solutions with
polynomial-sized supports. In particular, we replace thgimal separation oracles
with “purified” versions that output cutting planes corresgding to the original
constraints, which ensures that the resulting algorithwogdethe numerical issues.

The rest of the chapter is organized as follows. We start Withic defini-
tions and notation in Section 7.2. In Section 7.3 we summadPapadimitriou and
Roughgarden’s Ellipsoid Against Hope algorithm. In Setfio4 we describe our

180

algorithm and prove its correctness. In Sections 7.5 anavé.@escribe our fixes
to Hart and Mansour’'s [2010] and Huang and Von Stengel’s §2@0gorithms
respectively, and Section 7.7 concludes.

This chapter is based on published joint work with Kevin losyBrown [2011].
New material that does not appear in [Jiang and Leyton-Br@®@i1] includes
Sections 7.5 and 7.6.

7.2 Preliminaries

In this chapter and Chapter 8 we largely follow the notatidriPapadimitriou
[2005] and Papadimitriou and Roughgarden [2008], whichleome standard
notation for the literature on CE computation. The notatiwrslightly differ-
ent from the one we used in the previous (AGG-specific) cliapt€onsider a
simultaneous-move game withplayers. Denote a playqy, and playem’s set of
pure strategies (i.e., actionS). Letm= max, |Sy|. Denote a pure strategy profile
S=(s1,...,%) € S with s, being playerp’s pure strategy. Denote by, the set
of partial pure strategy profiles of the players other thaRlayerp’s utility under
pure strategy profilsis uf. We assume that utilities are nonnegative integers (but
results in this chapter can be straightforwardly adaptedttonal utilities). Denote
the largest utility of the game as

A correlated distributionis a probability distribution over pure strategy pro-
files, represented by a vectere RM, whereM = MplSpl- Thenxs is the proba-
bility of pure strategy profiles under the distributiorx. A correlated distribution
X is aproduct distributionwhen it can be achieved by each playerandomizing
independently over her actions according to some distob®, i.e.,xs = |‘|px§p.
Such a product distribution is also known as a mixed-styafegfile, with each
player p playing the mixed strategy’.

Throughout the paper we assume that a game is given in a egpaéion satis-
fying two properties, following Papadimitriou and Rougtdgn [2008]:

e polynomial type recall from Section 2.1.1 that this means the number of
players and the number of actions for each player are boumgedlynomi-
als in the size of the representation.

e the polynomial expectation propertyve have access to an algorithm that

181

computes the expected utility of any playeunder any product distribution
X, i.e., zsesugxs, in time polynomial in the size of the representation.

Definition 7.2.1. A correlated distribution x is @orrelated equilibriun{CE) if it
satisfies the followingncentive constraintsfor each player p and each pair of her
actionsije S,
; [ug — ulxs > O, (7.2.1)
S€S p

where the subscript “is” (respectively “js”) denotes the naustrategy profile in
which player p plays i (respectively j) and the other playglsy according to the
partial profile se S_p.

We write these incentive constraints in matrix formas> 0. ThusU is an
N x M matrix, whereN = 5 , |Sp|2. The rows ofU, corresponding to the left-hand
sides of the constraints (7.2.1), are indexed(pyi, j) wherep is a player and
i,] €S are a pair ofp's actions. Denote bys the column olU corresponding to
pure strategy profile. These incentive constraints, together with the condsain

x>0, Xs=1, (7.2.2)
2

which ensure that is a probability distribution, form a linear feasibility ggram
that defines the set of CE. The largest valudiis at mostu.

We define thesupportof a correlated equilibriunx as the set of pure strategy
profiles assigned positive probability lxyy Germano and Lugosi [2007] showed
that for anyn-player game, there always exists a correlated equilibritith sup-
port size atmost &y ;|Sp|(|Sp| —1) =N-+1—-3 ,|Sy|. Intuitively, such correlated
equilibria are basic feasible solutions of the linear fiedisy program for CE, i.e.,
vertices of the polyhedron defining the feasible region.tl&rmore, these basic
feasible solutions involve only rational numbers for gaméth rational payoffs
(see e.g. Lemma 6.2.4 of [Grotschel et al., 1988]).

7.3 The Ellipsoid Against Hope Algorithm

In this section, we summarize Papadimitriou and Roughgesd2008] Ellipsoid
Against Hope algorithm for finding a sample CE, which can bensas an effi-

182

ciently constructive version of earlier proofs [Hart anch®eidler, 1989, Myer-
son, 1997, Nau and McCardle, 1990] of the existence of CE. Weencentrate
on the main algorithm and only briefly point out the numerisalies discussed at
length by both Papadimitriou and Roughgarden [2008] anih &teal. [2010], as
our analysis will ultimately sidestep these issues.

Papadimitriou and Roughgarden’s approach considersrtearlprogram

mangxs (P)

S
Ux>0, x>0,

which is modified from the linear feasibility program for CE keplacing the con-
straint 5 .sXs = 1 from (7.2.2) with the maximization objective P) either has
x = 0 as its optimal solution or is unbounded; in the latter céadng a feasible
solution and scaling it to be a distribution yields a conedeequilibrium. Thus one
way to prove the existence of CE is to show the infeasibilftthe dual problem

The Ellipsoid Against Hope algorithm uses the following hem versions of
which were also used by Nau and McCardle [1990] and Myers8a1]L

Lemma 7.3.1([Papadimitriou and Roughgarden, 2008fr every dual vector ¥

0, there exists a product distribution x such that™u= 0. Furthermore there exists
an algorithm that given any ¥ 0, computes the corresponding x (represented by
xt,...,x") in time polynomial in n and m.

We will not discuss the details of this algorithm; we will gnieed the facts
that the resultings is a product distribution and can be computed in polynomial
time. Note also that the resultingis symmetric ify is symmetric. Lemma 7.3.1
implies that the dual problenD] is infeasible (and therefore a CE must exist):
xUTy is a convex combination of the left hand sides of the rows efahal, and
for any feasibley the result must be less than or equa-b.

The Ellipsoid Against Hope algorithm runs the ellipsoidalthm on the dual
(D), with the algorithm from Lemma 7.3.1 as separation oragldch we call the

183

the Product Separation Oracle. At each step of the ellipsigidrithm, the separa-
tion oracle is given a dual vectgt). The oracle then generates the corresponding
product distribution") and indicates to the ellipsoid algorithm tHat)u T)y < —1
is violated byy"). The ellipsoid algorithm will stop after a polynomial nurmtu
steps and determine that the program is infeasible XUs# the matrix whose rows
are the generated product distributiofs, ..., x(1).

Consider the linear program

XUTly<-1, y>0, (D))

and observe that the rows pfUT]y < —1 are the cuts generated by the ellipsoid
method. If we apply the same ellipsoid method®)(and use a separation oracle
that returns the cut’UTy < —1 given queryy(!), the ellipsoid algorithm would
go through the same sequence of queyiesand cutting planexUTy < —1 and
return infeasible. Presuming that numerical problems daarise? we will find
that ') is infeasible. This implies that its du@/ X"]a > 0, a > 0 is unbounded
and has polynomial size, and thus can be solved for a noneasiblea. We can
thus scaler to obtain a probability distribution. We then observe tatr satisfies
the incentive constraints (7.2.1) and the probabilityribigtion constraints (7.2.2)
and is therefore a correlated equilibrium. The distributio’ a is the mixture of
product distributions<V, . .., x()) with weightsa, and thus can be represented in
polynomial space and can be efficiently sampled from.

One issue remains. Although the matdX)T is polynomial sized, computing
it using matrix multiplication would involve an exponentraumber of operations.
On the other hand, entries U are differences between expected utilities that
arise under product distributions. Since we have assunadha game represen-

4Since each row of[f)'s constraint matrixXUT may require more bits to represent than any
row of the constraint matrix) T for (D), running the ellipsoid algorithm oriX) with the original
bounding ball and volume lower bound fdd) would not be sound, and as a resulX)is not
guaranteed to be infeasible. Indeed, Stein et al. [2010jvetichat when running the algorithm
on their symmetric game exampl®'j would remain feasible, and thus the output of the algorithm
would not be an exact CE. Furthermore, since the only CE oftrae that is a mixture of symmetric
product distributions is irrational, there is no way to feedhis issue without breaking at least one
of the symmetry and product distribution properties of thigpgoid Against Hope algorithm. For
more on these issues and possible ways to address theng pesaBapadimitriou and Roughgarden
[2008, 2010], Stein et al. [2010].

184

tation admits a polynomial-time algorithm for computingckiexpected utilities,
XUT can be computed in polynomial time.

Lemma 7.3.2 ([Papadimitriou and Roughgarden, 2008])here exists an algo-
rithm that given a game representation with polynomial tgoel satisfying the
polynomial expectation property, and given an arbitranpguct distribution Xx,
computes xU in polynomial time. As a result, XUcan be computed in poly-
nomial time.

7.4 Our Algorithm

In this section we present our modification of the Ellipsogbfst Hope algorithm,
and prove that it computes exact CE. There are two key diftere between our
approach and the original algorithm for computing apprateCE.

1. Our modified separation oracle produces pure-strategfjleocuts;

2. The algorithm is simplified, no longer requiring a speni@chanism to deal
with numerical issues (because pure-strategy-profile @ande represented
directly as rows ofD)’s constraint matrix).

7.4.1 The Purified Separation Oracle

We start with a “purified” version of Lemma 7.3.1.

Lemma 7.4.1. Given any dual vector ¥ 0, there exists a pure strategy profile s
such that(Us) Ty > 0.

Proof. Recall that Lemma 7.3.1 states that given dual vegiarO, a product dis-

tribution x can be computed in polynomial time such tkat'y = 0. Sincex{U Ty]

is a convex combination of the entries of the vedidry, there must exist some
nonnegative entry of) Ty. In other words, there exists a pure strategy prafile
such thatUg)Ty > xUTy = 0. O

The proof of Lemma 7.4.1 is a straightforward applicatiorthaf probabilistic
method: sinceU Ty is the expected value ¢f)s)"y under distributiorx, which we
denoteEs«[(Us)Ty], the nonnegativity of this expectation implies the existeof

185

somes such that(Us)"y > 0. Like many other probabilistic proofs, this proof is
not efficiently constructive; note that there are an exptiaenumber of possible
pure strategy profiles.

It turns out that for game representations with polynomjpktand satisfying
the polynomial expectation property, an approprstan indeed be identified in
polynomial time. Our approach can be seen as derandomikmgrbbabilistic
proof using the method of conditional probabilities [Esdéind Selfridge, 1973,
Raghavan, 1988, Spencer, 1994]. At a high level, for eagyeplaour algorithm
picks a pure strategsy, such that the conditional expectation(bk) Ty given the
choices so far remains nonnegative. This requires us to gtarthe conditional
expectations, but this can be done efficiently using the epeutility subroutine
guaranteed by the polynomial expectation property.

Lemma 7.4.2. There exists a polynomial-time algorithm that given

e an instance of a game in a representation satisfying polyaldype and the
polynomial expectation property,

e a polynomial-time subroutine for computing expectedtytiinder any prod-
uct distribution (as guaranteed by the polynomial expeéateproperty), and

e adual vector y> 0,
finds a pure strategy profiles S such thatUs)Ty > 0.

Proof. Given a product distributiorx, let x, ,s,) be the product distribution in
which playerp plays s, and all other players play according xo Sincex is a
product distributionx,_,s.\U Ty is the conditional expectation ¢fs) "y given that
p playssyp, and furthermore we have for amy

UTy=Y [x(p%p)uTy} X2 (7.4.1)
Sp
SincexP is a distribution, the right hand side of (7.4.1) is a convembination

and thus there must exist an actigne S, such thatx,,s)UTy > xUTy > 0.
Sincexp-s,) is a product distribution, this process can be repeatedaftin player

186

Algorithm 5 Computes a pure strategy profisuch thatUs) Ty > 0.

1. Giveny > 0, identify a product distribution satisfyingxUTy = 0, using the
algorithm described in Lemma 7.3.1.

2. Sequentially for each playgre {1,...,n},

(a) iterate through actiors € S, and computex(pﬁsp)UT using the algo-
rithm described in Lemma 7.3.2, until we find an actgine S, such

that | x(p_,5,UT |y > 0.

(b) setxto bex porsy)-

3. The resulting« corresponds to a pure strategy profiléutputs.

to yield a pure strategy profilesuch thatUs) "y > xUTy > 0. This is formalized
in Algorithm 5.

We now consider the running time of Algorithm 5. We obsenat #remains
a product distribution throughout the algorithm and carstbe represented by
its marginalsx?,...,x", requiring only polynomial space. Due to the polynomial
expectation property, the algorithm described in Lemma4s3polynomial, which
implies that in Step 2a, foreash € S, x(p_>sp)UT can be computed in polynomial
time. Since Step 2a requires at m{&§ such computations, and since polynomial
type implies thah and|S,| are polynomial in the input size, the algorithm runs in
polynomial time. O

A straightforward corollary is the following:

Corollary 7.4.3. Algorithm 5 can be used as a separation oracle for the dual LP
(D) in the Ellipsoid Against Hope algorithm: for each query gojn the oracle
computes the corresponding pure-strategy profile s acogrtth Algorithm 5 and
returns the half spacéUs)"y < —1. We call this the Purified Separation Oracle.
This separation oracle has the following properties:

e Each returned half space is one of the constraint$.

e Since Algorithm 5 iterates through the players sequentidlie generated

187

pure-strategy profiles can be asymmetric even for symngarnoes and sym-
metric y.

e Since a pure-strategy profile is a special case of a produstriiuition, the
resulting pure-strategy profile s also satisfies Lemma 78ith x being the
unit vector corresponding to s.

7.4.2 The Simplified Ellipsoid Against Hope Algorithm

We now modify the Ellipsoid Against Hope Algorithm by repiag the Product
Separation Oracle with our Purified Separation Oracle. Thesrof X in (D)
become unit vectors corresponding to the pure-strategilesaenerated by the
oracle. Thus, we can writé) as

UHTy<-1, y>0 (D")

where the matrix)’ = UXT consists of the columnisg;, that correspond to pure-
strategy profiles) generated by the separation oracle. Note that each carmistrai
of (D”) is also one of the constraints dd), and as a result neither the maximum
value of the coefficients nor the right-hand sides @f)(are greater than inD).
Therefore, a starting ball and volume lower bound that atiel ¥ar a run of the
ellipsoid method onD) is also valid for D”). We thus avoid the precision issues
faced by the Ellipsoid Against Hope algorithm, and it is sidfint to use standard
values for the initial radius and volume lower bound, anddsad perturbation
methods for dealing with non-full-dimensional solutioriBhe resulting CE is a
mixture over a polynomial number of pure strategy profileg. 64 make a further
conceptual simplification of the algorithm: instead of gsk as in the Ellipsoid
Against Hope algorithm, we can directly treat the generatae-strategy profiles
as columns o), and usaJ’ in place ofUuXT.

We now formally state and prove our result. Note that altltowg only briefly
discussed the way numerical issues are addressed in theabEdlipsoid Against
Hope algorithm in Section 7.3, we do go into detail about haw algorithm en-
sures its own numerical accuracy. Nevertheless that taskrgaratively easy,
as it is sufficient for us to apply standard techniques froettieory of the ellip-

188

Algorithm 6 Computes an exact rational CE given a game representatisfysey
polynomial type and the polynomial expectation property.

1. Apply the ellipsoid method tdX), using the Purified Separation Oracle, a
starting ball with radius oR = u™’ centered at 0, and stopping when the
volume of the ellipsoid is below = anu~™°, whereay is the volume of
theN-dimensional unit ball.

2. Form the matri)” whose columns are tHd,y),...,Uy, generated by the
separation oracle during the run of the ellipsoid method.

3. Compute a basic feasible solutigof the linear feasibility program
Ux>0 x>0, 1™X =1, (P*)

by applying the ellipsoid method on the explicitly reprasenP*) and re-
covering a basis using, e.g., Algorithm 4.2 of Dantzig andf&[2003].

4. Outputx ands,...,sb), interpreted as a distribution over pure-strategy
profiless ..., s) with probabilitiesx .

soid method. Our analysis makes use of the following lemma iGrotschel et al.
[1988].

Lemma 7.4.4(Lemma 6.2.6, [Grotschel et al., 1988 et P= {y € RN|Ay < b}
be a full-dimensional polyhedron defined by the system afuimldies, with the
encoding length of each inequality at mgst Then P contains a ball with radius
2-™N% Moreover, this ball is contained in the ball with radiag*¢ centered at
0.

We note that the only restriction dhis full dimensionality; we do not need to
assume thaP is bounded, or thah has full row rank.

Theorem 7.4.5.Given a game representation with polynomial type and sarigf
the polynomial expectation property, Algorithm 6 compuatesxact and rational
CE with support size at mostt 3 ,|S[(|Sy| — 1) in polynomial time.

Proof. We begin by proving the correctness of the algorithm. Fisst,will show
that the ellipsoid method in Step 1 is a valid run fox)(which certifies that the

189

feasible set ofD) is either empty or not full dimensional. Suppose the contrary,
i.e., the feasible set oD is feasible and full dimensional. Since the encoding
length of each constraint oDj is at mostNlog,u, then by Lemma 7.4.4, the
feasible set must contain a ball with radius™’, and thus volumeryu~"N°, and
furthermore this ball must be contained in the ball with uadi®N’ centered at 0,
which is the initial ball of our ellipsoid method in Step 1 n8é at the end of Step 1
the ellipsoid method certifies that the intersection of thtal ball and the feasible
set has volume less than= ay u‘7N5, we reach a contradiction and therefore either
the LP) must be infeasible or the feasible set must not be full dswral. Since
the largest magnitude of the coefficients '] is alsou, Step 1 is also a valid run
for (D”) and therefore eithel’) must be infeasible or the feasible set BY'}
must not be full dimensional.

Of course a non-full-dimensional feasible set is not sudfitifor our purpose;
we now perturbD”) to get an infeasible LP. Fig > 1. Perturbing the constraints
(U"Ty < —1 of (D”) by multiplying the RHS byp, we get the LP:

min0 (7.4.2)
U)Ty<—p1
y=>0.
We claim that (7.4.2) is infeasible. Suppose otherwisen there exists g € RN

such thay > 0 and(U’)Ty < —p1. Lety € RN be a vector such thatQy, —y; <
pﬁ for all j. Theny > 0, and each componesbf U7y satisfies

p-1 '
(U)Ty < (UYTy+ ~Nu > 1U¢]
]

<-p+p-1
<-1

Thus, any sucly is feasible for D”). However, the set of all such vectoysis a

5Since the ellipsoid method relies on shrinking the volumehef candidate set, it is not able
to distinguish between non-full-dimensional feasiblessmtd infeasibility. We overcome this by
perturbing the LP after the ellipsoid method has been aghptia alternate method perturbs the LP
in advance to ensure the feasible set is either empty orifakdsional.

190

full-dimensional cube. This contradicts the fact tHaf)is either infeasible or not
full dimensional, and therefore (7.4.2) is infeasible. STimeans that (7.4.2)’s dual

maxpl' X (7.4.3)
U'x >0
X >0

is unbounded (since it is feasible, exy= 0). Then a nonzero feasible vectdiis
(after normalization) a distribution over the pure strgtpgpfiles corresponding to
columns ofJ’. Treating it as a sparse representation of a correlatedbdison x,
it satisfies the feasibility program for CE and is therefaneegact CE.

This CE is exact but its support size could be greater thary 1|S,|(|Sy| — 1)
(although as we argue below it is still polynomial). To getk @ith the required
support size, we notice that since (7.4.3) is unboundedagildle solution of the
bounded linear feasibility progranf{) is a CE. Note thatR*) has the same set
of constraints as the feasibility program for CE defined b2.@) and (7.2.2), and
that for each playep and actiori € S;,, the incentive constrairiip, i,i) corresponds
to deviating from action to itself and is therefore redundant. Thus the number
of bounding constraints ofP() is at most 1+ ¥ ,|Sp[(|Sp| — 1) and therefore a
basic feasible solutio’ of (P*) will have the required support size. Since the
coefficients and right-hand sides & are rational, then (by e.g. Lemma 6.2.4
of Grotschel et al. [1988]) its basic feasible solutidnis also rational and can be
represented using at most2u bits.

We now consider the running time of the algorithm. Since Stepa standard
run of the ellipsoid method, it terminates in a polynomiater of iterations. For
example if we use the ellipsoid algorithm presented in Teen8.2.1 of Grotschel
et al. [1988], then by Lemma 3.2.10 of Grotschel et al. [198@ ratio between
volumes of successive ellipsoids (B, 1)/vol(Ex) < e ¥/N) with the volume
of the initial ellipsoid at mostiyRY and stopping when volume is below the

191

number of iterations is at most

5N [In(anRY) — Inv]
= 5N [5N*Inu+ 7N°Inu]
= O(N®Inu),

which is polynomial in the input size sinté=y , |Sp|2 is polynomial. Since each
call to the separation oracle takes polynomial time by Lenima2, Step 1 takes
polynomial time. L being polynomial also ensures th&] has polynomial size,
and thus a basic feasible solution can be found in polynotinied. O

We note that the estimates &andv (and thusL) can be improved, but our
main goal here is to prove that the running time of our alpamiis polynomial.

The reader may wonder how our algorithm would deal with Stead. [2010]'s
counterexample, a symmetric game in which the only CE thatimnvex combina-
tion of symmetric product distributions has irrational Ipabilities. Since we have
proved that our algorithm computes a rational CE as a comvmbiation of prod-
uct distributions, it must violate the symmetry propertydéed as we discussed in
Section 7.4.1, our Purified Separation Oracle can returmamtric cuts for sym-
metric games and symmetric queries, and thus for this gamast return at least
one asymmetric cut.

7.5 Uncoupled Dynamics with Polynomial
Communication Complexity

Hart and Mansour [2010] considered the setting where eagteplnitially knows
only her own utility function, and analyzed the communioatcomplexity for such
uncoupleddynamics to reach various equilibrium concepts. They useahtfor-
ward adaptation of Papadimitriou and Roughgarden’s Eldb#gainst Hope al-
gorithm to show that a CE can be reached using polynomial aamzation. The
recent discovery by Stein et al. [2010] of flaws of the ElligsAgainst Hope al-
gorithm imply that Hart and Mansour’s procedure as proposedld not reach
an exact CE. We show that our modified version of the Ellipgagainst Hope

192

algorithm can be straightforwardly adapted into a polyredrocommunication pro-
cedure for exact CE.

Formally, in Hart and Mansour’s setting, each playemitially knows only
her utility functionuP. No assumption is made on how the game is represented
and the cost of computation is of no concern; instead, wesfatuthe amount
of communication required to reach a CE. Hart and Mansoyfsaach used the
following property of the Product Separation Oracle (Lemfrial): giveny > 0,
the corresponding product distributisrdepends only oy and not on the utilities
of the game. Although generating the cutting plane requioesputingxU™ which
does depend on the utilities, each enfpyi, j) of the vectorxU™ depends only on
the utilities of playem.

We now describe Hart and Masour's procedure. A center ruathipsoid
Against Hope algorithm; when the Product Separation Orgelerates a product
distributionx, the center sends it to all players, and asks each play@compute
her segment of the vectot)T, i.e., entries(p,i, j) for all i, j € S, to send back
to the center. This exactly simulates the Ellipsoid Agalthgpe algorithm, and its
communication costs are those of sending the product lalisiohs to players and
each player sending back her partxof'.

This procedure can be modified to use the Purified Separatiaol®instead.
At Step 2a of the Purified Separation Oracle (Algorithm 5), dachs, € S,
the center sendx(pﬁsp) to all players and asks each to compute her segment of
x(pﬁsp)UT. After assembling the vectm(pﬁsp)UT from the segments, the center
checks Whethe[x(p_)Sp)UT} y > 0. We call the resulting modified version of Algo-
rithm 5 the Uncoupled Purified Separation Oracle. It is ghtiorward to see that
this exactly simulates the Purified Separation Oracle. Bhengunication costs are
those of the center sending the product distributions aagllyers sending back
segments ok(pﬁsp)UT. At mosty ,|S,| rounds of such exchange are required for
each call to the Purified Separation Oracle, therefore tia¢ donount of communi-
cation is polynomially bounded.

Corollary 7.5.1. Modify Hart and Mansour’s procedure by replacing its separa
tion oracle with the Uncoupled Purified Separation OraclbéeTesulting commu-
nication procedure reaches an exact CE while both the nurableits of communi-

193

cation required and the size of the support are polynomial andy ,|Sp|.

7.6 Computing Extensive-form Correlated Equilibria

Recently, von Stengel and Forges [2008] propasddnsive-form correlated equi-
librium (EFCE), a solution concept for extensive-form games thabsely related
to correlated equilibrium. Here we focus on the computatigmmoblem of find-
ing an EFCE and refer interested readers to von Stengel amgp$-¢2008] for
details on EFCE as a solution concept. Huang and Von Step@e8] described a
polynomial-time algorithm for computing sample extendiwen correlated equi-
libria. Their algorithm follows a very similar structure Bapadimitriou and Rough-
garden’s Ellipsoid Against Hope algorithm, and the protdguuinted out by Stein
et al. [2010] carry over. As a result, the algorithm can faifind an exact EFCE.
We extend our fix for Papadimitriou and Roughgarden’s HigsAgainst
Hope algorithm to Huang and Von Stengel’s algorithm, allayvit to compute an
exact EFCE with polynomial-sized support. We first give ehHigvel description
of Huang and Von Stengel’s algorithm, following Huang [2D2fLThe input of the
problem is am-player extensive-form game with perfect recall. Each aoninal
node of the game tree is a decision node for either one of e or Chance.
H denotes the set of information sets, &yddenotes the set of moves available
from h e H, andT denotes the set of terminal nodes. Due to the tree strucfure o
the extensive form, for each node there exists a unique paith the root of the
tree to that node. Letbe a pure-strategy profils{h) denotes the move at infor-
mation seh € H. Letzbe a distribution over the set of pure-strategy profiles. The
size ofzis exponential. Huang and Von Stengel [2008] showed zfimtan EFCE
if it satisfies a polynomial number of linear constraints,icthcan be written as
Az+Bv > 0 wherevis an auxiliary vector of polynomial size. They consideries t

6We assume that readers are familiar with the standard ctnoépxtensive form games, infor-
mation sets, perfect recall, and behavior strategies.

194

exponential-sized primal LP

maxz Z (7.6.1)

Az+Bv>0

z>0,
and its dual

Aly< -1 (7.6.2)
B'y=0
y>0

which has a polynomial number of variables and exponentiallyer of constraints.
The following is a key lemma:

Lemma 7.6.1.[Huang and Von Stengel, 2008] For ally 0 such that By = 0,
there exists a product distribution z such thAaZzy = 0.

Unlike the simultaneous-move game cadeging a product distribution (mixed-
strategy profile) does not imply that it can be concisely@spnted, as the number
of pure strategies for each player can be exponential. Rately thez constructed
by Lemma 7.6.1 corresponds tdahavior strategy profilewhich specifies a distri-
bution (denoted") over moves for each information det Formally, givenz" for
all h € H, the resulting distribution over pure-strategy profilegiien by

Vs, z= > p(t)x,
teT:t agrees withs

where we say agreeswith pure-strategy profils if all the moves by the players
on the path from the root tbare given bys, p(t) is the product of probabilities of
moves by Chance along the path from the rodt @ndx; = [n precedes zg(h) is the
product of probabilities of moves by the players along thia fieom the root tat.
Here by ‘h precedes” we mean that is an information set on the path from the
root tot. Note that perfect recall ensures that an informatiorhsaipears at most
once along the path from the root to Such a behavior strategy profile requires

195

only a polynomial number of values to specify. Givwgrthe corresponding can
be computed in polynomial time.

By the same argument as for the Ellipsoid Against Hope algori Lemma
7.6.1 implies the infeasibility of (7.6.2), and can be used aeparation oracle for a
ellipsoid method on (7.6.2). In order to generate the ogtpilane[zA' Jy < —1, the
oracle needs to compurd’ whose inner dimensions are exponential. It turned out
thatzA" can be formulated as expected utility computations whiechlm carried
out in polynomial time. Huang and Von Stengel’s algorithmsiproceeds similarly
as in the Ellipsoid Against Hope algorithm to produce a telessolution to (7.6.1),
which can be scaled to be an EFCE.

By the same argument as our fix of the Ellipsoid Against Hogerghm, in
order to overcome the problems pointed out by Stein et al.QR is sufficient to
construct a Purified Separation Oracle that giverca0 such thaB™y = 0, com-
putes a pure-strategy profilesuch that{As)Ty > 0. We construct such an oracle
using a similar application of the method of conditionallmabilities. For a behav-
ior strategy profilez, an information seh, and a movel € C;, definezy,_,q) to be
the behavior strategy profile that is identicaktexcept at information set, where
the corresponding player deterministically choodésstead. Our Purified Separa-
tion Oracle starts with the behavior strategy profile carcserd by Lemma 7.6.1,
and uses the same algorithm as Algorithm 5, except thatadsi€going through
players in step 2a, we go through information sets sequigntiad for each infor-
mation set we iterate througly,_,q) until we find ad* such thal[z(hﬁd*)AT]y > 0.

To show that our algorithm is correct, we use the followingea:

Lemma 7.6.2. Given a behavior strategy profile z, for each informationtset

2= Zn.a)F),

deC,
where g is the probability of choosing d at h prescribed by z.

Proof. Recall that
z= Y pix

teT:t agrees withs

wherex; = [N precedes z's‘(h). Since the moves along the path tare uniquely deter-

196

mined byt, x is fully specified by the behavior strategies and does natigpns.
We can write this in matrix form as= Fx, with x € RITl. Letx, .q) € R/ be the
vector induced by behavior strategy profilg .q). We then havey,_,q) = FXh_q)-
Furthermore, we observe that for hjl

X="5 Xnsa)Z-
deC,
(It is straightforward to verify the above by considering tlerminal nodes for
which h precede$ and then the other terminal nodes.) We thus have

z=Fx=F ;X(hﬁd)zg = ;Z(hﬁd)zga
de de

which is the required equality. O

The correctness and the polynomial running time of our @lgor for Purified
Separation Oracle then follow by the same argument as in rbef pf Lemma
7.4.2. After modifying Huang and Von Stengel’s algorithmrbplacing their sepa-
ration oracle with our Purified Separation Oracle, the tegyhlgorithm computes
in polynomial time an exact EFCE that is a mixture of a polyrimumber of
pure-strategy profiles.

Corollary 7.6.3. Given a game in extensive form, an exact EFCE with polynemial
sized support can be computed in polynomial time.

7.7 Conclusion

We have proposed a polynomial-time algorithm, a variant ayfdelimitriou and
Roughgarden’s Ellipsoid Against Hope approach, for comnguan exact CE given
a game representation with polynomial type and satisfyliegoblynomial expecta-
tion property. A key component of our approach is a derandatioin of Papadim-
itriou and Roughgarden’s separation oracle using the ndethoonditional proba-
bilities, yielding a polynomial-time separation oraclatloutputs cuts correspond-
ing to pure-strategy profiles. Our approach is then spam@u ftealing with the
numerical precision issues that were a major focus of puasvapproaches, and the

197

algorithm is considerably simplified as a result. Furtheemdhe correlated equi-
libria returned by our algorithm have polynomial-sized pops. We expect these
properties of our algorithm to be independently interggtbeyond its usefulness in
resolving the recent uncertainty about the computatiooadptexity of identifying
exact CE. For example, we show that our techniques can béeateptwo exist-
ing algorithms that are based on the Ellipsoid Against Hgper@ach, Hart and
Mansour’s [2010] CE procedure with polynomial communigatcomplexity and
Huang and Von Stengel’s [2008] polynomial-time algorithar &xtensive-form
correlated equilibria, yielding in both cases exact sohgiwith polynomial-sized
supports.

Our algorithm has additional practical benefits: the rasgiltutting planes are
deeper cuts than those produced by the original oracldltiresin a smaller num-
ber of iterations required to reach convergence, albelteatbst of more work per
iteration. It is also possible to return cuts correspondm@ure strategy profiles
with (e.g.) good social welfare, yielding a heuristic metHor generating corre-
lated equilibria with good social welfare. However, rededim Section 2.2.7 that
finding a CE with optimal social welfare is generally NP-h&osdmany game rep-
resentations [Papadimitriou and Roughgarden, 2008]. kp€en 8 we analyze the
optimal CE problem using a somewhat different approach.

198

Chapter 8

A General Framework for
Computing Optimal Correlated
Equilibria in Compact Games

8.1 Introduction

In this chapter wecontinue to focus on correlated equilibrium (CE). We hawnse
from the previous chapter and its related literature [Jeamd)Leyton-Brown, 2011,
Papadimitriou and Roughgarden, 2008] that finding a samples@actable, even
for compactly represented games. However, since in gettered can be an infi-
nite number of CE even in a generic game, finding an arbitragyis of limited
value. Instead, here we focus on the problem of computingraleted equilib-
rium that optimizes some objective. In particular we coesitvo kinds of objec-
tives: (1) A linear function of players’ expected utilitieBor example, computing
the best (or worst) social welfare corresponds to maxirgiZor minimizing) the
sum of players’ utilities, respectively. (2) Max-min weaka maximizing the util-
ity of the worst-off player. (More generally, maximizingetiminimum of a set of
linear functions of players’ expected utilities.) We arsaainterested in comput-

1This chapter is based on joint work with Kevin Leyton-Browkishorter version is published in
the Proceedings of the Seventh Workshop on Internet andaddleaconomics (WINE), 2011.

199

ing optimal coarse correlated equilibrium (CCE) [Hanna@57]. Recall from Sec-
tion 2.2.7 that the empirical distribution of any no-extrregret learning dynamic
converges to the set of CCE, while the empirical distribuid no-internal-regret
learning dynamics converges to the set of CE. Thus, optireal @CE provide use-
ful bounds on the social welfare of the empirical distribog of these dynamics.
Optimal CE / CCE can also be used as bounds on optimal NE siBcan@ CCE
are both relaxations of NE. Hence they are also useful forpedimg (bounds on)
the price of anarchy and price of stability of a game. The lgmols of computing
optimal CE / CCE can be formulated as linear programs witbsspmolynomial in
the size of normal form. However, as with the rest of the #hese are interested
in the case when the input is a compactly-represented game.

We are particularly interested in the relationship betwtberoptimal CE/ CCE
problems and the problem of computing the optimal sociafaweloutcome (i.e.
strategy profile) of the game, which is exactly the optimalalovelfare CE prob-
lem without the incentive constraints. This is an instarfca lme of questions that
has received much interest from the algorithmic game theorgmunity: “How
does adding incentive constraints to an optimization gnobaffect its complex-
ity?” This question in the mechanism design setting is geshtane of the central
guestions of algorithmic mechanism design [Nisan and Ra2@®il]. Of course, a
more constrained problem can in general be computatioaabier than the relaxed
version of the problem. Nevertheless, results from conigiext Nash equilibria
and algorithmic mechanism design suggest that adiiogntive constraintso a
problem is unlikely to decrease its computational diffigulfhat is, when the op-
timal social welfare problem is hard, we tend also to expeat the optimal CE
problem will be hard as well. On the other hand, we are intece the other
direction: when it is the case for a class of games that thenapsocial welfare
problem can be efficiently computed, can the same structirexploited to effi-
ciently compute the optimal CE?

As mentioned in Section 2.2.7, Papadimitriou and Rougherafa008] consid-
ered the optimal linear objective CE problem and proved tafproblem is NP-
hard for many representations, while tractable for a coaplepresentations. We
now take a more in-depth look at this paper. In particula répresentations shown
to be NP-hard include graphical games, polymatrix gamescangestion games.

200

These hardness results, although nontrivial, are notisurgr the optimal social
welfare problem is already NP-hard for these represemtioOn the tractability
side, Papadimitriou and Roughgarden [2008] focused orabeec“reduced form”
representations, meaning representations for which #ast player-specific par-
titions of the strategy profile space into payoff-equivaleatcomes. They showed
that if a particulaiseparation problenis polynomial-time solvable, the optimal CE
problem is polynomial-time solvable as well. Finally, trehyowed that this separa-
tion problem is polynomial-time solvable for bounded-tvath graphical games,
symmetric games and anonymous games.

Perhaps most surprising and interesting it of Papadimitriou and Rough-
garden’s sufficient condition for tractability: their seg&on problem for an in-
stance of a reduced-form-based representation is edgentigivalent to solving
the optimal social welfare problem for an instance of thatesentation with the
same reduced form but possibly different payoffs. In otherds, if we have a
polynomial-time algorithm for the optimal social welfareoplem for a reduced-
form-based representation, we can turn that into a polyabtime algorithm for
the optimal social welfare CE problem. However, Papadimitand Roughgar-
den’s sufficient condition for tractability only applies teduced-form-based rep-
resentations. Their definition of reduced forms is unableaadle representations
that exploit linearity of utility, and in which the struceiof playerp’s utility func-
tion may depend on the action she chose. As a result, mangsamations do
not fall into this characterization, such as polymatrix gamcongestion games,
and action-graph games. Although the optimal CE problem#hiese representa-
tions are NP-hard in general, we are interested in identjfyractable subclasses
of games, and a sulfficient condition that applies to all regmé&ations would be
helpful.

In this chapter, we propose a different algorithmic apphnofr the optimal
CE problem that applies tall compact representations. By applying the ellipsoid
method to the dual of the LP for optimal CE, we show that the/mpmnial-time
solvability of what we call theleviation-adjusted social welfare problama suf-
ficient condition for the tractability of the optimal CE ptem. We also give a
sufficient condition for tractability of the optimal CCE fnlem: the polynomial-
time solvability of thecoarse deviation-adjusted social welfare probjemhnich we

201

show reduces to the deviation-adjusted social welfarel@nobOur algorithms are
instances of the black-box approach, with the requiredauthes being the com-
putations of the deviation-adjusted social welfare pnolded the coarse deviation-
adjusted social welfare problem, respectively. We show fbareduced-form-
based representations, the deviation-adjusted socidanggbroblem can be re-
duced to the separation problem of Papadimitriou and Raargleg [2008]. Thus
the class of reduced forms for which our problem is polyndstimae solvable con-
tains the class for which the separation problem is polyabtitne solvable. More
generally, we show that if a representation can be charaeteby “linear reduced
forms”, i.e. player-specific linear functions over padits, then for that represen-
tation, the deviation-adjusted social welfare problemizaneduced to the optimal
social welfare problem. As an example, we show that for geablpolymatrix
games on trees, optimal CE can be computed in polynomial t8Bneh games are
not captured by the reduced-form framewdrKhe key feature of these represen-
tations upon which our argument relies is that the parttitor playerp (which
characterize the structure of the utility function fordo not depend on the action
chosen byp.

On the other hand, representations like action-graph gamedscongestion
games havaction-specificstructure, and as a result the deviation-adjusted social
welfare problems and coarse deviation-adjusted socidbhreeproblems on these
representations are structured differently from the smoeding optimal social
welfare problems. Nevertheless, we are able to show a poliidime algorithm
for the optimal CCE problem osingleton congestion gamflgong et al., 2005],
a subclass of congestion games. We use a symmetrizatiomangio reduce the
optimal CCE problem to the coarse deviation-adjusted bagHare problem with
player-symmetric deviations, which can be solved usingradyc-programming
algorithm. This is an example where the optimal CCE problgitnadctable while
the complexity of the optimal CE problem is not yet known.

2|n a recent paper Kamisetty et al. [2011] has independentpqgsed an algorithm for optimal
CE in graphical polymatrix games on trees. They used a diftesipproach that is specific to graph-
ical games and graphical polymatrix games, and it is notais/iwhether their approach can be
extended to other classes of games.

202

8.2 Problem Formulation

We follow the notation of Chapter 7. Furthermore,.lét={1,...,n} be the set
of players. Letw be the vector of social welfare for each pure profile, that is
W= Y nes UP, with ws denoting the social welfare for pure profée

Throughout the chapter we assume that the game is given presentation
with polynomial type. Unlike in Chapter 7, here we do not assuhe existence of
a polynomial-time algorithm for expected utility.

8.2.1 Correlated Equilibrium

Correlated equilibrium (CE) is defined in Definition 7.2.1helTproblem of com-
puting a maximum social welfare CE can be formulated as the LP

maxw' x (P)
Ux>0

x>0

ZXS — 1
Se

Another objective of interest is the max-min welfare CE peatn computing
a CE that maximizes the utility of the worst-off player.

maxr (8.2.1)
szug >r Vp (8.2.2)
S
Ux>0
x>0

ZXS:].
sc

Another solution concept of interest ¢@arse correlated equilibriun(CCE).
Whereas CE requires that each player has no profitable eviaten if she takes
into account the signal she receives from the intermed@8E only requires that
each player has no profitableconditional deviation

203

Definition 8.2.1. A correlated distribution x is aoarse correlated equilibrium
(CCE) if it satisfies the following incentive constraintsr €ach player p and each
of his actions ¢ S,

(_ Z) S[ui‘;p —uly I%s ,>0. (8.2.3)
i,S_p)€

We write these incentive constraints in matrix formGs> 0. ThusC is an
(3p1Spl) x M matrix. By definition, a CE is also a CCE.

The problem of computing a maximum social welfare CCE carobmdlated
as the LP

maxw' x (CP)
Cx>0
x>0

Sgsxs =1

8.3 The Deviation-Adjusted Social Welfare Problem
Consider the dual ofR),

mint (D)
UTly+w<tl
y>0.

We label the(p,i, j)-th element ofy € RN (corresponding to rowp,i, j) of U)
asyfj. This is an LP with a polynomial number of variables and anoexmtial
number of constraints. Given a separation oracle, we cam $oin polynomial
time using the ellipsoid method. A separation oracle needetermine whether a
given (y,t) is feasible, and if not output a hyperplane that separatésfrom the
feasible set. We focus on a restricted form of separatioolesawhich outputs a
violated constraint for infeasible pointsSuch a separation oracle needs to solve

3This is a restriction because in general there exist sépgragperplanes other than the violated
constraints. For example as we saw in Chapter 7, Papadimiémd Roughgarden [2008]'s algo-

204

the following problem:

Problem 8.3.1. Given (y,t) with y > O, determine if there exists an s such that
(Us)Ty+ws > t; if so output such an s.

The left-hand-side expressidlls)Ty + ws is the social welfare as plus the
term (Us)Ty. Observe that thép,i, j)-th entry ofUs is u§ — U}Ds,p if sp=1i and
is zero otherwise. Thu@s)Ty = 3,5 jes, Ve | (ué’ - u}’sfp). We now reexpress
(Us)Ty +ws in terms ofdeviation-adjusted utilitiesind deviation-adjusted social

welfare

Definition 8.3.2. Given a game, and a vectoryRN such that y> 0, thedeviation-
adjusted utilityfor player p under pure profile s is

aR(y) =@+ Y 2 (L-up).
i€

The deviation-adjusted social welfarefig(y) = 5 ,05(y).

By construction, the deviation-adjusted social welfang(y)” = zpug +
SpTies, Y5, (ug— U}Ds,p> = (Us)Ty+ws. Therefore, Problem 8.3.1 is equivalent
to the followingdeviation-adjusted social welfare problem

Definition 8.3.3. For a game representation, thkeviation-adjusted social welfare
problemis the following: given an instance of the representation aational
vector (y,t) € QV+1 such that y> 0, determine if there exists an s such that the
deviation-adjusted social welfas(y) > t; if so output such an s.

Proposition 8.3.4. If the deviation-adjusted social welfare problem can beadl
in polynomial time for a game representation, then so camptblem of comput-
ing the maximum social welfare CE.

Proof. Recall that an algorithm for Problem 8.3.1 can be used asara#gm ora-
cle for (D). Then we can apply the ellipsoid method using the givenrilga for
the deviation-adjusted social welfare problem as a saparatacle. This solves

rithm for computing a sample CE uses a separation oraclettiputs a convex combination of the
constraints as a separating hyperplane.

205

(D) in polynomial time. By LP duality, the optimal objective (D) is the so-

cial welfare of the optimal CE. The cutting planes generatedng the ellipsoid

method can then be used to compute such a CE with polynom&d-support.
O

We observe that our approach has certain similarities tdthgsoid Against
Hope algorithm and its variants discussed in Chapter 7: @yotioaches are black-
box approaches based on LP duality formulations of the otispeproblems, and
both make use of the ellipsoid method to overcome the exjahaize of the LPs.
On the other hand, due to the different LP formulations ofsample CE prob-
lem and the optimal CE problem respectively, the two apgreacequire different
separation oracles, which leads to the different requirgsnen the subroutines
provided by the representation.

Let us consider interpretations of the dual varialylead the deviation-adjusted
social welfare of a game. The du@)can be rewritten as mjpomaxWs(y). By
weak duality, for a givery > 0 the maximum deviation-adjusted social welfare
maxWs(Y) is an upper bound on the maximum social welfare CE. So thedfsk
the dual D) is to findy such that the resulting maximum deviation-adjusted social
welfare gives the tightest bourfd At optimum, y corresponds to the concept of
“shadow prices” from optimization theory; that yﬁ equals the rate of change in
the social welfare objective when the constrdipti, j) is relaxed infinitesimally.
Compared to the maximum social welfare CE problem, the maxirdeviation-
adjusted social welfare problem replaces the incentivestcaimts with a set of
additional penalties or rewards. Specifically, we can pretly as a set of nonnega-
tive prices, one for each incentive constrdipti, j) of (P). At strategy profiles, for
each incentive constraifp,i, j) we impose a penalty equaly{} times the amount
the constraintp,i, j) is violated bys. Note that the penalty can be negative, and is
zero ifsp # i. Thenws(y) is equal to the social welfare of the modified game.

Practical computation. We have seen from Chapters 2, 3 and 7 that the prob-
lem of computing the expected utility given a mixed stratgggfile has been
established as an important subproblem for both the samfs@HNproblem and

4An equivalent perspective is to viewas Lagrange multipliers, and the optimal deviation-
adjusted SW problem as the Lagrangian relaxatioPpfyiven the multipliersy.

206

the sample CE problem, both in theory and in practice. Owite# this chapter
suggest that the deviation-adjusted social welfare prolideof similar importance
to the optimal CE problem. This connection is more than thieal: our algo-
rithmic approach can be turned into a practical method fanpating optimal CE.
In particular, although it makes use of the ellipsoid methad can easily substi-
tute a more practical method, such as simplex with columrigdion. In contrast,
Papadimitriou and Roughgarden [2008]'s algorithmic applofor reduced forms
makes two nested applications of the ellipsoid method, atess likely to be prac-
tical. Furthermore, even for representations without gmamial-time algorithm
for the deviation-adjusted social welfare problem, a psingj direction would be
to formulate the deviation-adjusted social welfare probkes a integer program or
constraint program and solve using e.g. CPLEX.

8.3.1 The Weighted Deviation-Adjusted Social Welfare Prolem

For the max-min welfare CE problem, we can form the dual &.@9,

mint (8.3.1)
UTy+ > vpuP <t1 (8.3.2)
P
y>0,v>0

dVvp=1
P

This is again an LP with polynomial number of variables angaogential number

of constraints; specifically, block (8.3.2) is exponentlale observe that (8.3.2) is
similar to the corresponding block i, except for the weighted suff, v uP in-
stead of the social welfasg. Thus, in order to express the left-hand side of (8.3.2)
we need notions slightly different from those given in Defon 8.3.2, which we
call weighted deviation-adjusted utiligndweighted deviation-adjusted social wel-
fare.

Definition 8.3.5. Given a game, a vector ¢ RN such that y> 0, and a vector
v e R" such that v> 0 and ,vp = 1, theweighted deviation-adjusted utilitipr

207

player p under pure profile s is
GB(y,v) =vpul + 3 ¥& (Ul —ufy).
j€
The weighted deviation-adjusted social welfaréigy,v) = zpﬂé’ (Y, V).

Following analysis similar to that given above, the follagiproblem serves as
a separation oracle of LP (8.3.1).

Definition 8.3.6. For a game representation, thweeighted deviation-adjusted so-
cial welfare problems the following: given an instance of the representatiamg a
rational vector(y,v,t) € QN*"*1 such that y> 0, v> 0 and § ,vp = 1, determine

if there exists an s such that the deviation-adjusted sovedarews(y) > t; if so
output such an s.

Proposition 8.3.7. If the weighted deviation-adjusted social welfare probleam
be solved in polynomial time for a game representation, therproblem of com-
puting the max-min welfare CE is in polynomial time for thépresentation.

It is straightforward to see that the deviation-adjustediadavelfare problem
reduces to the weighted deviation-adjusted social weffesblem. In all represen-
tations that we consider in this chapter, the weighted amekighted versions have
the same structure and thus the same complexity.

8.3.2 The Coarse Deviation-Adjusted Social Welfare Probla

For the optimal social welfare CCE problem, we can form thal déi (CP)

mint (8.3.3)
Cly+w<tl
y>0

Definition 8.3.8. We label the(p, j)-th element of y asJPy Given a game, and a
vector ye R2»/S| such that y> 0, the coarse deviation-adjusted utilifgr player

208

p under pure profile s is

@R(y) =+ 3 Yl —uf).
j€

The coarse deviation-adjusted social welfargvigy) =5 a(y).

Proposition 8.3.9. If the coarse deviation-adjusted social welfare problem ba
solved in polynomial time for a game representation, thengioblem of comput-
ing the maximum social welfare CCE is in polynomial time Fis tepresentation.

The coarse deviation-adjusted social welfare problemaesito the deviation-
adjusted social welfare problem. To see this, given an inpatory for the coarse
deviation-adjusted social welfare problem, we can coostan input vector/ €
QN for the deviation-adjusted social welfare problem with= yP for all pe .4’
andi, j € S,.

8.4 The Deviation-Adjusted Social Welfare Problem for
Specific Representations

In this section we study the deviation-adjusted social avelproblem and its vari-
ants on specific representations. Depending on the repatieen the deviation-
adjusted social welfare problem is not always solvable ityrmmmmial time. In-

deed, Papadimitriou and Roughgarden [2008] showed thanfory representa-
tions the problem of optimal CE is NP-hard. Nevertheless,sf@h representa-
tions we can often identify tractable subclasses of gameswilV argue that the

deviation-adjusted social welfare problem is a more udefuhulation for identify-

ing tractable classes of games than the separation problkenulation of Papadim-
itriou and Roughgarden [2008], as the latter only appliesethuiced-form-based
representations.

8.4.1 Reduced Forms

Papadimitriou and Roughgarden [2008] gave the followirduoed form charac-
terization of representations.

209

Definition 8.4.1([Papadimitriou and Roughgarden, 2008)onsider a game G
(A {Sp}per s {UPtper). For p=1,...,n, let B, = {C}...Cy’} be a partition of
S_pinto ry classes. The se¥ = {Py,...,P,} of partitions is areduced formof G

if u§ = uf whenever (1) s=s|, and (2) both s, and $, belong to the same class
in Py. Thesizeof a reduced form is the number of classes in the partitions pl
the bits required to specify a payoff value for each tugek, /) wherel < p <n,
1<k<rpandlcS,.

Intuitively, the reduced form imposes the condition tip&t utility for choos-
ing an actions, depends only on whichlassin the partitionP, the profile of the
others’ actions belongs to. Papadimitriou and Roughgaf@ea8] showed that
several compact representations such as graphical gardesnanymous games
have natural reduced forms whose sizes are (roughly) eguilattsizes of the rep-
resentation. We say such a compact representation kasase reduced form
Intuitively, such a reduced form describes the structurthefgame’s utility func-
tions.

Example 8.4.2. Recall from Section 2.1.1 that a graphical game [Kearns et al
2001] is associated with a graph/”, E), such that player p’s utility depends only
on her action and the actions of her neighbors in the grapte Jikes of the utility
functions are exponential only in the degrees of the graptich& game has a
natural reduced form where the classes pdfe identified with the pure profiles of
p’s neighbors, i.e., s, and é,p belong to the same class if and only if they agree
on the actions of p’s neighbors. The size of the reduced feeractly the number
of utility values required to specify the graphical gameiity functions. O

Let.”p(k,¢) denote the set of pure strategy profiesich thas, =/ ands_, is
in thek-th cIassC'Ig of Py, and Ietu{’kj) denote the utility ofp for that set of strategy
profiles. Papadimitriou and Roughgarden [2008] defineddheviing Separation
Problemfor a reduced form.

Definition 8.4.3 ([Papadimitriou and Roughgarden, 2008]et &2 be a reduced
form for game G. Th&eparation Probleror &7 is the following: Given rational
numbersy,(k,¢) forall p e {1,...,n}, ke {1,...,rp}, andl € S,, is there a pure
strategy profile s such thgtp y r:sc 7, (k.) yo(k,¢) < 0?If so, find such an s.

210

Sinces € .7(k,¢) impliess, = ¢, the left-hand side of the above expression is
equivalent toy p ¥ ksc 7, (ks,) Yp(K, Sp)- Furthermore, sincebelongs to exactly one
class inPy, the expression is a sum of exactlisummands, one for each player.

Papadimitriou and Roughgarden [2008] proved that if theas®jon problem
can be solved in polynomial time, then a CE that maximizesargiinear objec-
tive in the players’ utilities can be computed in time polyrial in the size of the
reduced form. How does Papadimitriou and Roughgarden J208&ficient con-
dition relate to ours, provided that the game has a concihecesl form? We show
that the class of reduced form games for which our weightetdhtien-adjusted
social welfare problem is polynomial-time solvable congathe class for which
the separation problem is polynomial-time solvable.

Proposition 8.4.4. Let & be a reduced form for game G. Suppose the separation
problem can be solved in polynomial time. Then the weigh&station-adjusted
social welfare problem can be solved in time polynomial mdlze of the reduced
form.

Proof. First we observe that if a gan@has a reduced forn#, then its deviation-
adjusted utilities (and weighted deviation-adjustediti#f) also satisfy the parti-
tion structure specified by?, i.e., giveny andv, the weighted deviation-adjusted
utility 08(y,v) depends only on a player's actieg and the class i, thats_p
belongs to. To see why, supposg, € C['§. Then

AP P P (P p
Ups ,(,V) = Vplgs + > ¥pj(Uss) —Ujs)

which depends only o andk. This proves the following, which will be useful
later.

Lemma 8.4.5. Let & be a reduced form for game G.

1. Forallye RN, ve R, for all players p, § € S, and forall s ,,S , € S_p, if
s pands , are in the same class irpRhen the weighted deviation-adjusted
utilities 05 s ,(y,v) = Ospvip(y, V).

211

2. Write the weighted deviation-adjusted utility for playg given her pure
strategy/ € S, and class (‘g as O(pk 0 (y,v) (well defined by the above). We

have

~P — p p p p
Oty (Y V) = Vply) + .Zpym (Ukey — Uik jy)-
IS

Given an instance of the weighted deviation-adjusted segi#fare problem
with a game with reduced forn# and rational vectory € RN, v R" andt €
R, we construct an instance of the separation problem bydeyi(k,¢) =t/n—
OE’k’@ (Y, V), Whereufk’g) (y,v) is as defined in Lemma 8.4.5 and can be efficiently
computed given the reduced form. Recall that the separatioblem asks for
pure profiles such thaty , x s.sc 7, (ko) Yo(k,¢) < 0, the left hand side of which is
a sum ofn terms. By construction, for ab, 3,y /:sc.7, (k) yo(k,£) < 0 if and
only if 3 53 kse.sy(ksp) (t/n—ﬁ(pkﬁp)(y,v)) < 0, and since the left hand side is a
sum of n terms, this holds if and only ivE(y,v) > t. Therefore the weighted
deviation-adjusted social welfare problem instance hasuign sif and only if the
corresponding separation problem instance has a solsjtaord a polynomial-time
algorithm for the separation problem can be used to solveviighted deviation-
adjusted social welfare problem in polynomial time. O

We now compare the the weighted deviation-adjusted soa@#hve problem
with the optimal social welfare problem for these represtons. We observe from
Lemma 8.4.5 that the weighted deviation-adjusted soci#faveeproblem can be
formulated as an instance of the optimal social welfare lpralon another game
with the same reduced form but different payoffs. Can wentldiat the existence
of a polynomial-time algorithm for the optimal social wekaproblem for a rep-
resentation implies the existence of a polynomial-timeoaigm for the weighted
social welfare problem (and thus the optimal CE problem)®s ©not necessar-
ily the case, because the representation might imposercettacture on the utility
functions that are not captured by the reduced forms, angdlyeaomial-time algo-
rithm for the optimal social welfare problem could dependtmexistence of such
structure. The weighted deviation-adjusted social welfaoblem might no longer
exhibit such structure and thus might not be solvable usiagyiven algorithm.

Nevertheless, if we consider a game representation thabispletely charac-

212

terized” by its reduced forms, the weighted deviation-atdjd social welfare prob-
lem is equivalent to the decision version of the optimal abwvielfare outcome

problem for that representation. To make this more presigesay a game rep-
resentation is aduced-form-based representatiifrthere exists a mapping from
instances of the representation to reduced forms sucht timaps each instance to
a concise reduced form of that instance, and if we take sueldwaced form and

change its payoff values arbitrarily, the resulting redlfmem is a concise reduced
form of another instance of the representation.

Corollary 8.4.6. For areduced-form-based representation, if there exigtslgnomial-
time algorithm for the optimal social welfare problem, thtbe optimal social wel-
fare CE problem and the max-min welfare CE problem can beedatvpolynomial
time.

Of course, this can be derived using the separation proldemefluced forms
without the deviation-adjusted social welfare formulatidOn the other hand, the
deviation-adjusted social welfare formulation can be i@gpto representations
without concise reduced forms. In fact, we will use it to sHmslow that the con-
nection between the optimal social welfare problem and fitenal CE problem
applies to a wider classes of representations than justeeldiorm-based repre-
sentations.

8.4.2 Linear Reduced Forms

One class of representations that does not have concisesictthrms are those that
represent utility functions as sums of other functions hsas polymatrix games
and the hypergraph games of Papadimitriou and Roughga@@8]. In this sec-
tion we characterize these representations using lindaces forms, showing that
linear-reduced-form-based representations satisfy pepty similar to Corollary
8.4.6.

Roughly speaking, a linear reduced form has multiple panttfor each agent,
rather than just one; an agent’s overall utility is a sum axgity functions defined
on each of that agent’s partitions.

Definition 8.4.7. Consider agame & (A, {Sp}pe.s, {UP}pe.r). FOr p=1,...,n,
let Py = {Pp1....,Pog, }, Where Bg = {Cf .. .Cg4} is a partition of S, into rpq

213

classes. The se¥ = {P,...,P,} is alinear reduced fornof G if for each p there
exist P1,... ,uP> € RM such that for all s, 8= 3,uf, and for each o< tp,
udd = uIDq whenever (1) =), and (2) both sy and $, belong to the same class
in Ppg. Thesizeof a reduced form is the number of classes in the partitions pl
the bits required to specify a number for each tufyteq,k,¢) wherel < p <n,
1<g<ty, 1<k<rpand/eS,.

We write u(pi;qé) for the value corresponding to tup(@,q.,k,¢), and fork =

(ki,. .- k) we Wrrteu zq

Example 8.4.8(po|ymatr|x games) Recall from Section 2.1.1 that in a polyma-
trix game, each player’s utility is the sum of utilities régwg from her bilateral
interactions with each of the a 1 other players: § = zry#pegpApF’esp, where
APP € RIS and @, € RIS is the unit vector corresponding tg.sThe utility
functions of such a representation require ofilyyc 4 |Sp| X |Sy | values to specify.
Polymatrix games do not have a concise reduced-form engpHirt can easily be
written as linear-reduced-form games. Essentially, watgene partition for ev-
ery matrix game that an agent plays, with each class diffeitmthe action played
by the other agent who participates in that matrix game, aont&ining all the
strategy profiles that can be adopted by all of the other play&ormally, given
a polymatrix game, we construct its linear reduced form Wh= {Py q}ge. s\ p}»
and RB,q = {C} }res, With Cf 4 = {S_p|sq = £} O

Most of the results in Section 8.4.1 straightforwardly #fate to linear reduced
forms.

Lemma 8.4.9. Let & be a linear reduced form for game G. Then for alEy
RN, ve R, for all players p, there exisiP(y,v),...,GP%(y,v) € RM such that
the weighted deviation-adjusted utilitié8(y,v) = 5 ,0GP9(y,v), and for all g< tp,
sp€Sandsps €Sy, ifspand S, are in the same class inpk, then
055 (V) =0y (%V)-

Write the Werghted deviation-adjusted utility for player heer pure strategy

kt

¢ € Syand classes tﬁl :Cot, asu()(y, v) wherek = (ky, ..., k). Furthermore,
we have

~P — p p p p
Ui o) (%) = VpUy) + j;pyf,j (Ui) — Uik jy)-

214

Corollary 8.4.10. For a linear-reduced-form-based representation, if thexests a
polynomial-time algorithm for the optimal social welfanmplem, then the optimal
social welfare CE problem and the max-min welfare CE prolbdam be solved in
polynomial time.

Graphical Polymatrix Games

A polymatrix game may have graphical-game-like structptayerp's utility may
depend only on a subset of the other player’s actions. Ingefatility functions,
this corresponds t&PP = 0 for certain pairs of playerp, p'. As with graphical
games, we can construct the (undirected) g@ph(.4", E) where there is an edge
{p,p'} € E if APP £ 0 orAPP £ 0. We call such a game a graphical polymatrix
game. This can also be understood as a graphical game wiaregkegerp’s
utility is the sum of bilateral interactions with her neiginb.

A tree polymatrix game is a graphical polymatrix game whosgespond-
ing graph is a tree. Consider the optimal CE problem on trégnpatirix games.
Since such a game is also a tree graphical game, Papadimatmit Roughgarden
[2008]’s optimal CE algorithm for tree graphical games carapplied. However,
this algorithm does not run in polynomial time, because #pFasentation size of
tree polymatrix games can be exponentially smaller thainahihe corresponding
graphical game (which grows exponentially in the degredefgraph). However,
we can give a different polynomial-time algorithm for thimplem.

Theorem 8.4.11.Optimal CE in tree polymatrix games can be computed in poly-
nomial time.

Proof. Itis sufficient to give an algorithm for the deviation-adps social welfare
problem. Using an argument similar to that given in Example8 tree polymatrix
games have a natural linear reduced form, and it is straigiéird to verify that
tree polymatrix games are a linear-reduced-form-basegkseptation. By Corol
lary 8.4.10 it is sufficient to construct an algorithm for thgimal social welfare
problem.

Let N, be the set of players in the subtree rooteg.&uppose’s parent in the
tree isq. Let thesocial welfare contributiorof Ny, be the social welfare of players
in Np minusegpquesq. Let the social welfare contribution of the root player be th

215

social welfare of #". Then the social welfare contribution B, depends solely on
the pure strategy profile restrictedNg.

The following dynamic programming algorithm solves theimgatl social wel-
fare problem in polynomial time. We go from the leaves to thet rof the tree.
Each childq of p passes to its parent the messq{gé‘qﬂsq}sqesl, wherewNeS s
the optimal social welfare contribution ®f; provided thatg playssy. Given the
messages from all gi's childrenq, ..., qk, we can compute the messagepadis
follows: for eachs, € S,

The second equality is due to the fact that tite summand depends only &f). It

is straightforward to verify that the optimal social wetfdas max wS wherer is

the root player, and that the algorithm runs in polynomialeti The corresponding

optimal pure strategy profile can be constructed by going fitte root to the leaves.
O

This algorithm can be straightforwardly extended to yieldolynomial-time
algorithm for optimal CE in graphical polymatrix games widbnstant treewidth,
for hypergraphical games [Papadimitriou and Roughgard@@g] on acyclic hy-
pergraphs, and more generally for hypergraphs with conhbtgertree-width.

8.4.3 Representations with Action-Specific Structure

The above results for reduced forms and linear reduced fomnsgally depend
on the fact that the partitions (i.e., the structure of thétyifunctions) depend
on p but do not depend on the action chosen by playerThere are represen-
tations whose utility functions have action-dependenicstire, including conges-
tion games [Rosenthal, 1973], local effect games [LeytomaB and Tennenholtz,
2003], and action-graph games [Jiang et al., 2011]. For sgjotesentations, we
can define a variant of the reduced form that has action-adigerpartitions. For

216

example:

Definition 8.4.12. Consider a game G= (A, {Sp}pe.r s {UP}per). For p=

1., L €Sy, let Ry = {Pos1,...,Posty }, Where Brq={ClL,,...CF} isa
partition of S p, into rpq classes. The se¥ = {Py}pe s res, IS @action-specific
linear reduced fornof G if for each p¢ there exist &1, ... uPttr ¢ RM such that

foreach pc .4/, £ € Sy, and g<ty,

P 5 yPha
1. foralls peSp, s =3qls’,

2. ufsqu = ufij whenever both s, and $ belong to the same class i B

Thesizeof a reduced form is the number of classes in the partitions fhe bits
required to specify a number for each tugle g, k, /) wherel < p<n,1<q<ty,
1<k<rpgand/ecS,.

However, unlike both the reduced form and linear reduceunh foine weighted
deviation-adjusted utilities no longer satisfy the sanifien structure as the util-
ities. Intuitively, the weighted deviation-adjusted iyilat s has contributions from
the utilities of the strategy profiles when playprdeviates to different actions.
Whereas for linear reduced forms these deviated strategfylgs correspond to
the same class asin the partition, we now consider different partitions fach
action to whichp deviates. As a result the weighted deviation-adjustecaboa!-
fare problem has a more complex form that the optimal socidflare problem.

Singleton Congestion Games

As mentioned in Chapters 2 and 4, leong et al. [2005] studieless of games
called singleton congestion games and showed that the @d@8NE can be com-
puted in polynomial time. Such a game can be formulated asstarice of con-
gestion games where each action contains a single resour@e instance of sym-
metric AGGs where the only edges are self edges.

Formally, a singleton congestion game is specified 8, <7, { f? } 4 .») where
A =1,....nis the set of playersy” the set of actions, and for each actiorE <7,
f% :[n] = R. The game is symmetric; each player’s set of acti§ns: «7. Each
strategy profiles induces an action coun{ar) = |{p|s, = a}| on eacha: the

217

number of players playing actiom. Then the utility of a player that chose is
f9(c(a)). The representation requir€x|.<7 |n) numbers to specify.

We now show that the optimal social welfare CCE problem caodmeputed
in polynomial time for singleton congestion games. Befdtacking the problem,
we first note that the optimal social welfare problem can beesbin polynomial
time by a relatively straightforward dynamic-programmialgorithm which is a
simplified version of leong et al. [2005]'s algorithm for optal PSNE in singleton
congestion games. First observe that the social welfaresthtegy profile can be
written in terms of the action counts:

ws= % c(a)f(c(a)).

The optimal social welfare problem is equivalent to findingeztor of action
counts that sums ta and maximizes the above expression. The social welfare
can be further decomposed into contributions from eacloacti The dynamic-
programming algorithm starts with a single action and addsaztion at a time un-
til all actions are added. At each iteration, it maintainsteos tuples{ (n', w") }1<y<n,
specifying that the best social welfare contribution frdra turrent set of actions
isw" when exactlyn’ players chose actions in the current set.

Consider the optimal social welfare CCE problem. Can werdsye the algo-
rithm for the optimal social welfare problem to solve thersgedeviation-adjusted
social welfare problem? Our task here is slightly more cecapdd: in general
the coarse deviation-adjusted social welfare problem ngdo has the same sym-
metric structure due to the fact thatcan be asymmetric. However, whegns
player-symmetric (that |syf’ = yJP' for all pairs of playergp, p')), then we recover
symmetric structure.

Lemma 8.4.13. Given a singleton congestion game and player-symmetriat yp
the coarse deviation-adjusted social welfare problem casddved in polynomial
time.

218

Proof. The coarse deviation-adjusted social welfare can be wréate

Wo(y) =Y WL+ Y ¥ -y ¥ vuR
> | |

17%p P 17

= > |cla)f(c(a)) [1+ ;y," —(n—c(a)) t*(c(a) + L)ya
ac j#a

The contribution from each actiandepends only on(a). Therefore, using a sim-
ilar dynamic-programming algorithm as above we can soleectiarse deviation-
adjusted social welfare problem in polynomial time. O

Therefore if we can guarantee that during a run of ellipso&dhod for (8.3.3)
all input queriey to the separation oracle are symmetric, then we can applyriaem
8.4.13 to solve the problem in polynomial time. We obseras fihr any symmetric
game, there must existsymmetricCE that optimizes the social welfare. This is
because given an optimal CE we can create a mixture of pedwetsions of this
CE, which must itself be a CE by convexity, and must also aehilke same social
welfare by symmetry. However, this argument in itself does guarantee that
they we obtain by the method above will be symmetric. Instead, lseve that
if we solve (8.3.3) using a ellipsoid method with a playemsyetric initial ball,
and use a separation oracle that returns a player-symneetting plane, then the
qguery pointsy will be player-symmetric. We are able to construct such asdmn
oracle using a symmetrization argument.

Theorem 8.4.14.Given a singleton congestion game, the optimal social weelfa
CCE can be computed in polynomial time.

Proof. As argued in Section 8.4.3, it is sufficient to construct aasafion oracle
for (8.3.3) that returns a player-symmetric cutting plamie cutting plane corre-
sponding to a pure strategy profile solut®of the coarse deviation-adjusted social
welfare problem is not player-symmetric in general; but \ae symmetrize it by
constructing a mixture of permutations &f Since by symmetry each permuted
version ofs correspond to a violated constraint, the resulting cutfilame is still
correct and is symmetric. Enumerating all permutations pieyers would be ex-
ponential, but it turns out that for our purposes it is sufiintito use a small set of

219

permutations.

Formally, letr; be the permutation over the set of playe#s that maps each
pto p+i modn. Then the set of permutatiordgs }o<j<n—1 corresponds to the
cyclic group.

Supposesis a solution of the coarse deviation-adjusted social welfgoblem
with symmetric inputy. The corresponding cut (violated constraint)(@)Ty +
W < t. Recall that thép, j)-th entry ofCsis C2! = (uf — ufy_,)- For a permutation
rrover 4, write s™ the permuted profile induced by, i.e. S™ = (Sy1), - - ;Su(n))-
Thens™ is also a solution of the coarse deviation-adjusted soaidflane problem.
Form the following convex combination ofof the constraints of (8.3.3):

lﬂfl

N

The left-hand side can be simplified ta + (Cs)Ty whereCs = L s 1Cqr. We
claim that this cutting plane is player-symmetric, mear@3d = C” for all pairs
of playersp, p’ and allj € 7. This is because

[(Con)Ty+wer] <t

i IS i I e e
Cs ==->Cx =—) (U — U
S ni: (4] ni: (STh Jsﬁp)

:% [Z c(a) f9(c(a)) — (n—c(j) i(c(j) +1)| =7,
7]

This concludes the proof. O

Our approach for singleton congestion games crucially wegpen the fact
that the coarse deviation profi}é does not care which action it is deviating from.
This allowed us to (in the proof of Lemma 8.4.13) decomposectiarse deviation-
adjusted social welfare into terms that only depend on thi®racount on one
action. The same approach cannot be directly applied tedbl optimal CE
problem, because then the deviation profile would give aem'fityﬁ for each
actioni that p deviates from, and the resulting expression for deviatidjusted
social welfare would involve summands that depend on tHeracbunts on pairs
of actions.

220

An interesting future direction is to explore whether oupr@ach for singleton
congestion games can be generalized to other classes ofeyimgames, such as
symmetric AGGs with bounded treewidth.

8.5 Conclusion and Open Problems

We have proposed an algorithmic approach for solving thiengpicorrelated equi-
librium problem in succinctly represented games, subisténextending a previ-
ous approach due to Papadimitriou and Roughgarden [2008paidticular, we
showed that the optimal CE problem is tractable whendidation-adjusted so-
cial welfare problentan be solved in polynomial time. We generalized the reduced
forms of Papadimitriou and Roughgarden [2008] to show thatrepresentation
can be characterized by “linear reduced forms”, i.e. plapercific linear functions
over partitions, then for that representation, the desatidjusted social welfare
problem can be reduced to the optimal social welfare problesveraging this
result, we showed that the optimal CE problem is tractabtgaphical polymatrix
games on tree graphs. We also considered the problem of ¢imgplie optimal
coarse correlated equilibriurrand derived a similar sufficient condition. We used
this condition to prove that the optimal CCE problem is bt for singleton
congestion games.

Our work points the way to a variety of open problems, whichbniefly sum-
marize here.

Price of Anarchy. Our results imply that for compactly represented games
with polynomial-time algorithms for the optimal social viake problem and the
weighted deviation-adjusted social welfare problem, thieePof Anarchy (POA)
for correlated equilibria (i.e., the ratio of social wedannder the best outcome
and the worst correlated equilibrium) can be computed ignmohial time. Simi-
larly for the Price of Total Anarchy (i.e., the ratio of sdareelfare under the best
outcome and the worst coarse correlated equilibrium). d lean extensive litera-
ture on proving bounds on the POA for various solution cote@pd for various
classes of games. One line of research that is particulaldyant to our work is
the “smoothness bounds” method pioneered by Roughgar@®9].2In particular,
that work showed that if a certain smoothness relation cashbern to hold for a

221

class of games, then it can be used to prove an upper boundAfoPtbese games
that holds for many solution concepts including pure andeahiXE, CE and CCE.
More recently, Nadav and Roughgarden [2010] gave a primalddP formulation
for proving POA bounds and showed that finding the best snrmesthcoefficients
corresponds to the dual of the LP for the POA for average eaaselated equilib-
rium (ACCE), a weaker solution concept than CCE. The prichadt LP formula-
tion of Nadav and Roughgarden [2010] and our LPsand D) are equivalent up
to scaling; however whereas Nadav and Roughgarden [20t0§éal on the task
of proving POA upper bounds for classes of games, here wes fosicomputing
the optimal CE / CCE and POA for individual games. One intémgsdirection
is to use our algorithms together with an game instance gereio automatically
find game instances with large POA, thus improving the loveemuls on POA for
given classes of games.

Complexity separations.We have shown that for singleton congestion games,
the optimal social welfare problem and the optimal CCE moblare tractable
while the complexity of the optimal CE problem is unknown. épen problem is
to prove a separation of the complexities of these problemsifigleton congestion
games or for another class. Another related problem is ttimapPSNE problem,
which can be thought of as the optimal CE problem plus integestraints orx.
We do not know the exact relationship between the optimalP@fgblem and the
other problems. For example the optimal PSNE problem is krimbe tractable
for singleton congestion games [leong et al., 2005] whiledeeot know how to
solve the optimal CE problem. On the other hand for tree patyin games we
showed the CE problem is in polynomial time, while the corripyeof the PSNE
problem is unknown.

Necessary condition for tractability. Another open question is the following:
is tractability of the deviation-adjusted social welfamlem anecessarycondi-
tion for tractability of the optimal CE problem? We know (g.fom Grotschel
et al. [1988]) that the separation oracle problem for thd d&a(D) is equivalent
to the problem of optimizing an arbitrary linear objectivetbe feasible set of).
However this in itself is not enough to prove equivalencehefdeviation-adjusted
social welfare problem and the optimal CE problem. Firstlbtte separation
oracle problem is more general: it allows cutting planegothan constraints cor-

222

responding to pure strategy profiles. Furthermob, l{as a particular objective,
but optimizing an arbitrary linear objective means allogvihe objective to depend
ony as well ad. If we take the dual of such an LP with (e.g.) objectiVe/+t for
some vector € RN, we get a generalized version of the optimal CE problem, with
constraintdJ x > r instead otUx > 0.

Relaxations and approximations.Another interesting direction worth explor-
ing is relaxations of the incentive constraints of theseblams, either as hard
bounds or as soft constraints that add penalties to the tolgeas well as the
problem of approximating the optimal CE. For these problemasan define cor-
responding variants of the deviation-adjusted social avelproblem as sufficient
conditions, but it remains to be seen whether one can praveret results, e.g.,
for approximating optimal CE for specific representatiamsvhich the exact opti-
mal CE problem is hard.

Communication complexity of uncoupled dynamics. Hart and Mansour
[2010] considered a setting in which each player is inforraely about her own
utility function, and analyzed the communication compigfor so-calleduncou-
pled dynamics to reach various kinds of equilibrium. They usettaghtforward
adaptation of Papadimitriou and Roughgarden [2008]'srédlyn for a sample CE
to show that a CE can be reached using polynomial amount afrcorication. We
can consider the question of reaching an optimal CE by urdedugynamics. Our
approach can be straightforwardly adapted to this settiedpicing the problem
to finding a communication protocol for the uncoupled versid the deviation-
adjusted social welfare problem in which each player knoalg ber own utility
function.

Proposition 8.5.1. If there is a polynomial communication protocol for the uaco
pled deviation-adjusted social welfare problem, thendtiera polynomial commu-
nication protocol for the optimal CE problem.

At a high level, the protocol has a center running the elighsoethod on D),
using the communication protocol for the uncoupled deviatdjusted social wel-
fare problem as a separation oracle. An open problem is wh#tkre exist more
“natural” types of dynamics that converge to optimal CE. Egample, there is
extensive literature on no-internal-regret learning dyita that converges to the

223

set of approximate CE in a polynomial number of steps. Cah siyoamics be
modified to yield optimal CE?

224

Bibliography

S. Adlakha, R. Johari, and G. Y. Weintraub. Equilibria of dyric games with
many players: Existence, approximation, and market stracCoRR
abs/1011.5537, 2010.

B. Adsul, J. Garg, R. Mehta, and M. A. Sohoni. Rank-1 bimagdxnes: a
homeomorphism and a polynomial time algorithm . SROC: Proceedings of
the Annual ACM Symposium on Theory of Computiages 195-204, 2011.

C. Alvarez, J. Gabarro, and M. Serna. Pure Nash equilibreagame with large
number of actions. IMathematical Foundations of Computer Scigr2@05.

R. Aumann. Subjectivity and correlation in randomizedtsgges.Journal of
Mathematical Economi¢4.(1):67-96, 1974.

R. Aumann. Correlated equilibrium as an expression of Bapastionality.
Econometrica: Journal of the Econometric Socigtsiges 1-18, 1987.

D. Avis, G. Rosenberg, R. Savani, and B. von Stengel. Enuinaraf nash
equilibria for two-player gamed=conomic Theory42:9-37, 2010. ISSN
0938-2259. URLhttp://dx.doi.org/10.1007/s00199-009-0449-x.
10.1007/s00199-009-0449-x.

E. Ben-Sasson, A. Kalai, and E. Kalai. An approach to boumdgdnality. In
NIPS: Proceedings of the Neural Information Processingesys Conference
pages 145-152, 2006.

N. Bhat and K. Leyton-Brown. Computing Nash equilibria ofiac-graph games.
In UAI: Proceedings of the Conference on Uncertainty in Aiitifitntelligence
pages 35-42, 2004.

B. Blum, C. Shelton, and D. Koller. Gametracer.
http://dags.stanford.edu/Games/gametracer.html, 2002.

225

http://dx.doi.org/10.1007/s00199-009-0449-x
http://dags.stanford.edu/Games/gametracer.html

B. Blum, C. Shelton, and D. Koller. A continuation method keish equilibria in
structured gameslAIR: Journal of Artificial Intelligence Research5:
457-502, 2006.

H. Bodlaender. Treewidth: Algorithmic techniques and ltssun Mathematical
Foundations of Computer Sciengeages 19-36. Springer Berlin / Heidelberg,
1997. ISBN 978-3-540-63437-9. URittp://dx.doi.org/10.1007/BFb0029946.

H. L. Bodlaender. A linear-time algorithm for finding treeampositions of
small treewidth. 25(6):1305-1317, 1996. ISSN 00975397L UR
http://dx.doi.org/doi/10.1137/S00975397932512109.

H. L. Bodlaender. Treewidth: structure and algorithmsPtaceedings of the
14th international conference on Structural informatiamdacommunication
complexity SIROCCO’'07, pages 11-25, Berlin, Heidelberg, 2007.
Springer-Verlag. ISBN 978-3-540-72918-1.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Gert-specific
independence in Bayesian networks.UAl, pages 115-123, 1996.

F. Brandt, F. Fischer, and M. Holzer. Symmetries and the d¢exitp of pure Nash
equilibrium. Journal of Computer and System Sciend&g3):163—-177, 2009.

G. Brown. lterative solutions of games by fictitious play.TirKoopmans, editor,
Activity Analysis of Production and AllocatiowWiley, New York, 1951.

X. Chen and X. Deng. Settling the complexity of 2-player Nasgfilibrium. In
FOCS: Proceedings of the Annual IEEE Symposium on Fourdatd
Computer Scienggages 261-272, 2006.

V. Conitzer and T. Sandholm. Complexity of (iterated) doamce. INEC:
Proceedings of the ACM Conference on Electronic Comme@es.

V. Conitzer and T. Sandholm. Computing the optimal strategyommit to. In
EC: Proceedings of the ACM Conference on Electronic Comen2@n6.

V. Conitzer and T. Sandholm. New complexity results aboghreguilibria.
Games and Economic Behavi@3(2):621 — 641, 2008. ISSN 0899-8256.
Second World Congress of the Game Theory Saociety.

G. Dantzig and M. Thapd.inear Programming 2: Theory and Extensions
Springer, 2003.

A. Darwiche. Constant-space reasoning in dynamic Bayesamorks.
International Journal of Approximate Reasonjra$(3):161-178, 2001.

226

http://dx.doi.org/10.1007/BFb0029946
http://dx.doi.org/doi/10.1137/S0097539793251219

C. Daskalakis and C. Papadimitriou. The complexity of gaorekighly regular
graphs. Inthe 13th Annual European Symposium on Algorith?@95.

C. Daskalakis and C. Papadimitriou. Computing pure Nashikega via Markov
random fields. IrEC: Proceedings of the ACM Conference on Electronic
Commercgpages 91-99, 2006.

C. Daskalakis and C. Papadimitriou. Computing equilibmiamonymous games.
In FOCS: Proceedings of the Annual IEEE Symposium on Foundatd
Computer Scienggages 83-93, 2007.

C. Daskalakis and C. Papadimitriou. Discretized multiradrdistributions and
nash equilibria in anonymous games.HACS: Proceedings of the Annual
IEEE Symposium on Foundations of Computer Scie?@@s.

C. Daskalakis and C. Papadimitriou. On oblivious PTAS’sNassh equilibrium.
In STOC: Proceedings of the Annual ACM Symposium on Theory of
Computing pages 75-84. ACM New York, NY, USA, 2009.

C. Daskalakis, A. Fabrikant, and C. Papadimitriou. The gamoed is flat: The
complexity of Nash equilibria in succinct games.I@ALP: Proceedings of the
International Colloquium on Automata, Languages and Papgming pages
513-524, 2006a.

C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. Tdragexity of
computing a Nash equilibrium. IBTOC: Proceedings of the Annual ACM
Symposium on Theory of Computipgges 71-78, 2006b.

C. Daskalakis, G. Schoenebeck, G. Valiant, and P. Valiantth® complexity of
Nash equilibria of Action-Graph Games. 8DDA: Proceedings of the
ACM-SIAM Symposium on Discrete Algorithmages 710-719, 2009.

T. Dean and K. Kanazawa. A model for reasoning about pensistand
causation.Computational Intelligenges:142—-150, 1989.

E. Elkind, L. Goldberg, and P. Goldberg. Nash equilibria iagiical games on
trees revisitedEC: Proceedings of the ACM Conference on Electronic
Commercepages 100-109, 2006.

P. Erdds and J. L. Selfridge. On a combinatorial gadoeirnal of Combinatorial
Theory, Series AL4(3):298 — 301, 1973. ISSN 0097-3165.

K. Etessami and M. Yannakakis. On the Complexity of Nash HEiyia and Other
Fixed Points (Extended Abstract). FROCS: Proceedings of the Annual IEEE
Symposium on Foundations of Computer Sciepages 113-123, 2007.

227

A. Fabrikant, C. Papadimitriou, and K. Talwar. The compiexif pure Nash
equilibria. INSTOC: Proceedings of the Annual ACM Symposium on Theory of
Computing pages 604-612. ACM New York, NY, USA, 2004.

E. Fredkin. Trie memoryCommunications of the ACN3:490-499, 1962.
D. Fudenberg and J. Tirol&ame TheoryMIT Press, 1991.

D. Gale, H. Kuhn, and A. Tucker. On symmetric gamésntributions to the
Theory of Gamegages 81-87, 1950.

F. Germano and G. Lugosi. Existence of sparsely supportedlated equilibria.
Economic Theory32(3):575-578, 2007.

M. Goemans, V. Mirrokni, and A. Vetta. Sink equilibria andwergence. In
FOCS: Proceedings of the Annual IEEE Symposium on Fourdatd
Computer Scienggages 142-154, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7695-2468-0. URL
http://dx.doi.org/10.1109/SFCS.2005.68.

P. W. Goldberg and C. H. Papadimitriou. Reducibility amoggikbrium
problems. INSTOC: Proceedings of the Annual ACM Symposium on Theory of
Computing pages 61-70, 2006.

G. Gottlob, G. Greco, and F. Scarcello. Pure Nash equililbierd and easy
games.Journal of Artificial Intelligence ResearcB4:357-406, 2005.

G. Gottlob, G. Greco, and T. Mancini. Complexity of pure difpuia in Bayesian
games. INJCAI: Proceedings of the International Joint Conference o
Artificial Intelligence pages 1294-1299, 2007.

S. Govindan and R. Wilson. Structure theorems for game.tfeseedings of
the National Academy of Scienc@9(13):9077-9080, 2002.

S. Govindan and R. Wilson. A global Newton method to compushNequilibria.
Journal of Economic Theory110:65-86, 2003.

S. Govindan and R. Wilson. Computing Nash equilibria byaited polymatrix
approximation.Journal of Economic Dynamics and Contr@B:1229-1241,
2004.

M. Grotschel, L. Lovasz, and A. SchrijveGeometric algorithms and
combinatorial optimizationSpringer-Verlag, New York, NY, 1988.

228

http://dx.doi.org/10.1109/SFCS.2005.68

J. Hannan. Approximation to Bayes risk in repeated play$l.IDresher,
A. Tucker, and P. Wolfe, editor§ontributions to the Theory of Games
volume 3, pages 97-139. Princeton University Press, 1957.

J. Harsanyi. Games with incomplete information played bgy&sian” players,
i-iii. part i. the basic modelManagement scienc&4(3):159-182, 1967.

S. Hart and Y. Mansour. How long to equilibrium? the commatian
complexity of uncoupled equilibrium procedurgdames and Economic
Behavior 69(1):107-126, 2010. ISSN 0899-8256.

S. Hart and A. Mas-Colell. A simple adaptive procedure legdo correlated
equilibrium. Econometrica68(5), 2000.

S. Hart and D. Schmeidler. Existence of correlated eqialitMathematics of
Operations Resear¢ii4(1):18-25, 1989.

D. Heckerman and J. S. Breese. Causal independence fojlitybassessment
and inference using Bayesian networkKSEE Transactions on Systems, Man
and Cybernetics26(6):826—-831, 1996.

P. Herings and R. Peeters. A globally convergent algoritmcotmpute all Nash
equilibria for n-Person gameénnals of Operations Researct37(1):
349-368, 2005.

P. Herings and R. Peeters. Homotopy methods to computeateguih game
theory. Economic Theorypages 1-38, 2009.

H. Hotelling. Stability in competitionEconomic Journal39:41-57, 1929.

J. Howson Jr. Equilibria of polymatrix gameglanagement Sciencpages
312-318, 1972.

J. Howson Jr and R. Rosenthal. Bayesian equilibria of fimteperson games
with incomplete informationManagement Sciencpages 313—-315, 1974.

W. Huang.Equilibrium Computation for ExtensiveGamd2hD thesis, London
School of Economics and Political Science, 2011.

W. Huang and B. Von Stengel. Computing an extensive-formetated
equilibrium in polynomial time. IWINE: Proceedings of the Workshop on
Internet and Network Economigsages 506513, 2008.

229

S. leong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun. Rast@mpact: A
simple class of congestion gamésAAl: Proceedings of the AAAI Conference
on Artificial Intelligence pages 489-494, 2005.

K. lyer, R. Johari, and M. Sundararajan. Mean field equditwi dynamic
auctions with learning. IlEC: Proceedings of the ACM Conference on
Electronic Commercgepages 339-340, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0261-6. URhttp://doi.acm.org/10.1145/1993574.1993631.

A. Jiang and K. Leyton-Brown. Polynomial computation of exeorrelated
equilibrium in compact games. EC: Proceedings of the ACM Conference on
Electronic Commerce2011.ht t p: // ar xi v. org/ abs/ 1011. 0253.

A. X. Jiang. Computational problems in multiagent systeMaster’s thesis,
University of British Columbia, 2006.

A. X. Jiang and K. Leyton-Brown. A polynomial-time algonithfor
Action-Graph Games. IAAAI: Proceedings of the AAAI Conference on
Artificial Intelligence pages 679-684, 2006.

A. X. Jiang and K. Leyton-Brown. Computing pure Nash equidibn symmetric
Action-Graph Games. IAAAI: Proceedings of the AAAI Conference on
Artificial Intelligence pages 79-85, 2007a.

A. X. Jiang and K. Leyton-Brown. A tutorial on the proof of thgistence of
Nash equilibria. Technical Report TR-2007-25, UniversityBritish Columbia,
Department of Computer Science, November 2007b.

A. X. Jiang and K. Leyton-Brown. Bayesian action-graph gaumeNIPS:
Proceedings of the Neural Information Processing Systeomgefence2010.

A. X. Jiang and M. Safari. Pure Nash equilibria: Completerabterization of
hard and easy graphial games.AAMAS: Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent iBgsk®10.

A. X. Jiang, A. Pfeffer, and K. Leyton-Brown. Temporal Aati¢sraph Games: A
new representation for dynamic gamesUWI: Proceedings of the Conference
on Uncertainty in Artificial Intelligence2009.

A. X. Jiang, K. Leyton-Brown, and N. Bhat. Action-graph gan&ames and
Economic Behavigr71(1):141-173, January 2011.

S. Kakade, M. Kearns, J. Langford, and L. Ortiz. Correlatgailédria in
graphical games. IBC: Proceedings of the ACM Conference on Electronic

230

http://doi.acm.org/10.1145/1993574.1993631

Commercepages 42—-47, New York, NY, USA, 2003. ACM. ISBN
1-58113-679-X. URLhttp://doi.acm.org/10.1145/779928.779934.

E. Kalai. Large robust gamekconometrica72(6):1631-1665, 2004.

E. Kalai. Partially-specified large games.WANE: Proceedings of the Workshop
on Internet and Network Economjgsages 3—-13, 2005.

H. Kamisetty, E. P. Xing, and C. J. Langmead. Approximatingelated
equilibria using relaxations on the marginal polytopel@ML, 2011.

R. Kannan and T. Theobald. Games of fixed rank: A hierarchyroatyix games.
Economic Theorypages 1-17, 2009.

M. Kearns, M. Littman, and S. Singh. Graphical models for gaheory. InUAL:
Proceedings of the Conference on Uncertainty in Artificigklligence pages
253-260, 2001.

P. Klingsberg. A Gray code for composition¥urnal of Algorithms3:41-44,
1982.

T. Kloks. Treewidth: Computations and Approximatior&pringer-Verlag, Berlin,
1994,

D. Koller and B. Milch. Multi-agent influence diagrams fopresenting and
solving games. IDJCAL: Proceedings of the International Joint Conference o
Artificial Intelligence 2001.

D. Koller and B. Milch. Multi-agent influence diagrams fopresenting and
solving gamesGames and Economic Behavjidi5(1):181-221, 2003.

D. Koller, N. Megiddo, and B. Von Stengel. Efficient compudatof equilibria
for extensive two-person gamgsames and Economic Behavidd(2):
247-259, 1996.

H. Kuhn. Extensive games and the problem of information. I&&hn and
A. Tucker, editorsContributions to the Theory of Game®lume Il, pages
193-216, 1953.

C. Lemke and J. Howson. Equilibrium points of bimatrix gamesciety for
Industrial and Applied Mathematics Journal of Applied Mathatics 12:
413-423, 1964.

C. E. Lemke. Bimatrix equilibrium points and mathematicadgramming.
Management Sciencél(7):681-689, May 1965.

231

http://doi.acm.org/10.1145/779928.779934

K. Leyton-Brown and M. Tennenholtz. Local-effect gamesIJGAI:
Proceedings of the International Joint Conference on Aiéfilntelligence
pages 772-780, 2003.

R. Lipton, E. Markakis, and A. Mehta. Playing large gamesgisimple
strategies. IEC: Proceedings of the ACM Conference on Electronic
Commercegpages 36—41. ACM New York, NY, USA, 2003.

G. B. D. M. Benisch and T. Sandholm. Algorithms for closed emational
behavior (curb) setslournal of Artificial Intelligence ResearcB8:513-534,
2010.

O. Mangasarian. Equilibrium points in bimatrix gamdsurnal of the Society for
Industrial and Applied Mathematic42(4):778-780, 1964.

R. McKelvey and A. McLennan. Computation of equilibria inifengames.
Handbook of Computational Economids87-142, 1996.

R. D. McKelvey, A. M. McLennan, and T. L. Turocy. Gambit: Seére tools for
game theory, 2006ttp://econweb.tamu.edu/gambit.

B. Milch and D. Koller. Ignorable information in multi-agescenarios. Technical
Report MIT-CSAIL-TR-2008-029, MIT, 2008.

I. Milchtaich. Congestion games with player-specific payonctions. Games
and Economic Behavipd3:111-124, 1996.

D. Monderer. Multipotential games. IdCAI: Proceedings of the International
Joint Conference on Artificial Intelligencpages 1422-1427, 2007.

D. Monderer and L. Shapley. Potential gam@&ames and Economic Behavjor
14:124-143, 1996.

K. Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning PhD thesis, UC Berkeley, Computer Science Division, 2002.

K. Murphy. Bayes Net Toolbox for Matlab.
http://bnt. sourceforge. net, 2007.

R. Myerson. Dual reduction and elementary gantgames and Economic
Behavior 21(1-2):183-202, 1997.

U. Nadav and T. Roughgarden. The limits of smoothness: Aairamal
framework for Price of Anarchy bounds. WINE: Proceedings of the
Workshop on Internet and Network Economiz@10.

232

http://econweb.tamu.edu/gambit

J. F. Nash. Non-cooperative gamé&s$e Annals of Mathematic54(2):286—295,
1951.

R. Nau and K. McCardle. Coherent behavior in noncooperaraes.Journal of
Economic Theory50(2):424-444, 1990.

D. Nilsson and S. Lauritzen. Evaluating influence diagrasisgiLIMIDs. In
UAI, pages 436-445, 2000.

N. Nisan and A. Ronen. Algorithmic mechanism desi@ames and Economic
Behavior 35:166-196, 2001.

N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, eslitAlgorithmic Game
Theory Cambridge University Press, Cambridge, UK, 2007.

E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. RenGAMUT:
A comprehensive approach to evaluating game-theoretaritigns. In
AAMAS: Proceedings of the International Joint Conferencéatonomous
Agents and Multiagent Systeppaiges 880—-887, 2004.

F. A. Oliehoek, M. T. J. Spaan, J. Dibangoye, and C. Amato.ridicisearch for
identical payoff bayesian games. ARMAS: Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent iBgspages
1115-1122, May 2010.

L. Ortiz and M. Kearns. Nash propagation for loopy graphgaahes. INIPS:
Proceedings of the Neural Information Processing Systeamdefencepages
817-824, 2003.

C. Papadimitriou. Computing correlated equilibria in riplityer games. In
STOC: Proceedings of the Annual ACM Symposium on TheoryrapGiing
pages 49-56, 2005.

C. Papadimitriou and T. Roughgarden. Computing correlatgdlibria in
multi-player gamesJournal of the ACM55(3):14, July 2008.

C. Papadimitriou and T. Roughgarden. Comment on “computimgelated
equilibria in multi-player games”, 2010.
http://theory.stanford.edu/~tim/papers/comment.pdf, accessed Jan. 10, 2011.

C. H. Papadimitriou. On the complexity of the parity argutremd other
inefficient proofs of existencelournal of Computer and System Scieneks
(3):498 — 532, 1994. ISSN 0022-0000.

233

http://theory.stanford.edu/~tim/papers/comment.pdf

C. H. Papadimitriou and T. Roughgarden. Computing equalitor multi-player
games. INSODA: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms pages 82-91, 2005.

C. Papdimitriou. The complexity of finding Nash equilibria.N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, editédgorithmic Game Theory
Cambridge University Press, Cambridge, UK, 2007.

P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. OrdamelzS. Kraus.
Playing games with security: An efficient exact algorithm Bayesian
Stackelberg games. AMAS: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Sysg€a8.

J. Pearl.Probabilistic Reasoning in Intelligent Systenidorgan Kaufmann, San
Francisco, CA, 1988.

A. Pfeffer. Probabilistic reasoning for complex systen®hD thesis, Computer
Science Department, Stanford University, 2000.

D. Poole and N. Zhang. Exploiting contextual independengaababilistic
inference.Journal of Artificial Intelligence Researcth8:263—313, 2003.

R. Porter, E. Nudelman, and Y. Shoham. Simple search methoélading a
nash equilibriumGames and Economic Behavi@3(2):642-662, 2008.

Z. Rabinovich, E. Gerding, M. Polukarov, and N. R. Jennir@generalised
fictitious play for a continuum of anonymous playerslJ@AIl: Proceedings of
the International Joint Conference on Atrtificial Intelliges pages 245-250,
20009.

P. Raghavan. Probabilistic construction of determiniaslgorithms:
Approximating packing integer programiournal of Computer and System
Sciences37(2):130 — 143, 1988. ISSN 0022-0000.

D. M. Reeves and M. P. Wellman. Computing best-responstegtes in infinite
games of incomplete information. WAI, pages 470-478, 2004. ISBN
0-9749039-0-6.

N. Robertson and P. Seymour. Algorithmic aspects of traedthwi. Algorithms 7:
309-322, 1986.

R. Rosenthal. A class of games possessing pure-stratedyddadibria.
International Journal of Game Theqr2:65-67, 1973.

234

T. Roughgarden. Intrinsic robustness of the Price of Anarth STOC:
Proceedings of the Annual ACM Symposium on Theory of Congp@009.

S. Russell and P. NorvidArtificial Intelligence: A Modern Approach, 2nd edition
Prentice Hall, Englewood Cliffs, NJ, 2003.

C. T. Ryan, A. X. Jiang, and K. Leyton-Brown. Computing purategy Nash
equilibria in compact symmetric games. BiC: Proceedings of the ACM
Conference on Electronic Commergages 6372, 2010.

T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer pragnming methods
for finding Nash equilibria. IPAAAI: Proceedings of the AAAI Conference on
Artificial Intelligence pages 495-501, 2005.

R. Savani and B. von Stengel. Exponentially many steps fdirfgha Nash
equilibrium in a bimatrix game. IROCS: Proceedings of the Annual IEEE
Symposium on Foundations of Computer Sciepages 258—-267, 2004.

H. Scarf. The approximation of fixed points of a continuouppiag. SIAM
Journal of Applied Mathematic45:1328-1343, 1967.

G. Schoenebeck and S. Vadhan. The computational compleiditash equilibria
in concisely represented games.HE: Proceedings of the ACM Conference on
Electronic Commercgepages 270-279, 2006.

Y. Shoham and K. Leyton-BrowrMultiagent Systems: Algorithmic,
Game-Theoretic, and Logical FoundatiorGambridge University Press, New
York, 2009.

S. Singh, V. Soni, and M. Wellman. Computing approximateddaiash
equilibria in tree-games of incomplete information.BE: Proceedings of the
ACM Conference on Electronic Commerpages 81-90. ACM, 2004.

J. SpencerTen lectures on the probabilistic methaddBMS-NSF regional
conference series in applied mathematics. Society fordinidliand Applied
Mathematics, 1994. ISBN 9780898713251.

N. D. Stein, P. A. Parrilo, and A. Ozdaglar. Exchangeabldlibgia contradict
exactness of the Papadimitriou-Roughgarden algorithrpligc 2010.
http://arxiv.org/abs/1010.2871v1.

D. Thompson, S. Leong, and K. Leyton-Brown. Computing Naghliria of
action-graph games via support enumeration. Working papa:n.

235

http://arxiv.org/abs/1010.2871v1

D. R. Thompson and K. Leyton-Brown. Computational analg$is
perfect-information position auctions. EC: Proceedings of the ACM
Conference on Electronic Commer@909.

G. van der Laan, A. Talman, and L. van der Heyden. Simpliaaiable
dimension algorithms for solving the nonlinear compleragtyt problem on a
product of unit simplices using a general labellifgathematics of Operations
Research12(3):377-397, 1987.

D. Vickrey and D. Koller. Multi-agent algorithms for sohgrgraphical games. In
AAAI: Proceedings of the AAAI Conference on Artificial lligeince pages
345-351, 2002.

J. von Neumann and O. Morgenstefrheory of Games and Economic Behavior
Princeton University Press, 1944.

B. von Stengel. Computing equilibria for two-person gamesume 3 of
Handbook of Game Theory with Economic Applicatigreges 1723 — 1759.
Elsevier, 2002.

B. von Stengel and F. Forges. Extensive-form correlatediledqum: Definition
and computational complexityylathematics of Operations Resear83(4):
1002-1022, 2008. URL

http://mor.journal.informs.org/cgi/content/abstract/33/4/1002.

K. Waugh, M. Zinkevich, M. Johanson, M. Kan, D. Schnizleingda. Bowling.
A practical use of imperfect recall. WAAI: Proceedings of the AAAI
Conference on Artificial Intelligen¢009.

E. Yanovskaya. Equilibrium points in polymatrix games (insRian).Litovskii
Matematicheskii Sbornjl8:381-384, 1968.

N. Zhang and D. Poole. Exploiting causal independence ireBiap network
inference.JAIR: Journal of Artificial Intelligence Research:301-328, 1996.

236

http://mor.journal.informs.org/cgi/content/abstract/33/4/1002

Appendix

237

Appendix A

Software

In this chapter | describe software packages implementgadof my thesis re-
search. Overall they can be characterized as tools for ctatipoal analysis of
games using the AGG and BAGG representations. Source chtiesse packages
are available for download at the AGG Project webdite(//agg.cs.ubc.ca).

In Section A.1 | introduce file formats used by all of thesekaaes for de-
scribing AGG and BAGG game instances. Section A.2 desciibesmand-line
programs for finding sample (Bayes) Nash equilibria in AGGd BAGGs. Sec-
tion A.3 describes a graphical user interface for creatititing and visualizing
AGGs, and Section A.4 describes extensions of GAMUT thaegeae AGG in-
stances. Finally in SectioP? | discuss software projects that are currently under
development.

A.1 File Formats

These software packages can read and write a descriptiogarhe as a text file.
There are two formats, one for AGGs and one for BAGGs. All paes work with
the AGG format; additionally, the solvers in Section A.2oalgork with the BAGG

format.

238

http://agg.cs.ubc.ca

A.1.1 The AGG File Format

Each representation of an AGG consists of 8 sections, deplaby whitespaces.
Lines with a starting “#” are treated as comments and arevatidbetween sections.

1. The number of players,
2. The number of action nodesy|.
3. The number of function nodes?|.

4. Size of action set for each player. This is a romoftegers:|As|, |Az|,. .., |An|

o1

. Each player’s action set. We haveows; rowi has|A;| integers in ascending
order, which are indices of action nodes. Action nodes atexad from O to
|| —1.

6. The Action Graph. We have7| + |Z’| nodes, indexed from 0 tps/| +
| 2| — 1. The function nodes are indexed after the action nodes.giidgh
is represented ag</| + |Z?|) neighbor lists, one list per row. Rows 0 to
|/| — 1 are for action nodes; rows?| to |.<7| 4 |<?| — 1 are for function
nodes. In each row, the first number specifies the number of neighbors
of the node. Then follow$v| numbers, corresponding to the indices of the
neighbors.

We require that each function node has at least one neigitihe neighors
of function nodes are action nodes. The action graph resdrio the func-
tion nodes has to be a directed acyclic graph (DAG).

7. Signatures of functions. This js?| rows, each specifying the mappirig
that maps from the configuration of the function nque neighbors to an
integer forp’s “action count”. Each function is specified by its “signiagl
consisting of an integer type, possibly followed by furthparameters. Sev-
eral types of mapping are implemented:

e Types 0 to 3 require no further input:

Type 0: Sum. The action count of a function nogés the sum of the
action counts of's neighbors.

239

Type 1: Existence: boolean for whether the sum of the counts of Reigh
bors are positive.

Type 2: The index of the neighbor with the highest index that has non-
zero counts, of</ |+ |Z| if none applies.

Type 3: The index of the neighbor with the lowest index that has non-
zero counts, of</ |+ |Z| if none applies.

Types 10 to 13 are extended versions of type 0 to 3, each negjdinr-
ther parameters of an integer default value and a list@fjhts |.< |
integers enclosed in square brackets. Each action nodadsassoci-
ated with an integer weight.

Type 10: Extended Sum. Each instance of an actiompB1neighbor-
hood being chosen contributes the weight of that actiondstim.
These are added to the default value.

Type 11: Extended Existence: boolean for whether the extended sum
is positive. The input default value and weights are reguicebe
nonnegative.

Type 12: The weight of the neighbor with the highest index that has
non-zero counts, or the default value if none applies.

Type 13: The weight of the neighbor with the lowest index that has
non-zero counts, or the default value if none applies.

The following is an example of the signatures for an AGG wiiteé action
nodes and two function nodes:

10 0 [2 3 4]

. The payoff function for each action node. So we havé sub-blocks of
numbers. Payoff function for actiom is a mapping from configurations to
real numbers. Configurations are represented as a tupléegers; the size
of the tuple is the size of the neighborhoodmofEach configuration specifies

240

the action counts for the neighborsafin the same order as the neighor list
of a.

The first number of each subblock specifies the type of thefpbaymction.
There are multiple ways of representing payoff functions;(ar other peo-
ple) can extend the file format by defining new types of payafitions. We
define two basic types:

Type 0: The complete representation. The set of possible confignsatan

be derived from the action graph. This set of configuraticens also
be sorted in lexicographical order. So we can just speciypéyoffs
without explicitly giving the configurations. So we just e give
one row of real numbers, which correspond to payoffs for tiered
set of configurations.
If action a is in multiple players’ action sets (say playeandj), then
it is possible that the set of possible configurations g&es a is dif-
ferent from the set of possible configurations givsgn= a. In such
cases, we need to specify payoffs for the union of the setsrdfgura-
tions (sorted in lexicographical order).

Type 1: The mapping representation, in which we specify the condigur
tions and the corresponding payoffs. For the payoff fumctibaction
a, first give | @], the number of elements in the mapping. Then fol-
lows | ()| rows. In each row, first specify the configuration, which is
a tuple of integers, enclosed by a pair of brackets “[” and thien the
payoff. For example, the following specifies a payoff fuantof type
1, with two configurations:

12
[10] 2.5
[11] -1.2

A.1.2 The BAGG File Format

Each representation of a BAGG consists of the followingieast separated by
whitespaces. Lines with a starting “#” are treated as contsnand are allowed

241

between sections.

1.

2.

3.

The number of players,
The number of action nodes? |.

The number of function nodes?|.

4. Arow of nintegers, specifying the number of typ€| for each player.

5.

8.

9.

Type distribution for each playér The distributions are assumed to be in-
dependent. Each playés type distribution is represented as a row|©f]
real numbers, one for each tyfec ©;, specifying P68), the probability of

i having type@. The following example block gives the type distributions
for a BAGG with two players and two types for each player.

0.5 0.5
0.2 0.8

. Size of type-action set for each player’s each type.

. Type-action set for each player's each type. Each tyfieraset is repre-

sented as a row of integers in ascending order, which aredadif action
nodes. Action nodes are indexed from Q.49| — 1.

The action graph: same as Block 6 in the AGG format.

Types of functions: same as Block 7 in the AGG format.

10. Utility function for each action node: same as Block 8ia AGG format.

A.2 Solvers for finding Nash Equilibria

The AGGSolver package is a collection of solvers that coep(Bayes) Nash
equilibria given a game represented in (B)AGG format. Thekpge is written in
C++, and makes use of the GameTracer package (which impter@avindan &
Wilson’s GNM and IPA algorithms), and GAMBIT’s implementat of the sim-
plicial subdivision algorithm. Our black-box algorithmapproach is described in
Chapter 3 for AGGs and Chapter 6 for BAGGs.

242

The following solvers are included:

gnm_agg takes an AGG and computes one or more Nash equilibria usimn&Go
dan & Wilson’s Global Newton Method (GNM).

gnm_bagg takes a BAGG and computes one or more Bayes-Nash equiliirig u
the GNM algorithm.

gnm_ksym_agg takes an AGG or a symmetric BAGG and compkesymmetric
Nash equilibria using a modified GNM algorithm.

gnm_tracing_agg takes an AGG/BAGG and a file containing initial mixed strat-
egy profiles, for each initial mixed strategy profile sigma aiversion of
the GNM algorithm that simulates the linear tracing procediarting from
sigma. Good approximate equilibria can be used as “warrts&tar

ipa_agg / ipabagg takes an AGG/BAGG and computes an approximate Nash equi-
librium using Govindan & Wilson's Iterated Polymatrix Aggpdmation al-
gorithm.

simpdiv takes an AGG/BAGG and computes one or more Nash/Bayes-Nash e
libria using the simplicial subdivision algorithm as implented in GAM-
BIT.

The source code is available for downloadhtp://agg.cs.ubc.ca. Detailed in-
structions on installation and usage of these solvers céoupel in the README
file included in the package, which is also availabletat://agg.cs.ubc.ca/AGGSolver_
README.txt.

A.3 AGG Graphical User Interface

Together with Damien Bargiacchi, we developed the AGGUIlkpge, a graph-
ical user interface that allows users to create and edit AGE&=d in existing
AGGs, and visualize strategy profiles (e.g. Nash equiljbais a density map
the action graph (see, e.g., Figures 3.17 and 3.18 in Chaptelt is written in

Java and runs on any platform that supports Java. It is &aifar download at
http://agg.cs.ubc.ca/aggui.jar.

243

http://agg.cs.ubc.ca
http://agg.cs.ubc.ca/AGGSolver_README.txt
http://agg.cs.ubc.ca/aggui.jar

A.4 AGG Generators in GAMUT

GAMUT [Nudelman et al., 2004] is a suite of generators of ganstances. We
have extended GAMUT with generators of AGG instances in t&Aormat. We
have implemented generators for three classes of AGGs:

RandomSymmetricAGG generates symmetric AGGs on random action graphs
with random utilities.

CoffeeShopGamegenerates instances of the Coffee Shop Game describedjin Cha
ter 3.

IceCreamGame generates instances of the Ice Cream Game described ineChapt
3.

The extended GAMUT package and documentation on these AGErgers are
available for download dttt://agg.cs.ubc.ca.

A.5 Software Projects Under Development

GAMBIT [McKelvey et al., 2006] is a collection of softwaredfs for game theo-
retic analysis that includes implementations of many ofekisting algorithms for

the normal form and the extensive form. Together with Psiie$heodore Turocy,
who is the main author and maintainer of GAMBIT, we are wogkiio incorporate

the AGG and BAGG representations into GAMBIT.

244

htt://agg.cs.ubc.ca

	Abstract
	Preface
	Table of Contents
	List of Figures
	Acknowledgments
	1 Introduction
	2 A Brief Survey on the Computation of Solution Concepts
	2.1 Representations of Games
	2.1.1 Representing Complete-information Static Games
	2.1.2 Representing Dynamic Games
	2.1.3 Representing Games of Incomplete Information

	2.2 Computation of Game-theoretic Solution Concepts
	2.2.1 Computing Sample Nash Equilibria for Normal-Form Games
	2.2.2 Computing Sample Nash Equilibria for Compact Representations of Static Games
	2.2.3 Computing Sample Bayes-Nash Equilibria for Incomplete-information Static Games
	2.2.4 Computing Sample Nash Equilibria for Dynamic Games
	2.2.5 Questions about the Set of All Nash Equilibria of a Game
	2.2.6 Computing Pure-Strategy Nash Equilibria
	2.2.7 Computing Correlated Equilibrium
	2.2.8 Computing Other Solution Concepts

	2.3 Software

	3 Action-Graph Games
	3.1 Introduction
	3.1.1 Our Contributions

	3.2 Action Graph Games
	3.2.1 Basic Action Graph Games
	3.2.2 AGGs with Function Nodes
	3.2.3 AGG-FNs with Additive Structure

	3.3 Further Examples
	3.3.1 A Job Market
	3.3.2 Representing Anonymous Games as AGG-FNs
	3.3.3 Representing Polymatrix Games as AGG-FNAs
	3.3.4 Congestion Games with Action-Specific Rewards

	3.4 Computing Expected Payoff with AGGs
	3.4.1 Computing Expected Payoff for AGG-s
	3.4.2 Computing Expected Payoff with AGG-FNs
	3.4.3 Computing Expected Payoff with AGG-FNAs

	3.5 Computing Sample Equilibria with AGGs
	3.5.1 Complexity of Finding a Nash Equilibrium
	3.5.2 Computing a Nash Equilibrium: The Govindan-Wilson Algorithm
	3.5.3 Computing a Nash Equilibrium: The Simplicial Subdivision Algorithm
	3.5.4 Computing a Correlated Equilibrium

	3.6 Experiments
	3.6.1 Software Implementation and Experimental Setup
	3.6.2 Representation Size
	3.6.3 Expected Utility Computation
	3.6.4 Computing Payoff Jacobians
	3.6.5 Finding a Nash Equilibrium Using Govindan-Wilson
	3.6.6 Finding a Nash Equilibrium Using Simplicial Subdivision
	3.6.7 Visualizing Equilibria on the Action Graph

	3.7 Conclusions

	4 Computing Pure-strategy Nash Equilibria in Action-Graph Games
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 AGGs
	4.2.2 Complexity of Computing PSNE

	4.3 Computing PSNE in AGGs with Bounded Number of Action Nodes
	4.4 Computing PSNE in Symmetric AGGs
	4.4.1 Restricted Games and Partial Solutions
	4.4.2 Combining Partial Solutions
	4.4.3 Dynamic Programming via Characteristics
	4.4.4 Algorithm for Symmetric AGGs with Bounded Treewidth
	4.4.5 Finding PSNE
	4.4.6 Computing Optimal PSNE

	4.5 Beyond symmetric AGGs
	4.5.1 Algorithm for k-Symmetric AGG-s
	4.5.2 General AGG-s and the Augmented Action Graph

	4.6 Conclusions and Open Problems

	5 Temporal Action-Graph Games: A New Representation for Dynamic Games
	5.1 Introduction
	5.2 Representation
	5.2.1 Temporal Action-Graph Games
	5.2.2 Strategies
	5.2.3 Expected Utility
	5.2.4 The Induced MAID of a TAGG
	5.2.5 Expressiveness

	5.3 Computing Expected Utility
	5.3.1 Exploiting Causal Independence
	5.3.2 Exploiting Temporal Structure
	5.3.3 Exploiting Context-Specific Independence

	5.4 Computing Nash Equilibria
	5.5 Experiments
	5.6 Conclusions

	6 Bayesian Action-Graph Games
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Complete-information interpretations

	6.3 Bayesian Action-Graph Games
	6.3.1 BAGGs with Function Nodes

	6.4 Computing a Bayes-Nash Equilibrium
	6.4.1 Computing Expected Utility in BAGGs

	6.5 Experiments

	7 Polynomial-time Computation of Exact Correlated Equilibrium in Compact Games
	7.1 Introduction
	7.1.1 Recent Uncertainty About the Complexity of Exact CE
	7.1.2 Our Results

	7.2 Preliminaries
	7.3 The Ellipsoid Against Hope Algorithm
	7.4 Our Algorithm
	7.4.1 The Purified Separation Oracle
	7.4.2 The Simplified Ellipsoid Against Hope Algorithm

	7.5 Uncoupled Dynamics with Polynomial Communication Complexity
	7.6 Computing Extensive-form Correlated Equilibria
	7.7 Conclusion

	8 A General Framework for Computing Optimal Correlated Equilibria in Compact Games
	8.1 Introduction
	8.2 Problem Formulation
	8.2.1 Correlated Equilibrium

	8.3 The Deviation-Adjusted Social Welfare Problem
	8.3.1 The Weighted Deviation-Adjusted Social Welfare Problem
	8.3.2 The Coarse Deviation-Adjusted Social Welfare Problem

	8.4 The Deviation-Adjusted Social Welfare Problem for Specific Representations
	8.4.1 Reduced Forms
	8.4.2 Linear Reduced Forms
	8.4.3 Representations with Action-Specific Structure

	8.5 Conclusion and Open Problems

	Bibliography
	Appendix
	A Software
	A.1 File Formats
	A.1.1 The AGG File Format
	A.1.2 The BAGG File Format

	A.2 Solvers for finding Nash Equilibria
	A.3 AGG Graphical User Interface
	A.4 AGG Generators in GAMUT
	A.5 Software Projects Under Development

